# Probability and Statistics for Computer Science 

"In statistics we apply probability to draw conclusions from data." ---Prof. J. Orloff

Credit: wikipedia

Which of the following do you feel like to be?
A. Theorist
B. Experimentalist
C. Both
D. Others

## Last time

## 类 Exponential Distribution

粦 Sample mean and confidence interval

Objectives
Recap of Sample mean, confidence interval
Bootstrap Simulation
Hypothesis test

Sample $\{x\}$ and Sample Mean $X^{(N)}$

$$
\{x\}=\{1,2,3, \ldots 12\} \quad N_{p}=12
$$

$$
\begin{aligned}
& \text { One } \\
& \text { random } \\
& \text { sample }
\end{aligned}\{x\}=\{1,1,2,3,3\} \quad N=5
$$

$X^{(N)} R V$ takes value ?

$$
x^{(N)}=\frac{x_{1}+x_{2}+\cdots+x_{N}}{N}=2
$$

A tale of two statisticians

$$
\{X\}=\{1,2,3, \ldots 12\}^{N_{p}=12}
$$

The rask: use only a subset of the proulation with $N=5$
to estimate the popmean with some confidence report.
RV $X^{(N)} \rightarrow$ simple mean

A tale of two statisticians

$$
\begin{gathered}
\{X\}=\{1,2,3, \ldots 12\}^{N=12} \\
\left\{X^{b}\right\}=\{1,4,5,7,11\} \begin{array}{c}
\text { are } \\
\text { randoms },\{x\}]=\{1,4,5,7,11\} \\
\text { sample } \\
\text { iid }
\end{array} \\
E\left[X^{(N)]}\right. \\
\operatorname{var}\left[X^{(N)}\right]
\end{gathered}
$$

A tale of two statisticians

$$
\begin{aligned}
& \{X\}=\{1,2,3, \ldots 12\} \begin{array}{l}
N_{p=12} \\
i c d
\end{array} N=5 \\
& \left\{X^{b}\right\}=\{1,4,5,7,11\} \begin{array}{l}
\text { one } \\
\text { random } \\
\text { sample }
\end{array}\{x\}=\{1,4,5,2,11\} \\
& \{x\}^{b_{1}}=\{1,1,4,5,2\} \\
& \{x\}^{b_{2}}=\{4,5,7,7,11\} \\
& \{x\}^{b n}=\{1,5,7,7,11\} \\
& 5^{5}=3,25 \\
& x^{(N)} \approx N\left(\mu\left(x^{(N)}\right) \sigma\left(x^{(1)}\right)\right) \\
& \mu\left(x^{(N)}\right) \doteq \operatorname{mean}(\{x\})
\end{aligned}
$$

## Expected value of one random sample is the population mean

Since each sample is drawn uniformly from the population

$$
E\left[X^{(1)}\right]=\text { popmean }(\{X\})
$$

therefore $E\left[X^{(N)}\right]=\operatorname{popmean}(\{X\})$
We say that $X^{(N)}$ is an unbiased estimator of the population mean.

## Standard deviation of the sample mean

We can also rewrite another result from the lecture on the weak law of large numbers

$$
\operatorname{var}\left[X^{(N)}\right]=\frac{\operatorname{popvar}(\{X\})}{N}
$$

The standard deviation of the sample mean $s+d\left[x^{(N)}\right]$

$$
=\sqrt{\operatorname{sar}\left[X^{(N)}\right]} \operatorname{std}\left[X^{(N)}\right]=\frac{\operatorname{popsd}(\{X\})}{\sqrt{N}}
$$

But we need the population standard deviation in order to calculate the $s t d\left[X^{(N)}\right]$ !

## Unbiased estimate of population standard deviation \& Stderr

类 The unbiased estimate of $\operatorname{popsd}(\{X\})$ is defined as $\left\{x_{\}}\right\}=\left\{x_{i}\right\}=\left\{x_{1}, x_{2}, x_{3}, \cdots x_{N}\right\}$ stdunbiased $(\{x\})=\sqrt{\frac{1}{N-1} \sum_{x_{i} \in \text { sample }}\left(x_{i}-\operatorname{mean}\left(\left\{x_{i}\right\}\right)\right)^{2}}$
粦 So the standard error is an estimate of

$$
\operatorname{std}\left[X^{(N)}\right] \quad \operatorname{std}\left[X^{(N)}\right]=\frac{\operatorname{popsd}(\{X\})}{\sqrt{N}}
$$

$$
\frac{\operatorname{popsd}(\{X\})}{\sqrt{N}} \doteq \frac{\text { stdunbiased }(\{x\})}{\sqrt{N}}=\operatorname{stderr}(\{x\})
$$

# Standard error: election poll 

| Us somest |  | ¢mis | pouste | sama | \% | Nexe |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Nama | norsame | © Comenemenest | ${ }^{1.2112}$ | Een is (in) | Mrosmin |
|  |  |  |  |  | - |  |
| What is the estimate of the percentage of votes |  |  |  |  |  |  |
| for Hyde-smith? 51\% |  |  |  |  |  |  |

Number of sampled voters who selected Ms. Smith is:
1211(0.51) $\cong 618$
Number of sampled voters who didn't selected Ms. Smith was 1211(0.49) $\cong 593$

## Standard error: election poll

$\operatorname{stdunbiased}(\{x\})=\sqrt{\frac{1}{N-1}\left(\sum_{i=1}^{N}\left(x_{i}-\text { mead }(\{x))^{2}\right)\right.}$

$$
\begin{array}{r}
=\sqrt{\frac{1}{1211-1}\left(618(1-0.51)^{2}+593(0-0.51)^{2}\right)}=0.5001001 \\
\{x\}=\{1,1,0,0,0, \ldots
\end{array}
$$

$$
\operatorname{stderr}(\{x\}) \quad \ldots, 1\}
$$

$$
\simeq \frac{0.5}{\sqrt{1211}} \simeq 0.0144
$$

$$
\begin{gathered}
618 " " \\
593 \cdots "
\end{gathered}
$$

$$
N=1211
$$

## Interpreting the standard error

Sample mean is a random variable and has its own probability distribution, stderr is an estimate of sample mean's standard deviation

When $\boldsymbol{N}$ is very large, according to the Central Limit Theorem, sample mean is approaching a normal distribution with

$$
\mu=\operatorname{popmean}(\{X\}) ; \sigma=\frac{\operatorname{popsd}(\{X\})}{\sqrt{N}} \doteq \operatorname{stderr}(\{x\})
$$

$$
\operatorname{stder}(\{x\})=\frac{\text { stdunbiased }(\{x\})}{\sqrt{N}}
$$

## Interpreting the standard error

Probability distribution of sample mean tends normal when $\mathbf{N}$ is large


## Confidence intervals

粦 Confidence interval for a population mean is defined by fraction

粦 Given a percentage, find how many units of strerr it covers.


For $95 \%$ of the realized sample means, the population mean lies in [sample mean-2 stderr, sample mean +2 stderr]

## Confidence intervals when N is large

## 旁 For about 68\％of realized sample means <br> mean $(\{x\})-\operatorname{stderr}(\{x\}) \leq \operatorname{popmean}(\{X\}) \leq \operatorname{mean}(\{x\})+\operatorname{stderr}(\{x\})$

粦 For about 95\％of realized sample means mean $(\{x\})-2 \operatorname{stderr}(\{x\}) \leq \operatorname{popmean}(\{X\}) \leq \operatorname{mean}(\{x\})+2 \operatorname{stderr}(\{x\})$

粦 For about 99．7\％of realized sample means
$\operatorname{mean}(\{x\})-3$ stderr $(\{x\}) \leq \operatorname{popmean}(\{X\}) \leq \operatorname{mean}(\{x\})+3$ stderr $(\{x\})$

## Q. Confidence intervals

米 What is the 68\% confidence interval for a population mean?
A. [sample mean-2stderr, sample mean+2stderr] B. [sample mean-stderr, sample mean+stderr]
C. [sample mean-std, sample mean+std]

## Interpreting the confidence intervals

Figure 8.5 A sample of one hundred observed $95 \%$ confidence intervals based on samples of size 26 from the normal distribution with mean $\mu=5.1$ and standard deviation $\sigma=1.6$. In this figure, $94 \%$ of the intervals contain the value of $\mu$.


Degroot Pg 487

# Standard error: election poll 

|  |  | DATES | POLLSTER | SAMPLE |  | RESULI | net result |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| U.S. Senate | Miss. | NOV 25, 2018 | (c) Change Research | 1,211 LV | Espy | 51\% Hyde-Smith | Hyde-Smith +5 |

米 We estimate the population mean as $51 \%$ with stderr 1.44\%

粦 The $95 \%$ confidence interval is
[51\%-2×1.44\%, 51\%+2×1.44\%]= [48.12\%, 53.88\%]

粦 A store staff mixed their fuji and gala apples and they were individually wrapped, so they are indistinguishable. if I pick 30 apples and found 21 fuji , what is my 95\% confidence interval to estimate the popmean is $70 \%$ for fuji? (hint: strerr > 0.05)
A. [0.7-0.17, 0.7+0.17]
B. [0.7-0.056, 0.7+0.056]

## What if N is small? When is N large enough?

If samples are taken from normal distributed population, the following variable is a random variable whose distribution is Student's tdistribution with $\mathbf{N - 1}$ degree of freedom.

$$
T=\frac{\operatorname{mean}(\{x\})-\text { popmean }(\{X\})}{\operatorname{stderr}(\{x\})}
$$

Degree of freedom is $\mathbf{N}-1$ due to this constraint:

$$
\sum_{i}\left(x_{i}-\operatorname{mean}(\{x\})\right)=0
$$

## t-distribution is a family of distri. with different degrees of freedom

t-distribution with $\mathrm{N}=5$ and $\mathrm{N}=30$


Credit : wikipedia

William Sealy Gosset 1876-1937


## When $\mathrm{N}=30$, t-distribution is almost Normal

pdf of $t(n=30)$ and normal distribution
t-distribution looks very similar to normal when $\mathrm{N}=30$.

## So $\mathrm{N}=30$ is a rule of

 thumb to decide $\mathbf{N}$ is large or not

## Confidence intervals when $\mathrm{N}<30$

If the sample size $N<30$, we should use $t-$ distribution with its parameter (the degrees of freedom) set to $\mathrm{N}-1$

## Centered Confidence intervals

Centered Confidence interval for a population mean by $\boldsymbol{\alpha}$ value, where

$$
P(T \geq b)=\alpha
$$

$$
1-2 \alpha
$$



For 1-2 $\alpha$ of the realized sample means, the population mean lies in
[sample mean-b×stderr, sample mean+b×stderr]

## Centered Confidence intervals

Centered Confidence interval for a population mean by $\boldsymbol{\alpha}$ value, where

$$
P(T \geq b)=\alpha
$$



For 1-2 $\alpha$ of the realized sample means, the population mean lies in
[sample mean-b×stderr, sample mean+b×stderr]

粦 The $95 \%$ confidence interval for a population mean is equivalent to what 1-2 $\alpha$ interval?

$$
\begin{aligned}
& \text { A. } \alpha=0.05 \quad \frac{1-\rho 5 \%}{2}=\alpha \\
& \text { B. } \alpha=0.025 \\
& \text { C. } \alpha=0.1
\end{aligned}
$$

## Sample statistic

粦 A statistic is a function of a dataset
粦 For example，the mean or median of a dataset is a statistic

## 粦 Sample statistic

粦 Is a statistic of the data set that is formed by the realized sample
粦 For example，the realized sample mean

## Q. Is this a sample statistic?

粦 The largest integer that is smaller than or equal to the mean of a sample YA. Yes
B. No.

## Q. Is this a sample statistic?

粦 The interquartile range of a sample
A. Yes
B. No.


## Confidence intervals for other sample statistics

粦 Sample statistic such as median and others are also interesting for drawing conclusion about the population

粦 It＇s often difficult to derive the analytical expression in terms of stderr for the corresponding random variable

粦 So we can use simulation．．．

## Bootstrap for confidence interval of other sample statistics

米 Bootstrap is a method to construct confidence interval for any* sample statistics using resampling of the sample data set

米 Bootstrapping is essentially uniform random sampling with replacement on the sample of size $\mathbf{N}$

## Bootstrap for confidence interval of other sample statistics



Figure 1. Summary of Bootstrapping Process

Credit: E S. Banjanovic and J. W. Osborne, 2016, PAREonline

## Example of Bootstrap for confidence interval of sample median

粦 The realized sample of student attendance $\{12,10,9,8,10,11,12,7,5,10\}, N=10$ ，median＝10
粦 Generate a random index uniformly from $[1,10]$ that correspond to the 10 numbers in the sample，ie．if index＝6，the bootstrap sample＇s number will be 11.

粦 Repeat the process 10 times to get one bootstrap sample

## Bootstrap replicate

## Sample median

$$
\{11,11,12,10,10,10,12,10,7,10\}
$$

## Example of Bootstrap for confidence interval of sample median

The realized sample of student attendance $\{12,10,9,8,10,11,12,7,5,10\}, N=10$, median=10

## Bootstrap replicate

$$
\begin{array}{|c|c|}
\hline\{1,11,12,10,10,10,12,10,7,10\} & 10 \\
\hline\{7,10,10,10,9,7,9,10,12,10\} & 10 \\
\hline\{9,7,10,8,5,10,7,10,12,8\} & 8.5 \\
\hline
\end{array}
$$

## Example of Bootstrap for confidence interval of sample median

Do the bootstrapping for $\mathbf{r}=10000$ times, then draw the histogram and also find the stderr of sample median)

## Bootstrap replicate

$$
\begin{array}{|c|c|c}
\hline\{1,11,12,10,10,10,12,10,7,10\} & 10 \\
\hline\{7,10,10,10,9,7,9,10,12,10\} & 10 \\
\hline\{9,7,10,8,5,10,7,10,12,8\} & 8.5
\end{array}
$$



## Example of Bootstrap for confidence interval of sample median

䊩 Bootstrapping for $r=10000$
times, then draw the histogram and also find the stderr of sample median.
$\sqrt{\text { stderr }}\{S\})=\sqrt{\frac{\sum_{i}\left[S\left(\{x\}_{i}\right)-\bar{S}\right]^{2}}{r-1}}$

mean(Sample Median) $=9.73625$ stderr(Sample Median) $=0.7724446$

## Errors in Bootstrapping

粦 The distribution simulated from bootstrapping is called empirical distribution. It is not the true population distribution. There is a statistical error.

The number of bootstrapping replicates may not be enough. There is a numerical error.

粦 When the statistic is not a well behaving one, such as maximum or minimum of a data set, the bootstrap method may fail to simulate the true distribution.

## CEO salary example with larger $\mathrm{N}=59$

粦 The realized sample of CEO salary $N=59$, median=350 K

粪 $r=10000$
mean(Sample Median) $=$ 348.0378
stderr)Sample Median) = 27.30539

Histogram of the Bootstrap sample medians


## Checking whether it's normal by Normal Q-Q plot

## Q-Q compares a

 distribution with normal by matching the kth smallest quantile value pairs and plot as a point in the graph
## Linear means similar to normal!



## CEO salary sample median's Q-Q plot

## Q-Q plot of CEO

 salary's bootstrap sample medians粦 It's roughly linear so it's close to normal.

粦 We can use the normal distribution to construct the confidence intervals


## CEO salary sample median's Q-Q plot

95\% confidence interval for the median CEO salary from the bootstrap simulation
$348.0378 \pm$
$2 \times 27.30539$
$=[293.427,402.6486]$


$$
\frac{H_{0}}{H_{1}}: \operatorname{popiem}: \operatorname{pophem}(\{x\})=v_{0}
$$



## Assignments

## Read Chapter 7 of the textbook

Next time: more on hypothesis testing

## Additional References

Charles M. Grinstead and J. Laurie Snell "Introduction to Probability"

Morris H. Degroot and Mark J. Schervish "Probability and Statistics"

## See you next time

> See you!


