Probability and Statistics for Computer Science

Can we call e the exciting e ?

$$
e=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}
$$

Credit: wikipedia

What is the number?

$$
\begin{aligned}
& e^{x}= \sum_{k=0}^{\infty} a_{k} x^{k} \\
& a_{k}=? \frac{1}{k!} \\
&\left(e^{x}\right)^{\prime}=e^{x} e^{x} \\
& e^{x} \prod^{x}
\end{aligned}
$$

How many empty slots?
Hashing N items to k slots, $(N \geqslant k)$ collisions are allowed, and will be handled by linked list. What is the expected number of empty slots?

$$
E[x]
$$

$$
x_{i}=\left\{\begin{array}{lc}
1 & \text { slot i remains empty } \\
0 & \text { otherwise }
\end{array}\right.
$$

Last time
\(\left.\begin{array}{ll}Bernoulli \& Distribution

Binomial \& Distribution

Geometric \& Distribution\end{array}\right\}\)| Bernoulli: |
| ---: |
| trials |

Objectives
Poisson Distribution
Continuous Random Variable
Probability Density Function
Exponential Distribution

Motivation for Poisson Distr.
Covin incidences in a time interval.
\rightarrow all these rate data in a counting process.

Motivation for a model called Poisson Distribution

粦 What's the probability of the number of incoming customers (k) in an hour?

粦 It's widely applicable in physics and engineering both for modeling of time and space.

Degrade

Simeon D. Poisson Credit: wikipedia Pg 287
-288 (1781-1840)

Poisson Distribution

粪 A discrete random variable X is called Poisson with intensity $\boldsymbol{\lambda}(\lambda>0)$ if

$$
P(X=k)=\frac{e^{-\lambda} \lambda^{k}}{k!}
$$

for integer $k \geq 0$
λ is the average rate of the event's occurrence

Poisson Distribution

粦 Poisson distribution is a valid pdf for ${ }_{-\lambda}$

$$
\sum_{i=0}^{\infty} \frac{\lambda^{i}}{i!}=e^{\lambda}
$$

$$
\sum_{k} p(x=k)=\sum_{k} \frac{e^{-\lambda} \lambda^{k}}{-k!}
$$

$$
\begin{aligned}
& P(\Omega)=1=e \sum_{k} \frac{1}{k!} \\
& P(X=k)=\frac{e^{-\lambda} \lambda^{k}}{}=e^{-\lambda} \cdot e^{\lambda} \\
&=e^{0} \\
& \text { for integer } \frac{k!0}{k \geq 0}=1
\end{aligned}
$$

λ is the average rate of the event's occurrence

Expectations of Poisson Distribution

粦 The expected value and the variance are wonderfully the same! That is $\boldsymbol{\lambda}$

$$
{ }^{\uparrow}-\lambda \lambda^{k}
$$

$$
E[x] \quad P(X=k)=\frac{e^{-\lambda} \lambda^{n}}{k!}
$$

$$
\left.=\sum x p^{(x)}\right)^{-} \lambda^{k}
$$

$=\sum k: \frac{e}{(k-1)!\text { for integer } k \geq 0}$

Simeon D. Poisson (1781-1840)

$$
=\lambda \underset{k<1|(k-1)\rangle}{\lambda} \operatorname{arr}[X]=\lambda
$$

$$
\begin{aligned}
P(x) & =k)=\frac{e^{-\lambda} \lambda^{k}}{k!} \\
\operatorname{var}[x] & =E\left[x^{2}\right]-\frac{E^{2}[x]}{k!} \\
& =\sum \frac{k^{2} e^{-\lambda} \lambda^{k}}{k!}-\lambda^{2} \\
& =\lambda
\end{aligned}
$$

Examples of Poisson Distribution

粦 How many calls does a call center get in an hour?
How many mutations occur per 100k nucleotides in an DNA strand?

粦 How many independent incidents occur in an interval?

$$
P(X=k)=\frac{e^{-\lambda} \lambda^{k}}{k!}
$$

for integer $k \geq 0$

Poisson Distribution：call center

粦 If a call center receives 10
calls per hour on average， what is the probability that it receives 15 calls in a given hour？

粦 What is $\boldsymbol{\lambda}$ here？$=10$

$$
\begin{aligned}
& \text { What is } P(k=15) ? \\
& \qquad P(x=k)=\frac{e^{-\lambda} \lambda^{k}}{k!}
\end{aligned}
$$

$$
k=15
$$

Q. Poisson Distribution: call center

If a call center receives 4 calls per hour on average.

What is intensity $\boldsymbol{\lambda}$ here for an hour?

Credit: wikipedia

Q. Poisson Distribution: call center

If a call center receives 4 calls per hour on average.

Q. Poisson Distribution: call center

Given a call center receives
10 calls per hour on average,
what is the intensity $\boldsymbol{\lambda}$ of the distribution for calls in Two hours?

$$
\lambda=20
$$

Proof: Degract

Pg 29_{0}
Credit: wikipedia

Example of a continuous random variable

粦 The spinner

$$
\theta \in(0,2 \pi]
$$

粦 The sample space for all outcomes is not countable
\# What is the probability of $p\left(\theta=\theta_{0}\right)$?
θ_{0} is a constant in $(0,2 \pi]$

* what is the probability of

$$
\begin{aligned}
& P\left(\theta_{0}<\theta<\theta_{0}+\delta \theta\right) ? \\
& \frac{\frac{1}{2} \cdot r^{2} \cdot \delta \theta}{\pi r^{2}}=\frac{\delta \theta}{2 \pi} \xrightarrow[\lim _{0}^{2 \pi} \frac{\delta v}{2 \pi}]{\delta_{0}^{\delta \theta}}=\frac{1}{2 \pi}
\end{aligned}
$$

Probability density function（pdf）

䊩 For a continuous random variable X ，the probability that $X=x$ is essentially zero for all （or most）x ，so we can＇t define $P(X=x)$

类 Instead，we define the probability density function（pdf）over an infinitesimally small interval $d x, p(x) d x=P(X \in[x, x+d x])$
粦 For $a<b$

$$
\int_{a}^{b} p(x) d x=P(X \in[a, b])
$$

Properties of the probability density function

粦 $p(x)$ resembles the probability function of discrete random variables in that米 $p(x) \geq 0 \quad$ for all x粦 The probability of X taking all possible values is 1.

$$
\int_{-\infty}^{\infty} p(x) d x=1
$$

Area under the $P d f$ curve

Properties of the probability density function

粦 $p(x)$ differs from the probability distribution function for a discrete random variable in that
粦 $p(x)$ is not the probability that $X=x$
粦 $p(x)$ can exceed 1

$$
p(x)= \begin{cases}2 & x \in\{0,0.5\} \\ 0 & 0 w . \\ p_{0}\end{cases}
$$

Probability density function: spinner

类 Suppose the spinner has equal chance stopping at any position. What's the pdf of the angle θ of the spin position?

$$
p(\theta)=\left\{\begin{array}{cc}
c \quad \text { if } \theta \in(0,2 \pi] \\
0 & \text { otherwise }
\end{array}\right.
$$

For this function to be a pdf,
Then

$$
\int_{-\infty}^{\infty} p(\theta) d \theta=1
$$

$$
c=\frac{1}{2 \pi}
$$

Probability density function: spinner

What the probability that the spin angle θ is within $\left[\frac{\pi}{12}, \frac{\pi}{7}\right]$?

$$
p\left(\theta \in\left[\frac{\pi}{12}, \frac{\pi}{2}\right]\right)
$$

$$
=\int_{\frac{\pi}{12}}^{\frac{\pi}{7}} p(\theta) d \theta
$$

$$
\begin{aligned}
& p(\theta)=\frac{1}{2 \pi} \text { for } \\
& \theta \in\left[0,2 r_{1}\right)
\end{aligned}
$$

$$
=
$$

Q: Probability density function: spinner

粦 What is the constant c given the spin angle θ has the following pdf?

$$
\begin{aligned}
& \text { A. } 1 \\
& \hline \text { B. } 1 / \pi \\
& \hline \text { C. } 2 / \pi \\
& \text { D. } 4 / \pi \\
& \text { E. } 1 / 2 \pi
\end{aligned}
$$

Expectation of continuous variables

粦 Expected value of a continuous random variable $X \int E[X]=\int_{-\infty}^{\infty} x p(x) d x{ }^{\text {weight }}$
Expected value of function of continuous random variable $Y=f(X)$
$E[Y]=E[f(X)]=\int_{-\infty}^{\infty} f(x) p(x) d x$

Probability density function: spinner

Given the probability density of the spin angle θ

$$
p(\theta)=\left\{\begin{array}{cc}
\frac{1}{2 \pi} & \text { if } \theta \in(0,2 \pi] \\
0 & \text { otherwise }
\end{array}\right.
$$

米 The expected value of spin angle is

$$
\begin{aligned}
& E[\theta]=\int_{-\infty}^{\infty} \theta p(\theta) d \theta=\int_{0}^{2 \pi} \theta \frac{1}{2 \pi} d \theta \\
&=\frac{1}{2 \pi} \frac{\theta^{2}}{2} \int_{0}^{2 \pi}
\end{aligned}=\frac{4 \pi^{2}}{9 \pi} .
$$

Properties of expectation of continuous random variables

粦 The linearity of expected value is true for continuous random variables.

粦 And the other properties that we derived for variance and covariance also hold for continuous random variable

o.

粦 Suppose a continuous variable has pdf

$$
p(x)=\left\{\begin{array}{cc}
2(1-x) & x \in[0,1] \\
0 & \text { otherwise }
\end{array}\right.
$$

What is $\mathrm{E}[\mathrm{X}]$?
A. $1 / 2$
B. $1 / 3$
C. $1 / 4$
D. 1
E. 2/3

$$
E[X]=\int_{-\infty}^{\infty} x p(x) d x
$$

Continuous uniform distribution

粦 A continuous random variable X is uniform if

Continuous uniform distribution

粦 A continuous random variable X is uniform if

$$
\frac{E\left[x^{2}\right]-E[x]}{\int_{a}^{b} x^{2} \cdot p(x) d x=\int_{a}^{b} x^{2} \cdot \frac{1}{b-a} d x} \frac{\frac{1}{b-a} \frac{x^{3}}{3} l_{a}^{b}}{}
$$

Continuous uniform distribution

粦 A continuous random variable X is uniform if
$p(x)=\left\{\begin{array}{cc}\frac{1}{b-a} & \text { for } x \in[a, b] \\ 0 & \text { otherwise }\end{array}\right.$ $\frac{1}{b-a}-$

$$
E[X]=\frac{a+b}{2} \quad \& \quad \operatorname{var}[X]=\frac{(b-a)^{2}}{12}
$$

Examples: 1) A dart's position thrown on the target

Continuous uniform distribution

粦 A continuous random variable X is uniform if

$E[X]=\frac{a+b}{2} \quad \& \operatorname{var}[X]=\frac{(b-a)^{2}}{12}$

Examples: 1) A dart's position thrown on the target 2) Often associated with random sampling

Cumulative distribution of continuous uniform distribution

粦 Cumulative distribution function (CDF)

$$
P(X \leq x)=\int_{-\infty}^{x} p(x) d x
$$

of a uniform random variable X is:

Additional References

Charles M. Grinstead and J. Laurie Snell "Introduction to Probability"

Morris H. Degroot and Mark J. Schervish "Probability and Statistics"

Os for discrete distributions

Q.

米 A store staff mixed their fuji and gala apples and they were individually wrapped, so they are indistinguishable. Given there are 70% of fuji, if I want to know what is the probability I get 7 fuji in 20 apples? What is the distribution I should use?
$\begin{array}{lll}\text { A. Bernoulli } & \text { B. Binomial } & \text { C. Geometric }\end{array}$
D. Poisson E. Uniform

粦 A store staff mixed their fuji and gala apples and they were individually wrapped, so they are indistinguishable. Given there are 70% of fuji, if I want to know what is the probability I get 7 fuji in 20 apples? What is the distribution I should use? What is the probability?

Q.

米 A store staff mixed their fuji and gala apples and they were individually wrapped, so they are indistinguishable. Given there are 70% of fuji, if I want to know the probability of picking the first gala on the $7^{\text {th }}$ time (I can put back after each pick). What is the distribution I should use?
$\begin{array}{lll}\text { A. Bernoulli } & \text { B. Binomial } & \text { C. Geometric }\end{array}$
D. Poisson
E. Uniform

粦 A store staff mixed their fuji and gala apples and they were individually wrapped, so they are indistinguishable. Given there are 70% of fuji, if I want to know the probability of picking the first gala on the $7^{\text {th }}$ time (I can put back after one pick). What's the probability?

粦 A store staff mixed their fuji and gala apples and they were individually wrapped, so they are indistinguishable. Given there are 70% of fuji, what's the average times of picking to get the first gala?

See you next time

See You!

