Probability and Statistics for Computer Science

Can we call e the exciting e ?

$$
e=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}
$$

Credit: wikipedia

Last time

Objectives

粦 Normal (Gaussian) distribution
粦 Exponential distribution

Cumulative distribution of continuous uniform distribution

粦 Cumulative distribution function (CDF)

$$
P(X \leq x)=\int_{-\infty}^{x} p(x) d x
$$

of a uniform random variable X is:

Normal (Gaussian) distribution

䊩 The most famous continuous random variable distribution. The probability density is this:

$$
p(x)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right)
$$

Carl F. Gauss
(1777-1855)
Credit: wikipedia

Normal (Gaussian) distribution

䊩 The most famous continuous random variable distribution. The probability density is this:

$$
p(x)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right)
$$

$$
E[X]=\mu \quad \& \quad \operatorname{var}[X]=\sigma^{2}
$$

Carl F. Gauss
(1777-1855)
Credit: wikipedia

Normal (Gaussian) distribution

粦 The most famous continuous random variable distribution.

$$
p(x)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right)
$$

$$
\int_{-\infty}^{+\infty} p(x) d x=1
$$

$$
E[X]=\mu \quad \& \quad \operatorname{var}[X]=\sigma^{2}
$$

Carl F. Gauss
(1777-1855)
Credit: wikipedia

Normal (Gaussian) distribution

粦 A lot of data in nature are approximately normally distributed, ie. Adult height, etc.

$$
p(x)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right)
$$

$$
E[X]=\mu \quad \& \quad \operatorname{var}[X]=\sigma^{2}
$$

Carl F. Gauss
(1777-1855)
Credit: wikipedia

PDF and CDF of normal distribution curves

Spread of normal (Gaussian) distributed data

Credit:
wikipedia

Standard normal distribution

粦 If we standardize the normal distribution (by subtracting μ and dividing by σ), we get a random variable that has standard normal distribution.

A continuous random variable X is standard normal if

$$
p(x)=\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{x^{2}}{2}\right)
$$

Derivation of standard normal distribution

$$
\begin{aligned}
& \int_{-\infty}^{+\infty} p(x) d x \quad \hat{x}=\frac{x-\mu}{\sigma} \\
= & \int_{-\infty}^{+\infty} \frac{1}{\sigma \sqrt{2 \pi}} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right) d x \\
= & \int_{-\infty}^{+\infty} \frac{1}{\sigma \sqrt{2 \pi}} \exp \left(-\frac{\hat{x}^{2}}{2}\right) \varnothing d \hat{x}
\end{aligned}
$$

$$
=\int_{-\infty}^{+\infty} \frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{\hat{x}^{2}}{2}\right) d \hat{x}
$$

Call this standard and omit using a hat

$$
p(x)=\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{x^{2}}{2}\right)
$$

Q. What is the mean of standard normal?

A. 0
B. 1

Q. What is the standard deviation of standard normal?

A. 0
B. 1

Standard normal distribution

粦 If we standardize the normal distribution (by subtracting μ and dividing by σ), we get a random variable that has standard normal distribution.

A continuous random variable X is standard normal if

$$
\begin{aligned}
p(x) & =\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{x^{2}}{2}\right) \\
E[X] & =0 \& \operatorname{var}[X]=1
\end{aligned}
$$

Another way to check the spread of normal distributed data

粦 Fraction of normal data within 1 standard deviation from the mean.

$$
\frac{1}{\sqrt{2 \pi}} \int_{-1}^{1} \exp \left(-\frac{x^{2}}{2}\right) d x \simeq 0.68
$$

Fraction of normal data within \mathbf{k} standard deviations from the mean.

$$
\frac{1}{\sqrt{2 \pi}} \int_{-k}^{k} \exp \left(-\frac{x^{2}}{2}\right) d x
$$

Using the standard normal's table to calculate for a normal distribution's probability

粦 If $X^{\sim} \boldsymbol{N}\left(\mu=3, \sigma^{2}=16\right)$ (normal distribution)

$$
P(X \leq 5)=?
$$

	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
0.0	.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279	.5319	.5359
0.1	.5398	.5438	.5478	.5517	.5557	.5596	.5636	.5675	.5714	.5753
0.2	.5793	.5832	.5871	.5910	.5948	.5987	.6026	.6064	.6103	.6141
0.3	.6179	.6217	.6255	.6293	.6331	.6368	.6406	.6443	.6480	.6517
0.4	.6554	.6591	.6628	.6664	.6700	.6736	.6772	.6808	.6844	.6879
0.5	.6915	.6950	.6985	.7019	.7054	.7088	.7123	.7157	.7190	.7224
0.6	.7257	.7291	.7324	.7357	.7389	.7422	.7454	.7486	.7517	.7549
0.7	.7580	.7611	.7642	.7673	.7704	.7734	.7764	.7794	.7823	.7852
0.8	.7881	.7910	.7939	.7967	.7995	.8023	.8051	.8078	.8106	.8133
0.9	.8159	.8186	.8212	.8238	.8264	.8289	.8315	.8340	.8365	.8389
1.0	.8413	.8438	.8461	.8485	.8508	.8531	.8554	.8577	.8599	.8621
1.1	.8643	.8665	.8686	.8708	.8729	.8749	.8770	.8790	.8810	.8830
1.2	.8849	.8869	.8888	.8907	.8925	.8944	.8962	.8980	.8997	.9015

Q.

粦 If $X^{\sim} \boldsymbol{N}\left(\mu=3, \sigma^{2}=16\right)$ (normal distribution)

$$
P(X \leq 5)=? \quad \text { А. } 0.5199 \text { В. } 0.5987 \quad \text { С. } 0.6915
$$

	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
0.0	.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279	.5319	.5359
0.1	.5398	.5438	.5478	.5517	.5557	.5596	.5636	.5675	.5714	.5753
0.2	.5793	.5832	.5871	.5910	.5948	.5987	.6026	.6064	.6103	.6141
0.3	.6179	.6217	.6255	.6293	.6331	.6368	.6406	.6443	.6480	.6517
0.4	.6554	.6591	.6628	.6664	.6700	.6736	.6772	.6808	.6844	.6879
0.5	.6915	.6950	.6985	.7019	.7054	.7088	.7123	.7157	.7190	.7224
0.6	.7257	.7291	.7324	.7357	.7389	.7422	.7454	.7486	.7517	.7549
0.7	.7580	.7611	.7642	.7673	.7704	.7734	.7764	.7794	.7823	.7852
0.8	.7881	.7910	.7939	.7967	.7995	.8023	.8051	.8078	.8106	.8133
0.9	.8159	.8186	.8212	.8238	.8264	.8289	.8315	.8340	.8365	.8389
1.0	.8413	.8438	.8461	.8485	.8508	.8531	.8554	.8577	.8599	.8621
1.1	.8643	.8665	.8686	.8708	.8729	.8749	.8770	.8790	.8810	.8830
1.2	.8849	.8869	.8888	.8907	.8925	.8944	.8962	.8980	.8997	.9015

Q. Is the table with only positive x values enough?

A. Yes B. No.

	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
0.0	.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279	.5319	.5359
0.1	.5398	.5438	.5478	.5517	.5557	.5596	.5636	.5675	.5714	.5753
0.2	.5793	.5832	.5871	.5910	.5948	.5987	.6026	.6064	.6103	.6141
0.3	.6179	.6217	.6255	.6293	.6331	.6368	.6406	.6443	.6480	.6517
0.4	.6554	.6591	.6628	.6664	.6700	.6736	.6772	.6808	.6844	.6879
0.5	.6915	.6950	.6985	.7019	.7054	.7088	.7123	.7157	.7190	.7224
0.6	.7257	.7291	.7324	.7357	.7389	.7422	.7454	.7486	.7517	.7549
0.7	.7580	.7611	.7642	.7673	.7704	.7734	.7764	.7794	.7823	.7852
0.8	.7881	.7910	.7939	.7967	.7995	.8023	.8051	.8078	.8106	.8133
0.9	.8159	.8186	.8212	.8238	.8264	.8289	.8315	.8340	.8365	.8389
1.0	.8413	.8438	.8461	.8485	.8508	.8531	.8554	.8577	.8599	.8621
1.1	.8643	.8665	.8686	.8708	.8729	.8749	.8770	.8790	.8810	.8830
1.2	.8849	.8869	.8888	.8907	.8925	.8944	.8962	.8980	.8997	.9015
1.3	.9032	.9049	.9066	.9082	.9099	.9115	.9131	.9147	.9162	.9177
1.4	.9192	.9207	.9222	.9236	.9251	.9265	.9279	.9292	.9306	.9319

Central limit theorem (CLT)

The distribution of the sum of \boldsymbol{N} independent identical (IID) random variables tends toward a normal distribution as $\boldsymbol{N} \longrightarrow \infty$

粦 Even when the component random variables are not exactly IID, the result is approximately true and very useful in practice

Central limit theorem (CLT)

CLT helps explain the prevalence of normal distributions in nature

A binomial random variable tends toward a normal distribution when \boldsymbol{N} is large due to the fact it is the sum of IID Bernoulli random variables

The Binomial distributed beads of the Galton Board

The Binomial distribution looks very similar to Normal when N is large

Binomial approximation with Normal

Binomial distribution

Approximation with Normal

Binomial approximation with Normal

Let k be the number of heads appeared in 40 tosses of fair coin

The goal is to estimate the following with normal

$$
\begin{aligned}
& P(10 \leq k \leq 25)=\sum_{k=10}^{25}\binom{40}{k} 0.5^{k} 0.5^{40-k} \\
& =\sum_{k=10}^{25}\binom{40}{k} 0.5^{40} \simeq 0.96
\end{aligned}
$$

$$
E[k]=n p=40 \cdot 0.5=20
$$

$$
\begin{aligned}
& s t d[k]=\sqrt{n p(1-p)} \\
= & \sqrt{40 \cdot 0.5 \cdot 0.5}=\sqrt{10}
\end{aligned}
$$

Binomial approximation with Normal

Use the same mean and standard deviation of the original binomial distribution.

$$
\mu=20 \quad \sigma=\sqrt{10} \simeq 3.16
$$

Then standardize the normal to do the calculation

$$
\begin{aligned}
& P(10 \leq k \leq 25) \simeq \frac{1}{\sigma \sqrt{2 \pi}} \int_{10}^{25} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right) d x \\
& =\frac{1}{\sqrt{2 \pi}} \int_{\frac{10-20}{3.16}}^{\frac{25-20}{3.16}} \exp \left(-\frac{x^{2}}{2}\right) d x \\
& \simeq 0.94
\end{aligned}
$$

Exponential distribution

Common
 Model for
 $$
p(x)=\lambda e^{-\lambda x} \quad \text { for } x \geq 0
$$
 waiting time
 Associated with the
 Poisson distribution with the
 same $\boldsymbol{\lambda}$

Exponential distribution

粦 A continuous random variable X is exponential if it represent the "time" until next incident in a Poisson distribution with intensity $\boldsymbol{\lambda}$. Proof See Degroot et al Pg 324.

$$
p(x)=\lambda e^{-\lambda x} \quad \text { for } x \geq 0
$$

粦 It's similar to Geometric distribution - the discrete version of waiting in queue

Expectations of Exponential distribution

粦 A continuous random variable X is exponential if it represent the "time" until next incident in a Poisson distribution with intensity $\boldsymbol{\lambda}$.

$$
p(x)=\lambda e^{-\lambda x} \quad \text { for } x \geq 0
$$

$$
E[X]=\frac{1}{\lambda} \quad \& \quad \operatorname{var}[X]=\frac{1}{\lambda^{2}}
$$

Example of exponential distribution

粦 How long will it take until the next call to be received by a call center? Suppose it's a random variable \mathbf{T}. If the number of incoming call is a Poisson distribution with intensity $\boldsymbol{\lambda}=$ 20 in an hour. What is the expected time for T?

米 A store has a number of customers coming on Sat. that can be modeled as a Poisson distribution. In order to measure the average rate of customers in the day, the staff recorded the time between the arrival of customers, can he reach the same goal?

A. Yes B. No

Additional References

Charles M. Grinstead and J. Laurie Snell "Introduction to Probability"

Morris H. Degroot and Mark J. Schervish "Probability and Statistics"

See you next time

See You!

