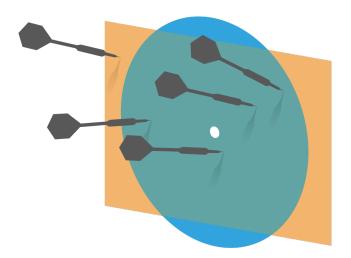
Probability and Statistics for Computer Science



"Statistical thinking will one day be as necessary for efficient citizenship as the ability to read and write." H. G. Wells

Credit: wikipedia

Hongye Liu, Teaching Assistant Prof, CS361, UIUC, 10.20.2020

Last time

Hypothesis test

* Chi-square test

Maximum likelihood Estimation (MLE)

Objectives

More on Maximum likelihood Estimation (MLE)

Bayesian Inference (MAP)

Maximum likelihood estimation (MLE)

 ${}^{\#}$ We write the probability of seeing the data D given parameter θ

$$L(\theta) = P(D|\theta)$$

- * The **likelihood function** $L(\theta)$ is **not** a probability distribution
- * The maximum likelihood estimate (MLE) of

θis

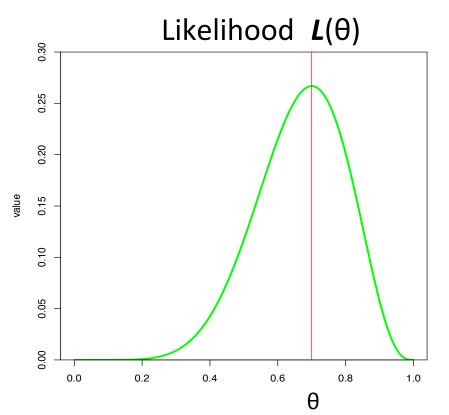
$$\hat{\theta} = \arg \max_{\theta} L(\theta)$$

Likelihood function: binomial example

- * Suppose we have a coin with unknown probability of θ coming up heads
- We toss it **10** times and

observe 7 heads

- * The likelihood function is: $P(D|\theta) = {\binom{10}{7}} \theta^7 (1-\theta)^3$
- * The MLE is $\hat{ heta}=0.7$



Q. What is the MLE of binomial N=12, k=7

A. 12!/7!/5!
B. 7/12
C. 5/12
D.12/7

Q. What is the MLE of Poisson $k_{1=5}$, $k_{2=7}$, n=2

A. 6 B. 35/2 C. 12 D. other

MLE Example

You find a 5-sided die and want to estimate its probability θ of coming up 5, you decided to roll it 12 times and then roll it until it comes up 5. You rolled 15 times altogether and found there were 3 times when the die came up 5. Write down the likelihood function L(θ).

Drawbacks of MLE

- Maximizing some likelihood or log-likelihood function is mathematically hard
- If there are few data items, the MLE estimate maybe very unreliable
 - If we observe 3 heads in 10 coin tosses, should we accept that p(heads)= 0.3 ?
 - If we observe 0 heads in 2 coin tosses, should we accept that p(heads)= 0 ?

Bayesian inference

In MLE, we maximized the likelihood function

$$L(\theta) = P(D|\theta)$$

- * In Bayesian inference, we will maximize the **posterior**, which is the probability of the parameters θ given the observed data D. $P(\theta|D)$
- * Unlike $L(\theta)$, the posterior is a probability distribution
- * The value of θ that maximizes $P(\theta|D)$ is called the **maximum a posterior (MAP)** estimate $\hat{\theta}$

The components of Bayesian Inference

From Bayes rule

The components of Bayesian Inference

From Bayes rule

* Prior, assumed distribution of **θ** before seeing data **D**

- ★ Likelihood function of θ seeing D
- * Total Probability seeing D --- P(D)
- **Posterior**, distribution of θ given **D**

The usefulness of Bayesian inference

- ** From Bayes rule $P(\theta|D) = \frac{P(D|\theta)P(\theta)}{P(D)}$
- * Bayesian inference allows us to include prior beliefs about θ in the prior $P(\theta)$, which is useful
 - When we have reasonable beliefs, such as a coin can not have P(heads) = 0
 - When there isn't much data
 - We get a distribution of the posterior, not just one maxima

- Suppose we have a coin of unknown probability θ of heads
 - We see 7 heads in 10 tosses (D)
 - **We assume the prior about** θ .
 - We have this likelihood:

pod:
$$P(\theta) = \begin{cases} \frac{3}{1} \\ \frac{1}{3} \\ 0 \end{cases}$$

<u>(</u><u>2</u>

$$if \ \theta = 0.5$$
$$if \ \theta = 0.6$$
$$otherwise$$

$$P(D|\theta) = {\binom{10}{7}}\theta^7 (1-\theta)^3$$

 \ast What is the posterior $P(\theta|D)$?

- ₩ We see 7 heads in 10 tosses (D)
- * We assume the prior about θ . $P(\theta) = \begin{cases} \frac{2}{3} & if \ \theta = 0.5 \\ \frac{1}{3} & if \ \theta = 0.6 \\ 0 & otherwise \end{cases}$
- * We have this likelihood: $P(D|\theta) = {\binom{10}{7}} \theta^7 (1-\theta)^3$
- \ast What is the posterior $P(\theta|D)$?
 - $P(\theta|D) = \frac{P(D|\theta)P(\theta)}{P(D)}$

 $P(\theta|D) = \frac{P(D|\theta)P(\theta)}{P(D)} \quad P(D) = \sum_{\theta, \sigma, \theta} P(D|\theta_i)P(\theta_i)$

- ₩ We see 7 heads in 10 tosses (D)
- * We have this likelihood: $P(D|\theta) = {\binom{10}{7}}\theta^7 (1-\theta)^3$
- ** We assume the prior about θ . $P(\theta) = \begin{cases} \frac{2}{3} & if \ \theta = 0.5 \\ \frac{1}{3} & if \ \theta = 0.6 \\ 0 & otherwise \end{cases}$

 $\theta_i \in \theta$

What is the posterior $P(\theta|D)$? ₩

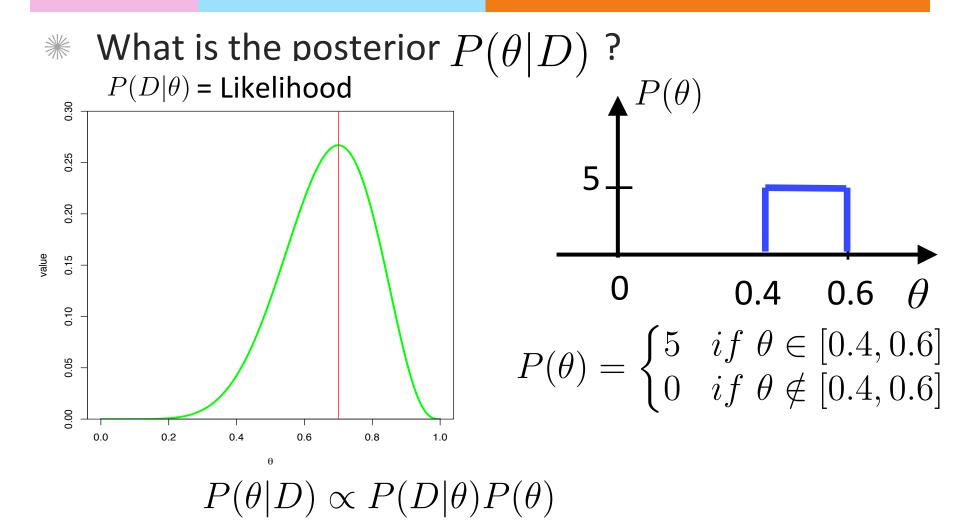
- ₩ We see 7 heads in 10 tosses (D)
- We have this likelihood: ₩ $P(D|\theta) = {\binom{10}{7}}\theta^7 (1-\theta)^3$
- * We assume the prior about θ . $P(\theta) = \begin{cases} \frac{2}{3} & if \ \theta = 0.5 \\ \frac{1}{3} & if \ \theta = 0.6 \\ 0 & otherwise \end{cases}$

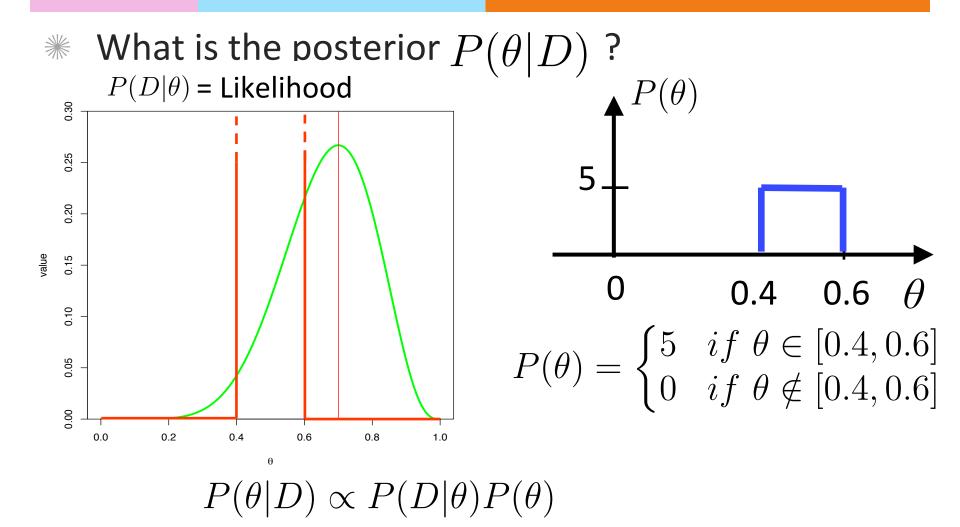
What is the posterior P(heta|D) ? ₩

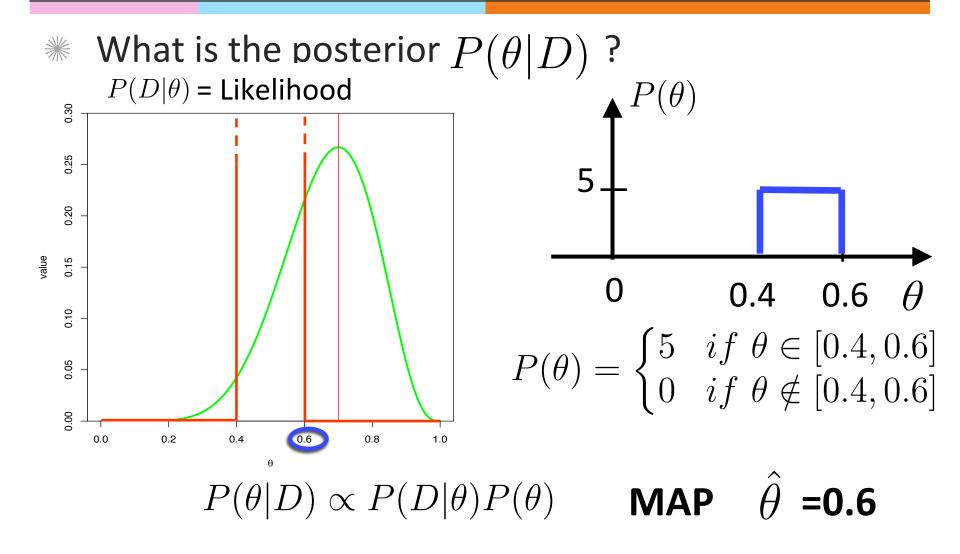
$$P(\theta|D) = \begin{cases} 0.52 & if \ \theta = 0.5\\ 0.48 & if \ \theta = 0.6\\ 0 & otherwise \end{cases}$$

MAP estimate=?

- Suppose we have a coin of unknown probability θ of heads
- ∗ We see 7 heads in 10 tosses (**D** $) ↑ <math>P(\theta)$
- We assume $P(\theta) = \begin{cases} 5 & if \ \theta \in [0.4, 0.6] \\ 0 & if \ \theta \notin [0.4, 0.6] \end{cases}$
- \ast What is the posterior P(heta|D) ?





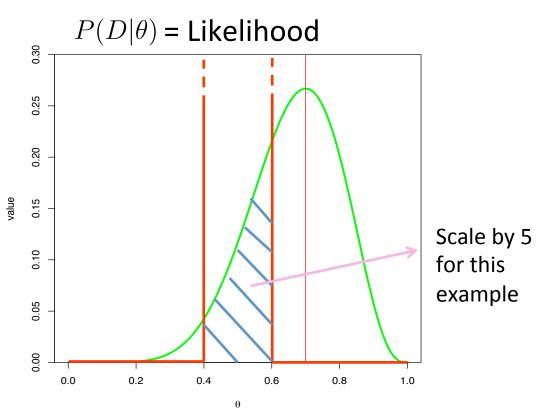


The constant in the Bayesian inference

$$P(D) = \int_{\theta} P(D|\theta) P(\theta) d\theta$$

It's not always possible to calculating P(D) in closed form.

* There are a lot of approximation methods.



Drawbacks of Bayesian inference

- ***** Maximizing some posteriors $P(\theta|D)$ is difficult
- * Some choices of prior $P(\theta)$ can overwhelm any data observed.
- It's hard to justify a choice of prior

The concept of conjugacy

- * For a given likelihood function $P(D|\theta)$, a prior $P(\theta)$ is its conjugate prior if it has the following properties:
 - $\# P(\theta)$ belongs to a family of distributions that are expressive
 - * The posterior $P(\theta|D) \propto P(D|\theta)P(\theta)$ belongs to the same family of distribution as the prior $P(\theta)$
 - * The posterior $P(\theta|D)$ is easy to maximize
- For example, a conjugate prior for binomial likelihood function is Beta distribution

Beta distribution

A distribution is Beta distribution if it has the following ▓ pdf: $P(\theta) = K(\alpha, \beta)\theta^{\alpha-1}(1-\theta)^{\beta-1}$ $0 \le \Theta \le 1$ α >0, β>0 = 0 O.W.pdf of Beta – distribution 9 $K(\alpha,\beta) = \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}$ Beta(1,1) Beta(5,5) Beta(50,50) Beta(70,70) Beta(20,50) ω Beta(0.5,0.5) Is an expressive family of ⋙ ဖ density distributions 4 $\#Beta(\alpha = 1, \beta = 1)$ is uniform ΩI

0

0.0

0.2

0.4

0.6

θ

0.8

1.0

Beta distribution as the conjugate prior for Binomial likelihood

- ** The likelihood is Binomial (*N*, *k*) $P(D|\theta) = \binom{N}{k} \theta^k (1-\theta)^{N-k}$
- * The Beta distribution is used as the prior $P(\theta) = K(\alpha,\beta)\theta^{\alpha-1}(1-\theta)^{\beta-1}$
- * So $P(\theta|D) \propto \theta^{\alpha+k-1}(1-\theta)^{\beta+N-k-1}$
- ** Then the posterior is $Beta(\alpha + k, \beta + N k)$ $P(\theta|D) = K(\alpha + k, \beta + N - k)\theta^{\alpha + k - 1}(1 - \theta)^{\beta + N - k - 1}$

The update of Bayesian posterior

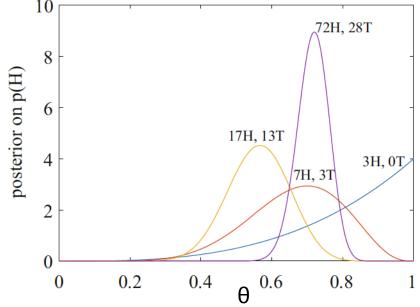
Since the posterior is in the same family as the conjugate prior, the posterior can be used as a new prior if more data is observed.

Suppose we start with a uniform prior on the probability θ of heads

* Then we see 3H 0T

▓

- * Then we see 4H 3T for 7H 3T in total
- * Then we see 10H 10T for 17H 13T in total
- * Then we see 55H 15T for 72H 28T in total



The update of Bayesian posterior

- Since the posterior is in the same family as the conjugate prior, the posterior can be used as a new prior if more data is observed.
 - Suppose we start with a uniform prior on the probability θ of heads \int_{10}^{10}

k	α	β
	1	1
0	1	4
7	8	7
17	25	20
72	97	48
	0 7 17	1 0 1 7 8 17 25

▓



Simulation of the update of Bayesian posterior

https://seeing-theory.brown.edu/bayesian-inference/ index.html

Maximize the Bayesian posterior (MAP)

* The posterior of the previous example is

$$P(\theta|D) = K(\alpha + k, \beta + N - k)\theta^{\alpha + k - 1}(1 - \theta)^{\beta + N - k - 1}$$

Differentiating and setting to 0 gives the MAP estimate

$$\hat{\theta} = \frac{\alpha - 1 + k}{\alpha + \beta - 2 + N}$$

Conjugate prior for other likelihood functions

- If the likelihood is Bernoulli or geometric, the conjugate prior is Beta
- If the likelihood is Poisson or Exponential, the conjugate prior is Gamma
- If the likelihood is normal with known variance, the conjugate prior is normal

Assignments

Finish Chapter 9 of the textbook

* Next time: Covariance matrix

Additional References

- Robert V. Hogg, Elliot A. Tanis and Dale L. Zimmerman. "Probability and Statistical Inference"
- Morris H. Degroot and Mark J. Schervish "Probability and Statistics"

See you next time

See You!

