Probability and Statistics for Computer Science

"In statistics we apply probability to draw conclusions from data." ---Prof. J. Orloff

Credit: wikipedia

Last time

粦 Cumulative Distribution Function of a continuous RV

粦 Normal (Gaussian) distribution

Objectives

粦 Exponential Distribution
粦 Sample mean and confidence interval

Exponential distribution

Common
 Model for
 $$
p(x)=\lambda e^{-\lambda x} \quad \text { for } x \geq 0
$$
 waiting time
 Associated with the
 Poisson distribution with the
 same $\boldsymbol{\lambda}$

Exponential distribution

粦 A continuous random variable X is exponential if it represent the "time" until next incident in a Poisson distribution with intensity $\boldsymbol{\lambda}$. Proof See Degroot et al Pg 324.

$$
p(x)=\lambda e^{-\lambda x} \quad \text { for } x \geq 0
$$

粦 It's similar to Geometric distribution - the discrete version of waiting in queue

Expectations of Exponential distribution

粦 A continuous random variable X is exponential if it represent the "time" until next incident in a Poisson distribution with intensity $\boldsymbol{\lambda}$.

$$
p(x)=\lambda e^{-\lambda x} \quad \text { for } x \geq 0
$$

$$
E[X]=\frac{1}{\lambda} \quad \& \quad \operatorname{var}[X]=\frac{1}{\lambda^{2}}
$$

Example of exponential distribution

粦 How long will it take until the next call to be received by a call center? Suppose it's a random variable \mathbf{T}. If the number of incoming call is a Poisson distribution with intensity $\boldsymbol{\lambda}=$ 20 in an hour. What is the expected time for T?

Motivation for drawing conclusion from samples

米 In a study of new-born babies' health, random samples from different time, places and different groups of people will be collected to see how the overall health of the babies is like.

Motivation of sampling：the poll example

		DATES	POLLSTER	SAMPLE	RESULT
U．S．Senate	Miss．	NOV 25,2018	C＋Change Research	1,211 LU	NET RESULT

Source：FiveThirtyEight．com
This senate election poll tells us：
粦 The sample has 1211 likely voters
粦 Ms．Hyde－Smith has realized sample mean equal to 51\％
What is the estimate of the percentage of votes for Hyde－smith？

粦 How confident is that estimate？

Population

粦 What is a population？
＊It＇s the entire possible data set $\{X\}$
粦 It has a countable size N_{p}
粦 The population mean popmean（ $\{X\}$ ）is a number
粦 The population standard deviation is $\operatorname{pops} d(\{X\})$ and is also a number

粦 The population mean and standard deviation are the same as defined previously in chapter 1

Sample

粦 The sample is a random subset of the population and is denoted as $\{x\}$ ，where sampling is done with replacement
粦 The sample size N is assumed to be much less than population size N_{p}
粦 The sample mean of a population is $X^{(N)}$ and is a random variable

Sample mean of a population

The sample mean of a population is very similar to the sample mean of \boldsymbol{N} random variables if the samples are IID samples -randomly \& independently drawn with replacement.

粦 Therefore the expected value and the standard deviation of the sample mean can be derived similarly as we did in the proof of the weak law of large numbers.

Sample mean of a population

The sample mean is the average of IID samples

$$
X^{(N)}=\frac{1}{N}\left(X_{1}+X_{2}+\ldots+X_{N}\right)
$$

By linearity of the expectation and the fact the sample items are identically drawn from the same population with replacement

$$
E\left[X^{(N)}\right]=\frac{1}{N}\left(E\left[X^{(1)}\right]+E\left[X^{(1)}\right] . .+E\left[X^{(1)}\right]\right)=E\left[X^{(1)}\right]
$$

Expected value of one random sample is the population mean

Since each sample is drawn uniformly from the population

$$
E\left[X^{(1)}\right]=\text { popmean }(\{X\})
$$

therefore $E\left[X^{(N)}\right]=\operatorname{popmean}(\{X\})$
We say that $X^{(N)}$ is an unbiased estimator of the population mean.

Standard deviation of the sample mean

We can also rewrite another result from the lecture on the weak law of large numbers

$$
\operatorname{var}\left[X^{(N)}\right]=\frac{\operatorname{popvar}(\{X\})}{N}
$$

The standard deviation of the sample mean

$$
\operatorname{std}\left[X^{(N)}\right]=\frac{\operatorname{popsd}(\{X\})}{\sqrt{N}}
$$

But we need the population standard deviation in order to calculate the $\operatorname{std}\left[X^{(N)}\right]$!

Unbiased estimate of population standard deviation \& Stderr

粦 The unbiased estimate of $\operatorname{popsd}(\{X\})$ is defined as stdunbiased $(\{x\})=\sqrt{\frac{1}{N-1}} \sum_{x_{i} \in \text { sample }}\left(x_{i}-\operatorname{mean}\left(\left\{x_{i}\right\}\right)\right)^{2}$
粦 So the standard error is an estimate of

$$
\operatorname{std}\left[X^{(N)}\right] \quad \operatorname{std}\left[X^{(N)}\right]=\frac{\operatorname{popsd}(\{X\})}{\sqrt{N}}
$$

$$
\frac{\operatorname{popsd}(\{X\})}{\sqrt{N}} \doteq \frac{\text { stdunbiased }(\{x\})}{\sqrt{N}}=\operatorname{stderr}(\{x\})
$$

Standard error: election poll

Us somest		¢mis	pouste	sama	\%	Nexe
	Nama	norsame	© Comenemenest	${ }^{1.2112}$	Een is (in)	Mrosmin
					-	
What is the estimate of the percentage of votes						
for Hyde-smith? 51\%						

Number of sampled voters who selected Ms. Smith is:
1211(0.51) $\cong 618$
Number of sampled voters who didn't selected Ms. Smith was 1211(0.49) $\cong 593$

Standard error: election poll

米 stdunbiased $(\{x\})$
$=\sqrt{\frac{1}{1211-1}\left(618(1-0.51)^{2}+593(0-0.51)^{2}\right)}=0.5001001$
** $\operatorname{stderr}(\{x\})$

$$
=\frac{0.5}{\sqrt{1211}} \simeq 0.0144
$$

Interpreting the standard error

Sample mean is a random variable and has its own probability distribution, stderr is an estimate of the sample mean's standard deviation

When \boldsymbol{N} is very large, according to the Central Limit Theorem, sample mean is approaching a normal distribution with

Interpreting the standard error

Sample mean is a random variable and has its own probability distribution, stderr is an estimate of sample mean's standard deviation

When \boldsymbol{N} is very large, according to the Central Limit Theorem, sample mean is approaching a normal distribution with

$$
\mu=\operatorname{popmean}(\{X\}) ; \sigma=\frac{\operatorname{popsd}(\{X\})}{\sqrt{N}} \doteq \operatorname{stderr}(\{x\})
$$

$$
\operatorname{stder}(\{x\})=\frac{\text { stdunbiased }(\{x\})}{\sqrt{N}}
$$

Interpreting the standard error

Probability distribution of sample mean tends normal when N is large

Confidence intervals

粦 Confidence interval for a population mean is defined by fraction

粦 Given a percentage, find how many units of strerr it covers.

For 95% of the realized sample means, the population mean lies in [sample mean-2 stderr, sample mean +2 stderr]

Confidence intervals when N is large

旁 For about 68\％of realized sample means
 mean $(\{x\})-\operatorname{stderr}(\{x\}) \leq \operatorname{popmean}(\{X\}) \leq \operatorname{mean}(\{x\})+\operatorname{stderr}(\{x\})$

粦 For about 95\％of realized sample means mean $(\{x\})-2 \operatorname{stderr}(\{x\}) \leq \operatorname{popmean}(\{X\}) \leq \operatorname{mean}(\{x\})+2 \operatorname{stderr}(\{x\})$

粦 For about 99．7\％of realized sample means
$\operatorname{mean}(\{x\})-3$ stderr $(\{x\}) \leq \operatorname{popmean}(\{X\}) \leq \operatorname{mean}(\{x\})+3$ stderr $(\{x\})$

Q. Confidence intervals

米 What is the 68\% confidence interval for a population mean?
A. [sample mean-2stderr, sample mean+2stderr] B. [sample mean-stderr, sample mean+stderr]
C. [sample mean-std, sample mean+std]

Standard error: election poll

		DATES	POLLSTER	SAMPLE		RESULI	net result
U.S. Senate	Miss.	NOV 25, 2018	(c) Change Research	1,211 LV	Espy	51\% Hyde-Smith	Hyde-Smith +5

米 We estimate the population mean as 51% with stderr 1.44\%

粦 The 95% confidence interval is
[51\%-2×1.44\%, 51\%+2×1.44\%]= [48.12\%, 53.88\%]

粦 A store staff mixed their fuji and gala apples and they were individually wrapped, so they are indistinguishable. if I pick 30 apples and found 21 fuji , what is my 95\% confidence interval to estimate the popmean is 70% for fuji? (hint: strerr > 0.05)
A. [0.7-0.17, 0.7+0.17]
B. [0.7-0.056, 0.7+0.056]

What if N is small? When is N large enough?

If samples are taken from normal distributed population, the following variable is a random variable whose distribution is Student's tdistribution with $\mathbf{N - 1}$ degree of freedom.

$$
T=\frac{\operatorname{mean}(\{x\})-\text { popmean }(\{X\})}{\operatorname{stderr}(\{x\})}
$$

Degree of freedom is $\mathbf{N}-1$ due to this constraint:

$$
\sum_{i}\left(x_{i}-\operatorname{mean}(\{x\})\right)=0
$$

t-distribution is a family of distri. with different degrees of freedom

t-distribution with $\mathrm{N}=5$ and $\mathrm{N}=30$

Credit : wikipedia

William Sealy Gosset 1876-1937

When $\mathrm{N}=30$, t-distribution is almost Normal

pdf of $t(n=30)$ and normal distribution
t-distribution looks very similar to normal when $\mathrm{N}=30$.

So $\mathrm{N}=30$ is a rule of

 thumb to decide \mathbf{N} is large or not

Confidence intervals when $\mathrm{N}<30$

If the sample size $N<30$, we should use $t-$ distribution with its parameter (the degrees of freedom) set to $\mathrm{N}-1$

Centered Confidence intervals

Centered Confidence interval for a population mean by $\boldsymbol{\alpha}$ value, where

$$
P(T \geq b)=\alpha
$$

For 1-2 α of the realized sample means, the population mean lies in
[sample mean-b×stderr, sample mean+b×stderr]

Centered Confidence intervals

Centered Confidence interval for a population mean by $\boldsymbol{\alpha}$ value, where

$$
P(T \geq b)=\alpha
$$

For 1-2 α of the realized sample means, the population mean lies in
[sample mean-b×stderr, sample mean+b×stderr]

The 95% confidence interval for a population mean is equivalent to what 1-2 α interval?
A. $\alpha=0.05$
B. $\alpha=0.025$
C. $\alpha=0.1$

Assignments

Read Chapter 7 of the textbook

Next time: Bootstrap, Hypothesis tests

Additional References

Charles M. Grinstead and J. Laurie Snell "Introduction to Probability"

Morris H. Degroot and Mark J. Schervish "Probability and Statistics"

See you next time

> See you!

