
ì	Probability	and	Statistics	
for	Computer	Science		

"Sta&s&cal	thinking	will	one	day	
be	as	necessary	for	efficient	
ci&zenship	as	the	ability	to	read	
and	write."	H.	G.	Wells	

Hongye	Liu,	Teaching	Assistant	Prof,	CS361,	UIUC,	10.20.2020	
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Interpretation of Confidence Interval
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Interpretation of Confidence Interval
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Interpreting the confidence intervals
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Bootstrap Histogram
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Last	time	

* Hypothesis test

* Chi - square test

* Maximum likelihood estimation



Objectives	
� More	on	Maximum	likelihood	
Es&ma&on	(MLE)	

� Bayesian	Inference	(MAP)	

Likelihood
frequentist

Bayesian posterior

0 distr : .



Maximum	likelihood	estimation	(MLE)	

�  We	write	the	probability	of	seeing	the	data	D	
given	parameter	θ		

�  The	likelihood	func-on										is	not	a	
probability	distribu&on	

�  The	maximum	likelihood	es-mate	(MLE)	of	
θ	is		

	

L(θ) = P (D|θ)

L(θ)

θ̂ = arg max
θ

L(θ)



Likelihood	function:	binomial	example	

�  Suppose	we	have	a	coin	with	unknown	probability	of	θ	
coming	up	heads	

�  We	toss	it	10	&mes	and		

							observe	7	heads	

�  The	likelihood	func&on	is:	

�  The	MLE	is																											
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Q.	What	is	the	MLE	of	binomial	N=12,	k=7	

A.	12!/7!/5!	

B.	7/12	

C.	5/12	

D.12/7	
b' = IN
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Q.	What	is	the	MLE	of	Poisson	k1=5,	k2=7,	
n=2	

A.	6	

B.	35/2	

C.	12	

D.	other	
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MLE	Example		

You	find	a	5-sided	die	and	want	to	es&mate	its	
probability	θ	of	coming	up	5,	you	decided	to	roll	it	12	
&mes	and	then	roll	it	un&l	it	comes	up	5.	You	rolled	15	
&mes	altogether	and	found	there	were	3	&mes	when	the	
die	came	up	5.	Write	down	the	likelihood	func&on	L(θ).	A.Ydepwdanthy~L.CO/=pcD1O)=pPY'lO1PlD40)
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MLE$Example$$

You$find$a$5*sided$die$and$want$to$es&mate$its$
probability$θ$of$coming$up$5,$you$decided$to$roll$it$12$
&mes$and$then$roll$it$un&l$it$comes$up$5.$You$rolled$15$
&mes$altogether$and$found$there$were$3$&mes$when$the$
die$came$up$5.$Write$down$the$likelihood$func&on$L(θ).$
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Drawbacks	of	MLE	

�  Maximizing	some	likelihood	or	log-likelihood	
func&on	is	mathema&cally	hard	

�  	If	there	are	few	data	items,	the	MLE	
es&mate	maybe	very	unreliable	
�  If	we	observe	3	heads	in	10	coin	tosses,	should	we	

accept	that	p(heads)=	0.3	?	
�  If	we	observe	0	heads	in	2	coin	tosses,	should	we	

accept	that	p(heads)=	0	?	

o
"
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Bayesian	inference	

�  In	MLE,	we	maximized	the	likelihood	func&on		

�  In	Bayesian	inference,	we	will	maximize	the	posterior,	
which	is	the	probability	of	the	parameters	θ	given	the	
observed	data	D.	

�  Unlike									,	the	posterior	is	a	probability	distribu&on	

�  The	value	of	θ	that	maximizes																is	called	the	
maximum	a	posterior	(MAP)	es&mate		

L(θ) = P (D|θ)

θ̂

P (θ|D)

P (θ|D)
L(θ)
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The	components	of	Bayesian	Inference	

�  From	Bayes	rule	
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The	components	of	Bayesian	Inference	

�  From	Bayes	rule	

		
		
�  Prior,	assumed	distribu&on	of	θ	before	

seeing	data	D	
�  Likelihood	func&on	of	θ	seeing	D	
�  Total	Probability	seeing	D	---	P(D)	
�  Posterior,	distribu&on	of	θ	given	D	

Lilly
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The	usefulness	of	Bayesian	inference	

�  From	Bayes	rule	

�  Bayesian	inference	allows	us	to	include	prior	
beliefs	about	θ	in	the	prior										,	which	is	useful	
�  When	we	have	reasonable	beliefs,	such	as	a	

coin	can	not	have	P(heads)	=	0	
�  When	there	isn’t	much	data	
�  We	get	a	distribu&on	of	the	posterior,	not	just	

one	maxima	

P (θ)

P (θ|D) =
P (D|θ)P (θ)

P (D)

*



Bayesian	Inference:	a	discrete	prior	

�  Suppose	we	have	a	coin	of	unknown	
probability	θ	of	heads										
�  We	see	7	heads	in	10	tosses	(D)	
�  We	assume	the	prior	about	θ.	

�  We	have	this	likelihood:	

�  What	is	the	posterior																			?	

P (θ) =







2

3
if θ = 0.5

1

3
if θ = 0.6

0 otherwise

P (D|θ) =
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θ
7(1− θ)3

P (θ|D)



Bayesian	Inference:	a	discrete	prior	

�  We	see	7	heads	in	10	tosses	(D)	
�  We	assume	the	prior	about	θ.	

�  We	have	this	likelihood:	

�  What	is	the	posterior																			?	

P (θ) =







2

3
if θ = 0.5

1

3
if θ = 0.6

0 otherwise

P (D|θ) =

(

10

7
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θ
7(1− θ)3

P (θ|D)

P (θ|D) =
P (D|θ)P (θ)

P (D)



Bayesian	Inference:	a	discrete	prior	

�  We	see	7	heads	in	10	tosses	(D)	
�  We	assume	the	prior	about	θ.	

�  We	have	this	likelihood:	

�  What	is	the	posterior																			?	

P (θ) =







2

3
if θ = 0.5

1

3
if θ = 0.6

0 otherwise

P (D|θ) =

(

10

7

)

θ
7(1− θ)3

P (θ|D)

P (θ|D) =
P (D|θ)P (θ)

P (D)
P (D) =

∑

θi∈θ

P (D|θi)P (θi)
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Bayesian	Inference:	a	discrete	prior	

�  We	see	7	heads	in	10	tosses	(D)	
�  We	assume	the	prior	about	θ.	

�  We	have	this	likelihood:	

�  What	is	the	posterior																			?	

P (θ) =







2

3
if θ = 0.5

1

3
if θ = 0.6

0 otherwise

P (D|θ) =

(

10

7

)

θ
7(1− θ)3

P (θ|D)

P (θ|D) =







0.52 if θ = 0.5
0.48 if θ = 0.6
0 otherwise

MAP									=0.5	θ̂

Biased	by	the	prior	



Bayesian	Inference:	a	continuous	prior	

�  Suppose	we	have	a	coin	of	unknown	
probability	θ	of	heads	

�  We	see	7	heads	in	10	tosses	(D)	

�  We	assume	

�  What	is	the	posterior																		?		
θ 0.6	

5	

0	
P (θ) =

{

5 if θ ∈ [0.4, 0.6]
0 if θ /∈ [0.4, 0.6] 0.4	

P (θ|D)

P (θ)



Bayesian	Inference:	a	continuous	prior	

�  What	is	the	posterior																		?		

θ 0.6	
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P (θ) =
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P (θ|D) ∝ P (D|θ)P (θ)



Bayesian	Inference:	a	continuous	prior	

�  What	is	the	posterior																		?		

θ 0.6	

5	

0	

P (θ) =

{

5 if θ ∈ [0.4, 0.6]
0 if θ /∈ [0.4, 0.6]

0.4	

P (θ|D)
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Bayesian	Inference:	a	continuous	prior	

�  What	is	the	posterior																		?		

θ 0.6	
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{

5 if θ ∈ [0.4, 0.6]
0 if θ /∈ [0.4, 0.6]
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The	constant	in	the	Bayesian	inference	

P (D) =

∫
θ

P (D|θ)P (θ)dθ
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closed	form.	

�  There	are	a	lot	of	
approxima&on	
methods.	

Scale	by	5	
for	this	
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Drawbacks	of	Bayesian	inference	

�  Maximizing	some	posteriors																is	difficult	

�  Some	choices	of	prior									can	overwhelm	any	
data	observed.	

�  It’s	hard	to	jus&fy	a	choice	of	prior	

P (θ|D)

P (θ)



The	concept	of	conjugacy	

�  For	a	given	likelihood	func&on												,	a	prior											is	its	
conjugate	prior	if	it	has	the	following	proper&es:	
�  									belongs	to	a	family	of	distribu&ons	that	are	

expressive	
�  The	posterior																																									belongs	to	the	same	

family	of	distribu&on	as	the	prior	
�  The	posterior															is	easy	to	maximize	
	

P (θ)P (D|θ)

P (θ)

P (θ)
P (θ|D) ∝ P (D|θ)P (θ)

P (θ|D)

�  For	example,	a	conjugate	prior	for	binomial	likelihood	
func&on	is	Beta	distribu&on	



Beta	distribution	

�  A	distribu&on	is	Beta	distribu&on	if	it	has	the	following	
pdf:	

	

		

�  Is	an	expressive	family	of	
distribu&ons																											

�  																														is	uniform	

P (θ) = K(α, β)θα−1(1− θ)β−1

K(α, β) =
Γ(α + β)

Γ(α)Γ(β)
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Q.	Beta	distribution	is	a	continuous	
probability	distribution	

A.	TRUE	

B.	FALSE	

e



Beta	distribution	as	the	conjugate	prior	
for	Binomial	likelihood	
�  The	likelihood	is	Binomial	(N,	k)	

�  The	Beta	distribu&on	is	used	as	the	prior	

�  So	

�  Then	the	posterior	is		

P (θ) = K(α, β)θα−1(1− θ)β−1

P (D|θ) =

(

N

k

)

θ
k(1− θ)N−k

P (θ|D) ∝ θ
α+k−1(1− θ)β+N−k−1

Beta(α + k, β +N − k)

P (θ|D) = K(α + k, β +N − k)θα+k−1(1− θ)β+N−k−1

L = I

p = I
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The	update	of	Bayesian	posterior	

�  Since	the	posterior	is	in	the	same	family	as	the	
conjugate	prior,	the	posterior	can	be	used	as	a	new	prior	
if	more	data	is	observed.	

�  Suppose	we	start	with	a	uniform	prior	on	the	
probability	θ	of	heads	
�  Then	we	see	3H	0T	
�  Then	we	see	4H	3T	for	7H	3T	in	total	
�  Then	we	see	10H	10T	for	17H	13T	in	total	
�  Then	we	see	55H	15T	for	72H	28T	in	total	

		

�  		

θ	

LI ' B. =/ p cold )

I

-



The	update	of	Bayesian	posterior	

�  Since	the	posterior	is	in	the	same	family	as	the	
conjugate	prior,	the	posterior	can	be	used	as	a	new	prior	
if	more	data	is	observed.	

�  Suppose	we	start	with	a	uniform	prior	on	the	
probability	θ	of	heads	

θ	

N	 k	 α	 β	

1	 1	

3	 0	 1	 4	

10	 7	 8	 7	

30	 17	 25	 20	

100	 72	 97	 48	

^ "



Simulation	of	the	update	of	Bayesian	
posterior	

hmps://seeing-theory.brown.edu/bayesian-inference/
index.html	



Maximize	the	Bayesian	posterior	(MAP)	

�  The	posterior	of	the	previous	example	is	

	

�  Differen&a&ng	and	seong	to	0	gives	the	MAP	es&mate	

θ	

P (θ|D) = K(α + k, β +N − k)θα+k−1(1− θ)β+N−k−1

θ̂ =
α− 1 + k

α + β − 2 +N

if 2=1

f- I

o" =L
N



Conjugate	prior	for	other	likelihood	
functions	
�  If	the	likelihood	is	Bernoulli	or	geometric,	the	conjugate	

prior	is	Beta	

�  If	the	likelihood	is	Poisson	or	Exponen&al,	the	conjugate	
prior	is	Gamma	

�  If	the	likelihood	is	normal	with	known	variance,	the	
conjugate	prior	is	normal	

θ	



Assignments	

� Finish	Chapter	9	of	the	textbook	

� Next	&me:	Covariance	matrix,	PCA	
	



Additional	References	

✺  Robert	V.	Hogg,	Elliot	A.	Tanis	and	Dale	L.	
Zimmerman.	“Probability	and	Sta&s&cal	
Inference”		

� Morris	H.	Degroot	and	Mark	J.	Schervish	
"Probability	and	Sta&s&cs”	



See	you	next	time	

See 
 You! 


