Probability and Statistics for Computer Science

$$cov(X,Y) = E[(X - E[X])(Y - E[Y])]$$
$$= E[XY] - E[X]E[Y]$$

Covariance is coming back in matrix!

Credit: wikipedia

Hongye Liu, Teaching Assistant Prof, CS361, UIUC, 10.22.2020

Last time

Objectives

Recap of Bayesian Inference Conjugate privors

Visualize & Summarize high dimensional data sets

Covariance Matrix

Beta distribution

Beta distribution as the conjugate prior for Binomial likelihood

- * The likelihood is Binomial (N, k) $P(D|\theta) = \binom{N}{k} \theta^{k} (1-\theta)^{N-k} \sim 0 \quad (1-\theta)^{N-k}$
- * The Beta distribution is used as the prior

*

- Then the posterior is $Beta(\alpha + k, \beta + N k)$

 $P(\theta|D) = \underbrace{K(\alpha + k, \beta + N - k)\theta^{\alpha + k - 1}(1 - \theta)^{\beta + N - k - 1}}_{\text{S}' \text{ do } = 1}$

The update of Bayesian posterior

Since the posterior is in the same family as the conjugate prior, the posterior can be used as a new prior if more data is observed.

Maximize the Bayesian posterior (MAP)

The posterior of the previous example is **E[9]** ▓ $P(\theta|D) = K(\alpha + k, \beta + N - k)\theta^{\alpha + k - 1}(1 - \theta)^{\beta + N - k - 1}$ $\overset{\textbf{a} \text{ P(\theta|D)}}{= 0} = 0$ $\overset{\textbf{a} \text{ formula}}{= 0}$ $\overset{\textbf{b} \text{ formula}}{= 0}$ $\overset{\textbf{b} \text{ formula}}{= 0}$ $\overset{\textbf{b} \text{ formula}}{= 0}$ $\overset{\textbf{c} \text{ formula}}{= 0}$ $\hat{\theta} = rac{lpha - 1 + k}{lpha + eta - 2 + N}$ if d= B=1 $\hat{0} = argmax P(0|0)$

Table of conjugate prior for different likelihood functions

	Like(: hood	Conjugare Prior	
	Bernoull; Geometric B: nom:al	Beta distri.	
L(0) = P(D 0)	Poisson Exponential	Gamma distri.	P(0)
	Normal with known 5 ²	Normal distr:	•

Which distri. is the posterior ?

if the likelihood is Geometric and we use the corresponding conjugate prior. A) Binomial B) Beta C) Poisson D) Bernoull: E) Normal

How many dimensions do you consider high?

A) シス B) > 4 C) シイ D) others

A data set with high dimensions

Seed data set from the UCI Machine Learning data frame in Python

			•					
	areaA	perimeterP	compactness	lengthKernel	widthKernel	asymmetry	lengthGroove	Label
1	15.26	14.84	0.871	5.763	3.312	2.221	5.22	1
2	14.88	14.57	0.8811	5.554	3.333	1.018	4.956	1
3	14.29	14.09	0.905	5.291	3.337	2.699	4.825	1
4	13.84	13.94	0.8955	5.324	3.379	2.259	4.805	1
5	16.14	14.99	0.9034	5.658	3.562	1.355	5.175	1
6	14.38	14.21	0.8951	5.386	3.312	2.462	4.956	1
7	14.69	14.49	0.8799	5.563	3.259	3.586	5.219	1

mater

site:

Matrix format of a dataset in the textbook

Scatterplot matrix

- Visualizing high
 dimensional
 data with
 scatter plot
 matrix
- Limited to
 small number
 of scatter plots

3D scatter plot

- We can also view
 the data set in 3
 dimensions
- But it's still
 limited in terms
 of number of
 dimensions we
 can see.

Summarizing multidimensional data

- * Location and spread parameters of a data set
- * Notation
 - Write {x} for a dataset consisting of N data items
 - # Each item x_i is a **d**-dimensional vector; column
 - **Write jth component of** x_i **as** $x_i^{(j)}$ **; row**
 - Matrix for the data set {x} is d by N dimension

Mean of a multidimensional data

We compute the mean of {x} by computing the mean of each component separately and stacking them to a vector

mean of jth component
$$= \frac{\sum_i x_i^{(j)}}{N}$$

We write the mean of {x} as

$$mean(\{x\}) = \frac{\sum_i x_i}{N}$$

Example of mean of a multidimensional data set

Mean-Centering a data matrix

Raw

Mean centered

nem

Covariance

* The covariance of random variables X and Y is

cov(X, Y) = E[(X - E[X])(Y - E[Y])]

Note that

 $cov(X, X) = E[(X - E[X])^2] = var[X]$

Correlation coefficient is normalized covariance

* The correlation coefficient is

$$corr(X,Y) = \frac{cov(X,Y)}{\sigma_X \sigma_Y} = \underbrace{\Sigma \overset{\times}{\underset{\sigma_X}} \overset{}$$

* When X, Y takes on values with equal probability to generate data sets $\{(x,y)\}$, the correlation coefficient will be as seen in Chapter 2. $corr(x,y) = \sum \hat{x} \hat{y}$

Covariance seen from scatter plots

Covariance for a pair of components in a data set

For the jth and kth components of a data set {x}

$$\underbrace{cov(\lbrace x \rbrace; j, k)}_{G_{i} \in \mathbf{k}} = \frac{\sum_{i} (x_{i}^{(j)} - mean(\lbrace x^{(j)} \rbrace))(x_{i}^{(k)} - mean(\lbrace x^{(k)} \rbrace))}_{N \in \mathbf{k}} = \underbrace{\sum_{i} (x_{i}^{(j)} - mean(\lbrace x^{(k)} \rbrace))}_{N \in \mathbf{k}} = \underbrace{\sum_{i} (x_{i}^{(j)} - mean(\lbrace x^{(k)} \rbrace))}_{N \in \mathbf{k}} = \underbrace{\sum_{i} (x_{i}^{(j)} - mean(\lbrace x^{(k)} \rbrace))}_{N \in \mathbf{k}} = \underbrace{\sum_{i} (x_{i}^{(k)} - mean(\lbrace x^{(k)} \rbrace))}_{N \in \mathbf{k}} = \underbrace{\sum_{i} (x_{i}^{(k)} - mean(\lbrace x^{(k)} \rbrace))}_{N \in \mathbf{k}} = \underbrace{\sum_{i} (x_{i}^{(k)} - mean(\lbrace x^{(k)} \rbrace))}_{N \in \mathbf{k}} = \underbrace{\sum_{i} (x_{i}^{(k)} - mean(\lbrace x^{(k)} \rbrace))}_{N \in \mathbf{k}} = \underbrace{\sum_{i} (x_{i}^{(k)} - mean(\lbrace x^{(k)} \rbrace))}_{N \in \mathbf{k}} = \underbrace{\sum_{i} (x_{i}^{(k)} - mean(\lbrace x^{(k)} \rbrace))}_{N \in \mathbf{k}} = \underbrace{\sum_{i} (x_{i}^{(k)} - mean(\lbrace x^{(k)} \rbrace))}_{N \in \mathbf{k}} = \underbrace{\sum_{i} (x_{i}^{(k)} - mean(\lbrace x^{(k)} \rbrace))}_{N \in \mathbf{k}} = \underbrace{\sum_{i} (x_{i}^{(k)} - mean(\lbrace x^{(k)} \rbrace))}_{N \in \mathbf{k}} = \underbrace{\sum_{i} (x_{i}^{(k)} - mean(\lbrace x^{(k)} \rbrace))}_{N \in \mathbf{k}} = \underbrace{\sum_{i} (x_{i}^{(k)} - mean(\lbrace x^{(k)} \rbrace))}_{N \in \mathbf{k}} = \underbrace{\sum_{i} (x_{i}^{(k)} - mean(\lbrace x^{(k)} \rbrace))}_{N \in \mathbf{k}} = \underbrace{\sum_{i} (x_{i}^{(k)} - mean(\lbrace x^{(k)} \rbrace))}_{N \in \mathbf{k}} = \underbrace{\sum_{i} (x_{i}^{(k)} - mean(\lbrace x^{(k)} \rbrace))}_{N \in \mathbf{k}} = \underbrace{\sum_{i} (x_{i}^{(k)} - mean(\lbrace x^{(k)} \rbrace))}_{N \in \mathbf{k}} = \underbrace{\sum_{i} (x_{i}^{(k)} - mean(\lbrace x^{(k)} \rbrace)}_{N \in \mathbf{k}} = \underbrace{\sum_{i} (x_{i}^{(k)} - mean(\lbrace x^{(k)} \rbrace)}_{N \in \mathbf{k}} = \underbrace{\sum_{i} (x_{i}^{(k)} - mean(\lbrace x^{(k)} - mean(\lbrace x^{(k)} \rbrace))}_{N \in \mathbf{k}} = \underbrace{\sum_{i} (x_{i}^{(k)} - mean(\lbrace x^{(k)} - mean(\lbrace$$

Covariance of a pair of components

Take each row (component) of a pair and subtract it by the row mean, then do the inner product of the two resulting rows and divide by the number of columns

Covariance of a pair of components

Data set
$$\{\mathbf{X}\}$$
 7×8 d=7 N=8

 $cov({\mathbf{x}}; 3, 5)$

How many pairs of rows are there for which we can compute the covariance?

A Paris or

49

64

56

Covariance matrix

Data set
$$\left\{ \mathbf{X}
ight\}$$
 7×8

 $cov(\{\mathbf{x}\};3,5)$

Covmat(
$$\{\mathbf{X}\}$$
) 7×7

Properties of Covariance matrix

$$cov(\{x\}; j, j) = var(\{x^{(j)}\})$$
 Covmat($\{\mathbf{x}\}$) 7×7

- The diagonal elements

 of the covariance matrix
 are just variances of
 each jth components
- The off diagonals are covariance between different components

	1	2	3	4	5	6	7
1	612	*	*	*	*	*	*
2	*	6.	*	*	*	*	*
3	*	*	65	*	*	*	*
4	*	*	*	*	*	*	*
5	*	*	*	*	*	*	*
6	*	*	*	*	*	(*	*
7	*	*	*	*	*	*	` *

Properties of Covariance matrix

$$cov(\{x\}; j, k) = cov(\{x\}; k, j)$$

Covmat(
$$\{\mathbf{X}\}$$
) 7×7

- * The covariance matrix is symmetric!
- And it's positive semi-definite, that is all $λ_i ≥ 0$
- Covariance matrix is diagonalizable

	1	2	3	4	5	6	7
1	*	*	*	*	*	*	*
2	*	*	*	*	*	*	*
3	*	*	*	*	*	*	*
4	*	*	*	*	*	*	*
5	*	*	*	*	*	*	*
6	*	*	*	*	*	*	*
7	*	*	*	*	*	*	*

Properties of Covariance matrix

* If we define \mathbf{x}_{c} as the mean centered matrix for dataset {x} $Covmat(\{x\}) = \frac{X_c X_c^T}{N}$ $u \cdot u^T = \inf_{prod} \int_{(a, u^T)} = |u|^T$ # The covariancematrix is a d×d matrix

Covmat(
$$\{\mathbf{X}\}$$
) 7×7

	1	2	3	4	5	6	7
1	*	*	*	*	*	*	*
2	*	*	*	*	*	*	*
3	*	*	*	*	*	*	*
4	*	*	*	*	*	*	*
5	*	*	*	*	*	*	*
6	*	*	*	*	*	*	*
7	*	*	*	*	*	*	*

d =7

5 by 5

5 by 2

2 by 5

(i)
$$N = 5$$
 $d = 2$
 $A_0 = \begin{bmatrix} 5 & 4 & 3 & 2 & 1 \\ -1 & 1 & 0 & 1 & -1 \end{bmatrix} \begin{array}{c} x^{(1)} \text{ covarianc} \\ x^{(2)} \end{array}$

 $A = 2 \quad B \\ B & 5 \quad by 5 \\ C & 5 \quad by 2 \\ D & 2 \quad by 5 \end{array}$

at are the dimensions of the variance matrix of this data?

Mean centering

$$A_{0} = \begin{bmatrix} 5 & 4 & 3 & 2 & 1 \\ -1 & 1 & 0 & 1 & -1 \end{bmatrix}$$

$$A_{1} = \begin{bmatrix} 2 & 1 & 0 & -1 & -2 \\ -1 & 1 & 0 & 1 & -1 \end{bmatrix}$$

(II)
$$A_2 = A_1 A_1^T$$

Inner product of each pairs: A_2 [1,1] = 10 A_2 [2,2] = 4 A_2 [1,2] = 0

(111)

Divide the matrix with N – the number of items

Covmat({x}) =
$$\frac{1}{N}A_2 = \frac{1}{5}\begin{bmatrix} 10 & 0\\ 0 & 4 \end{bmatrix} = \begin{bmatrix} 2 & 0\\ 0 & 0.8 \end{bmatrix}$$

Translation properties of mean and covariance matrix

* Translating the data set translates the mean

$$mean(\{x\} + c) = mean(\{x\}) + c$$

* Translating the data set leaves the covariance matrix unchanged

 $Covmat(\{x\} + c) = Covmat(\{x\})$

Translation properties of covariance matrix

* Proof: $Covmat(\{x\}) = X_c X_c^T$ Xc -> does't change if {z} is translated (X+c-mean({X+c]) $= \chi - mean(\{x\}) = \chi_c$

Linear transformation properties of mean and covariance matrix

 Linearly transforming the data set linearly transforms the mean

$$mean(\{A\mathbf{x}\}) = A \ mean(\{\mathbf{x}\})_{i_{j}} \ mean(\{\mathbf{x}\})_{i_{j}} = 0$$

$$\text{ Linearly transforming the data set linearly changes the covariance matrix quadratically } changes the covariance matrix quadratically $\widehat{Covmat}(\{A\mathbf{x}\}) = A \ Covmat(\{\mathbf{x}\})A^{T}$

$$A\mathbf{x} \qquad \mathbf{x} \to d\mathbf{x}N \qquad var(\mathbf{x}) = C \ var(\mathbf{x})$$

$$A\mathbf{x} \qquad \mathbf{x} \to d\mathbf{x}N \qquad var(\mathbf{x}) = C \ var(\mathbf{x})$$$$

Proof of linear transformation of covariance matrix

Suppose X=Xc $Covmat({z}) = \frac{\chi_c \chi_c}{N}$ data X is natrix Centered $AX = AX_c$ $(AX)_{c}(AX)_{c}^{T}$ $counset({Ax}]) =$ if the is AX_(AX_)T Ate is AXC.XCAT (BC) A. Course 22. AT

Dimension Reduction

- In stead of showing more dimensions through visualization, it's a good idea to do dimension reduction in order to see the major features of the data set.
- * For example, principal component analysis help find the major components of the data set.
- * PCA is essentially about finding eigenvectors of covariance matrix

Why linear algebra?

- We are entering into part IV of the course. The contents will be basic machine learning techniques.
- * Linear algebra is essential for a lot of machine Learning methods!

Eigenvalues and eigenvectors review

- * If A is an **n×n** square matrix, an eigenvalue λ and its corresponding eigenvector v (of dimension n×1) satisfy $Av = \lambda v$.
- * To solve for λ , we solve the characteristic equation

$$|\mathsf{A} - \lambda \mathsf{I}| = 0$$

Given a value of λ , we solve v by solving

$$(A - \lambda I) v = 0$$

* Note if v is an eigenvector, then so is any multiple kv.

Eigenvalues and eigenvectors example

Find the eigenvalues and eigenvectors

A-71=0 $A = \begin{bmatrix} 5 & 3 \\ 3 & 5 \end{bmatrix}$ $\begin{vmatrix} 5-\lambda & 3 \\ 3 & 5-\lambda \end{vmatrix} = 0$ what's special of dris A? $(5 - \lambda)(5 - \lambda) - 9 = 0$ symmetric (ハ-8) (ハ-2)ニロ $\gamma_{1} = 8$ positive definite フィニン

Eigenvalues and eigenvectors example

# Find the	$(A - \lambda 1) \gamma = 0$
eigenvectors	$\lambda_1 = 8 \left(\begin{array}{ccc} 5 - 8 & 3 \\ 3 & 5 - 8 \end{array} \right) \gamma = 0$
$\begin{bmatrix} 5 & 3 \end{bmatrix}$	
$A = \begin{bmatrix} 5 & 3 \\ 3 & 5 \end{bmatrix}$	$\begin{bmatrix} -3 & 3 \\ 3 & -3 \end{bmatrix} v = 0$
	ν,=[']
山二市パー 売[1]	$\lambda_{2}=2$ $\begin{bmatrix} 5-2 & 3\\ 3 & 5-2 \end{bmatrix} V = 0$
1- 112/11 Juli	$\begin{bmatrix} 3 & 3 \\ 2 & 3 \end{bmatrix} \gamma = 0$
い」= ポリッ= ニー	7 43 31
~~~//V/I J~L-	$y_2 = \begin{bmatrix} -1 \\ -1 \end{bmatrix}$

#### Eigenvalues and eigenvectors example (2)

Find the eigenvalues and eigenvectors of 1A - 21 =0  $A = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix} 2 \times 10^{10} (\begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix} - \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix} = 0$ chis A? Symmetric # singular  $\begin{bmatrix} 1-\lambda & 2\\ 2 & 4-\lambda \end{bmatrix} = 0$ where's special of ((-))(4-) - 4 = 0det (A)= Ti ri=0 (ス-5)・ス=0 2,=5, 72=0 1:20 positive sen: - definite

#### Eigenvalues and eigenvectors example

Find the eigenvectors of ₩  $A = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$  $(A - \lambda_{1})\nu_{1} = 0$   $(A - 51)\nu_{1} = 0 \Rightarrow \begin{bmatrix} 1 - 5 & 2 \\ 2 & 4 - 5 \end{bmatrix} \nu_{1} = 0$  $\lambda_1 = 5$ V,= (1) => u,= 点(1) AUZ=0 入しこ の  $\mathcal{V}_{2}=\begin{bmatrix} -2\\ -2 \end{bmatrix} \Rightarrow \mathcal{U}_{2}=\frac{1}{25}\begin{bmatrix} -2\\ -2 \end{bmatrix}$ 

# Diagonalization of a symmetric matrix

- If A is an n×n symmetric square matrix, the eigenvalues are real.
- If the eigenvalues are also distinct, their eigenvectors are orthogonal
- * We can then scale the eigenvectors to unit length, and place them into an orthogonal matrix  $U = [\mathbf{u}_1 \, \mathbf{u}_2 \, ..., \, \mathbf{u}_n]$
- We can write the diagonal matrix  $\Lambda = U^T A U$  such that the diagonal entries of  $\Lambda$  are  $\lambda_1, \lambda_2... \lambda_n$  in that order. Why do we do this?

## **Diagonalization example**

7,=8 "二六[]] For ▓ え=2 いこ二六[-1]  $A = \begin{vmatrix} 5 & 3 \\ 3 & 5 \end{vmatrix}$ [8]=[点壳][53][点壳]

## Q. Are these two vectors orthogonal?

$$V_{1} = [3 6], V_{2} = [-2 1]$$

$$A. Yes \qquad 3 \times (-2) + 6 \times 1 = 0$$

$$B. No \qquad \sum V_{1} : \cdot V_{n} := 0$$

$$\int S_{1} = 0$$

$$\int S_{1} = 0$$

$$\int S_{1} = 0$$

$$\int S_{1} = 0$$

## Q. Is this true?

When two zero-mean vectors of data are orthogonal, they are uncorrelated

5 (X-mean({x}))(Y-mesil33))

ż

A. Yes

B. No

#### Q. Is this true?

# When two zero-mean vectors of data are orthogonal, they are uncorrelated

A. Yes

B. No

# Assignments

#### Read Chapter 10 of the textbook

#### * Next time: PCA

## Additional References

- Robert V. Hogg, Elliot A. Tanis and Dale L. Zimmerman. "Probability and Statistical Inference"
- Morris H. Degroot and Mark J. Schervish "Probability and Statistics"

## See you next time

See You!

