# Probability and Statistics for Computer Science 



$$
\begin{aligned}
\operatorname{cov}(X, Y) & =E[(X-E[X])(Y-E[Y])] \\
& =E[X Y]-E[X] E[Y]
\end{aligned}
$$

Covariance is coming back in matrix!

Credit: wikipedia

## Last time

米 Review of Maximum likelihood $L(\theta)$ Estimation (MLE) L:kel:hod func. is Probmility, NOT a distr: !!米 Bayesian Inference (M $\overline{\mathrm{AP}}$ ) $\int_{0}(\cos ) \boldsymbol{m}$ Bayesian Posterior IS a distri!!! $P(D)$
$\theta$ is considered RU. in Bagesian Inference.

Objectives
Recap of Bayesian Inference Conjugate priors

Visualize of Summarize high dimensional data sets Covariance Matrix

## Beta distribution

粦 A distribution is Beta distribution if it has the following pdf：

$$
\begin{aligned}
& P(\theta)=\left\{\begin{array}{c}
K(\alpha, \beta) \theta^{\alpha-1}(1-\theta)^{\beta-1} \\
0 \\
\boldsymbol{o} . \boldsymbol{w} .
\end{array}\right. \\
& K(\alpha, \beta)=\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} \\
& \text { 粦 Is an expressive family of } \\
& \text { distributions } E[\theta]=\frac{\alpha}{2+\beta} \\
& \text { 粦 } \operatorname{Beta}(\alpha=1, \beta=1) \text { is uniform }
\end{aligned}
$$

## Beta distribution as the conjugate prior for Binomial likelihood

粦 The likelihood is Binomial ( $N, k$ )

$$
P(D \mid \theta)=\binom{N}{k} \theta^{k}(1-\theta)^{N-k} \sim \theta^{\hat{\alpha}-1}(L \theta)
$$

粦 The Beta distribution is used as the prior

$$
P(\theta)=K(\alpha, \beta) \theta^{\alpha-1}(1-\theta)^{\beta-1}
$$

$$
\begin{aligned}
& \hat{\alpha}=\alpha+k \\
& x=\beta+N / k \\
& \beta=\beta
\end{aligned}
$$

Then the posterior is Beta $\alpha+k, \beta+N-k)$

$$
P(\theta \mid D)=\frac{K(\alpha+k+N-k) \theta^{\alpha+k-1}(1-\theta)^{\beta+N-k-1}}{\int_{0}^{1} d \theta=1}
$$

## The update of Bayesian posterior

Since the posterior is in the same family as the conjugate prior, the posterior can be used as a new prior if more data is observed.

Suppose we start with a uniform prior on the $p(\theta(D)$

## 粦

 probability $\theta$ of heads

## Maximize the Bayesian posterior (MAP)

The posterior of the previous example is $E[\theta / D]$

$$
=?
$$

$P(\theta \mid D)=K(\alpha+k, \beta+N-k) \theta^{\alpha+k-1}(1-\theta)^{\beta+N-k-1}$
$\frac{d P(\theta \mid D)}{d \theta}=0 \quad \frac{\alpha+k}{\frac{j}{2+\beta}}=\frac{2+\beta+N}{2+\beta+N}$ Differentiating and setting to 0 gives the MAP estimate

$$
\hat{\theta}=\frac{\alpha-1+k}{\alpha+\beta-2+N}
$$

$$
\hat{\theta}=\operatorname{argmax} P(\theta \mid 0)
$$

$$
\begin{aligned}
& \therefore \alpha=\beta=1 \\
& \hat{\theta}=\frac{k}{N}
\end{aligned}
$$

Table of conjugate prior for different likelihood functions


Which distri. is the poster. tor?
if the l:hel:hood is Geometric and we use the corresponding conjugate prior.
A) Binomial
B) Beta
C) Poisson
D) Bernowl:
E) Normal

How many dimensions do you consider high ?
A) $\geqslant 3$
B) $>4$
C) $\geqslant 4$
D) others

## A data set with high dimensions

粦 Seed data set from the UCI Machine Learning site: data frame in Python

|  | area | perimeter | compactness | lengthKernel | widthKernel | asymmetry | length Groove | Label |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 15.26 | 14.84 | 0.871 | 5.763 | 3.312 | 2.221 | 5.22 | 1 |
| 2 | 14.88 | 14.57 | 0.8811 | 5.554 | 3.333 | 1.018 | 4.956 | 1 |
| 3 | 14.29 | 14.09 | 0.905 | 5.291 | 3.337 | 2.699 | 4.825 | 1 |
| 4 | 13.84 | 13.94 | 0.8955 | 5.324 | 3.379 | 2.259 | 4.805 | 1 |
| 5 | 16.14 | 14.99 | 0.9034 | 5.658 | 3.562 | 1.355 | 5.175 | 1 |
| 6 | 14.38 | 14.21 | 0.8951 | 5.386 | 3.312 | 2.462 | 4.956 | 1 |
| 7 | 14.69 | 14.49 | 0.8799 | 5.563 | 3.259 | 3.586 | 5.219 | 1 |

Matrix format of a dataset in the textbook


## Scatterplot matrix

粦 Visualizing high dimensional data with scatter plot matrix

粦 Limited to small number of scatter plots


## 3D scatter plot

米 We can also view the data set in 3 dimensions

米 But it's still limited in terms of number of dimensions we can see.


## Summarizing multidimensional data

Location and spread parameters of a data set

粦 Notation
粦 Write $\{\mathbf{x}\}$ for a dataset consisting of N data items
䊩 Each item $\mathrm{x}_{\mathrm{i}}$ is a d－dimensional vector；column
粦 Write jth component of $x_{i}$ as $x_{i}{ }^{(j)}$ ；row
䊩 Matrix for the data set $\{\mathbf{x}\}$ is $\mathbf{d}$ by $\mathbf{N}$ dimension

## Mean of a multidimensional data

粦 We compute the mean of $\{x\}$ by computing the mean of each component separately and stacking them to a vector

$$
\text { mean of jth component }=\frac{\sum_{i} x_{i}^{(j)}}{N}
$$

粦 We write the mean of $\{x\}$ as

$$
\operatorname{mean}(\{x\})=\frac{\sum_{i} x_{i}}{N}
$$

Example of mean of a multidimensional data set


Mean

$$
\frac{6}{3}=2
$$

Mean-Centering a data matrix
Raw
Mean centered
mum

| 1 | 2 | 3 |
| :---: | :---: | :---: |
| -1 | 0 | 1 |
| 3 | 7 | 5 |


| -1 | 0 | 1 |
| :---: | :---: | :---: |
| -1 | 0 | 1 |
| -2 | 2 | 0 |

## Covariance

## 粦 The covariance of random variables $X$ and $Y$ is

$\operatorname{cov}(X, Y)=E[(X-E[X])(Y-E[Y])]$
粦 Note that
$\operatorname{cov}(X, X)=E\left[(X-E[X])^{2}\right]=\operatorname{var}[X]$

## Correlation coefficient is normalized covariance

粦 The correlation coefficient is
dot prod.

$$
\operatorname{corr}(X, Y)=\frac{\operatorname{cov}(X, Y)}{\sigma_{X} \sigma_{Y}}=\sum \frac{\hat{x}}{\sqrt{N}} \cdot \frac{\hat{y}}{\sqrt{N}} \text { inner pros } .
$$

粦 When $X, Y$ takes on values with equal probability to generate data sets $\{(x, y)\}$, the correlation coefficient will be as seen in Chapter
2.

$$
\left.\left.\operatorname{cor}_{[ }^{-}(x, y)\right]\right)=\frac{\sum \hat{x} \hat{y}}{N}
$$

## Covariance seen from scatter plots




## Positive <br> Covariance $\downarrow$




## Negative Covariance <br> $\downarrow$

Negative Correlation


Credit:

## Covariance for a pair of components in a data set

粦 For the fth and kth components of a data set \｛x\}

$d<N$

$$
\begin{aligned}
& \frac{\operatorname{cov}(\{x\} ; j, k)}{}=\frac{\sum_{i}\left(x_{i}^{(j)}-\operatorname{mean}\left(\left\{x^{(j)}\right\}\right)\right)\left(x_{i}^{(k)}-\operatorname{mean}\left(\left\{x^{(k)}\right\}\right)\right)}{\sigma_{\dot{j}}} \\
& \text { RHo }=\frac{\sum \hat{X}_{i}^{\left(j^{\prime}\right.}\left(x_{i}^{\hat{k} k^{\prime}}\right)}{N}
\end{aligned}
$$

## Covariance of a pair of components

Data set $\{\mathbf{x}\} 7 \times 8$ $\operatorname{cov}(\{x\} ; 3,5) \quad d=7 \times 8$


Take each row
(component) of a pair and subtract it by the row mean, then do the inner product of the two resulting rows and divide by the number of columns

## Covariance of a pair of components

Data set $\{\mathbf{x}\} 7 \times 8 \quad d \approx 7 \quad N=8$ $\operatorname{cov}(\{x\} ; 3,5)$

How many pairs of rows
 are there for which we can compute the covariance?
(A) 49
C) 56
ix 1


## Covariance matrix

Data set $\{\mathbf{X}\} 7 \times 8$ $\operatorname{cov}(\{\mathbf{x}\} ; 3,5)$

$\operatorname{cor}(\{x\}, j \cdot k)=\sigma_{x} \sigma_{y} \cdot \operatorname{covr}(j, k)$

$$
k(j)
$$

$$
\because k, j
$$

$\operatorname{Covmat}(\{\mathbf{x}\}) \quad 7 \times 7$


## Properties of Covariance matrix

$$
\operatorname{cov}(\{x\} ; j, j)=\operatorname{var}\left(\left\{x^{(j)}\right\}\right) \quad \operatorname{Covmat}(\{\mathbf{x}\}) 7 \times 7
$$

The diagonal elements of the covariance matrix are just variances of each jth components

粦 The off diagonals are covariance between different components


## Properties of Covariance matrix

$$
\operatorname{cov}(\{x\} ; j, k)=\operatorname{cov}(\{x\} ; k, j) \quad \operatorname{Covmat}(\{\mathbf{x}\}) 7 \times 7
$$

## The covariance matrix is symmetric!

And it's positive semi-definite, that is all $\lambda_{i} \geq 0$

粦 Covariance matrix is

| 1 |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | . | $\cdot$ | - | - | . | . |  |
| 2 | . | . | , | . | . | . |  |
| 3 | , | , |  | . |  | . |  |
| d |  | . |  |  |  | . |  |
| 5 |  |  |  |  | . | . |  |
| - |  | . | . | . | . | . |  |
| , |  |  |  |  |  |  |  | diagonalizable

## Properties of Covariance matrix

If we define $\underline{x}_{c}$ as the
$\operatorname{Covmat}(\{\mathbf{x}\}) \quad 7 \times 7$ mean centered matrix for dataset $\{x\}$
$\operatorname{Covmat}(\{x\})=\frac{X_{c} C_{c}^{T}}{N}$ $u \cdot u^{\top}=\operatorname{innnnod}$
The covarianc, $\left(u, u^{n}\right)=|u|^{2}$ matrix is a $d \times d$ matrix


## Example: covariance matrix of a data set

$$
\begin{aligned}
& \text { (1) } \quad N=5 \quad d=2 \\
& \text { What are the dimensions of the } \\
& A_{0}=\left[\begin{array}{ccccc}
5 & 4 & 3 & 2 & 1 \\
-1 & 1 & 0 & 1 & -1
\end{array}\right]^{X^{(2)}} \text { (2) } \quad \text { covariance matrix of this data? } \\
& \text { (A)) } 2 \text { by } 2 \\
& \text { B) } 5 \text { by } 5 \\
& \text { C) } 5 \text { by } 2 \\
& \text { D) } 2 \text { by } 5
\end{aligned}
$$

## Example: covariance matrix of a data set

(I)

Mean centering

$$
\begin{aligned}
& A_{0}=\left[\begin{array}{ccccc}
5 \cdot & 4 & 3 & 2 & 1 \\
\hline-1 & 1 & 0 & 1 & -1
\end{array}\right] \\
& A_{1}=\left[\begin{array}{ccccc}
2 & 1 & 0 & -1 & -2 \\
-1 & 1 & 0 & 1 & -1
\end{array}\right]
\end{aligned}
$$

Mean
3
0

## Example: covariance matrix of a data set

(I)

Mean centering

$$
\begin{aligned}
A_{0} & =\left[\begin{array}{ccccc}
5 & 4 & 3 & 2 & 1 \\
-1 & 1 & 0 & 1 & -1
\end{array}\right] \\
A_{1} & =\left[\begin{array}{ccccc}
2 & 1 & 0 & -1 & -2 \\
-1 & 1 & 0 & 1 & -1
\end{array}\right]
\end{aligned}
$$

(II) $A_{2}=A_{1} A_{1}^{T}$

Inner product of each pairs:

$$
\begin{aligned}
& A_{2}[1,1]=10 \\
& A_{2}[2,2]=4 \\
& A_{2}[1,2]=0
\end{aligned}
$$

## Example: covariance matrix of a data set

Mean centering
(I)

$$
\begin{aligned}
& A_{0}=\left[\begin{array}{ccccc}
5 & 4 & 3 & 2 & 1 \\
-1 & 1 & 0 & 1 & -1
\end{array}\right] \\
& A_{1}=\left[\begin{array}{ccccc}
2 & 1 & 0 & -1 & -2 \\
-1 & 1 & 0 & 1 & -1
\end{array}\right]
\end{aligned}
$$

(II) $A_{2}=A_{1} A_{1}^{T}$

Inner product of each pairs:

$$
\begin{aligned}
& A_{2}[1,1]=10 \\
& A_{2}[2,2]=4 \\
& A_{2}[1,2]=0
\end{aligned}
$$

(III)

Divide the matrix with N - the number of items
$\operatorname{Covmat}(\{\mathbf{x}\})=\frac{1}{N} A_{2}=\frac{1}{5}\left[\begin{array}{cc}10 & 0 \\ 0 & 4\end{array}\right]=\left[\begin{array}{cc}2 & 0 \\ 0 & 0.8\end{array}\right]$

# Translation properties of mean and covariance matrix 

粦 Translating the data set translates the mean

$$
\operatorname{mean}(\{x\}+c)=\operatorname{mean}(\{x\})+c
$$

米 Translating the data set leaves the covariance matrix unchanged

$$
\operatorname{Covmat}(\{x\}+c)=\operatorname{Covmat}(\{x\})
$$

## Translation properties of covariance matrix

## 䊩 Proof:

$\operatorname{Covmat}(\{x\})=\frac{X_{c} X_{c}{ }^{\top}}{N}$

$$
\begin{aligned}
& X_{c} \rightarrow \text { does't } \text { change } \\
& \text { if }\{x\} \\
& \text { is translated! }
\end{aligned}
$$

$\because$

$$
\begin{aligned}
x+c & -\operatorname{mean}(\{x+c\}) \\
& =x-\operatorname{mean}(\{x\})=X_{c}
\end{aligned}
$$

## Linear transformation properties of mean and covariance matrix

粦 Linearly transforming the data set linearly transforms the mean

$$
\operatorname{mean}(\{A \mathbf{x}\})=A \operatorname{mean}(\{\mathbf{x}\})
$$

it mean $(\{x\})=0$

* Linearly transforming the data set linearly
changes the covariance matrix quadratically

$$
\begin{aligned}
& \operatorname{Covmat}(\{A \mathbf{x}\})=A \operatorname{Covmat}(\{\mathbf{x}\}) A^{T} \\
& A X \quad X \rightarrow d \times N \quad \operatorname{Var}(c x]=c^{2} \operatorname{yar}[x] \\
& m \times N \\
& A \rightarrow ? \times d \quad \quad A X_{d \times N} *+\infty+\infty=A=d
\end{aligned}
$$

Proof of linear transformation of covariance matrix

$$
\begin{aligned}
& \operatorname{Covmat}(\{x\})=\frac{X_{c} x_{c}^{\top}}{N} \\
& \text { suppose } X=X_{c} \\
& \text { matrix } X \text { sintered } \\
& A X=A X_{c} \\
& \text { if } x_{c} \text { is } \\
& \text { the is } \\
& (B C)^{\top} \\
& =C^{\top} B^{\top} \quad \frac{A\left(\frac{N}{x_{c} \cdot x_{c}^{\top}} A_{A}^{\top}\right.}{N} \\
& A \cdot \operatorname{con} \operatorname{ar}\{x\}\} \cdot A^{\top}
\end{aligned}
$$

## Dimension Reduction

In stead of showing more dimensions through visualization, it's a good idea to do dimension reduction in order to see the major features of the data set.

For example, principal component analysis help find the major components of the data set.

粦 PCA is essentially about finding eigenvectors of covariance matrix

## Why linear algebra?

業 We are entering into part IV of the course. The contents will be basic machine learning techniques.

粦 Linear algebra is essential for a lot of machine Learning methods!

## Eigenvalues and eigenvectors review

粦 If $A$ is an $\mathbf{n} \times \mathbf{n}$ square matrix，an eigenvalue $\lambda$ and its corresponding eigenvector $v$（of dimension $n \times 1$ ）satisfy $A v=\lambda v$ ．

To solve for $\lambda$ ，we solve the characteristic equation

$$
|A-\lambda I|=0
$$

粦 Given a value of $\lambda$ ，we solve $v$ by solving

$$
(\mathrm{A}-\lambda \mathrm{I}) v=0
$$

粦
Note if $v$ is an eigenvector，then so is any multiple $k v$ ．

Eigenvalues and eigenvectors example
Find the eigenvalues and eigenvectors

$$
\begin{aligned}
& A=\left[\begin{array}{ll}
5 & 3 \\
3 & 5
\end{array}\right] \quad\left|\begin{array}{c}
A-\lambda I \mid=0 \\
5-\lambda \\
5
\end{array}\right|=0 \\
& \text { What's special }\left|\begin{array}{cc}
5-\lambda & 3 \\
3 & 5-\lambda
\end{array}\right|=0
\end{aligned}
$$

of chis $A$ ? $(5-\lambda)(5-\lambda)-9=0$
symmetric
$(\lambda-8)(\lambda-2)=0$

$$
\begin{aligned}
& \lambda_{1}=8 \\
& \lambda_{2}=2
\end{aligned}
$$

positive definite

$$
\lambda_{i}>0
$$

Eigenvalues and eigenvectors example

$$
\left.\begin{array}{l}
\begin{array}{l}
\text { Find the } \\
\text { eigenvectors } \\
A=\left[\begin{array}{ll}
5 & 3 \\
3 & 5
\end{array}\right]
\end{array} \quad \lambda_{1}=8 \quad\left[\begin{array}{cc}
5-8 & 3 \\
3 & 5-8
\end{array}\right] \nu=0 \\
{\left[\begin{array}{cc}
-3 & 3 \\
3 & -3
\end{array}\right] \nu=0} \\
\nu \nu_{1}=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \\
=\frac{1}{\left\|\nu_{1}\right\|} \nu_{1}=\frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
1
\end{array}\right] \quad \lambda_{2}=2 \quad\left[\begin{array}{cc}
5-2 & 3 \\
3 & 5-2
\end{array}\right] \nu=0 \\
=\frac{1}{\| \nu_{2}} \nu_{2}=\frac{1}{\sqrt{2}}\left[\begin{array}{c}
1 \\
-1
\end{array}\right] \quad 3
\end{array}\right] \nu=0 .
$$

Eigenvalues and eigenvectors example (2)
Find the eigenvalues and eigenvectors of

$$
A=\left[\begin{array}{ll}
1 & 2 \\
\frac{2}{2} & 4
\end{array}\right] 2 \times \operatorname{rav}, \quad\left|\left[\begin{array}{cc}
A-\lambda \\
1 & 2 \\
2 & 4
\end{array}\right]-\left[\begin{array}{ll}
\lambda & 0 \\
0 & \lambda
\end{array}\right]\right|=0
$$

What's special of this A?
Symmerric \& s.igular

$$
\begin{aligned}
& \operatorname{det}(A)=\pi \lambda_{i}=0((-\lambda)(4-\lambda)-4=0 \\
&(\lambda-5) \cdot \lambda=0 \\
& \lambda_{i} \geqslant 0 \underline{\lambda_{1}=5,} \lambda_{2}=0 \\
& \text { positive semi-detivite }
\end{aligned}
$$

## Eigenvalues and eigenvectors example

Find the eigenvectors of

$$
A=\left[\begin{array}{ll}
1 & 2 \\
2 & 4
\end{array}\right]
$$

$$
\lambda_{1}=5
$$

$$
\begin{aligned}
& (A-\lambda I) \nu_{1}=0 \\
& (A-5 I) \nu_{1}=0 \Rightarrow\left[\begin{array}{cc}
1-5 & 2 \\
2 & 4-5
\end{array}\right] \nu_{1}=0 \\
& \nu_{1}=\left[\begin{array}{l}
1 \\
2
\end{array}\right] \Rightarrow u_{1}=\frac{1}{\sqrt{5}}\left[\begin{array}{l}
1 \\
2
\end{array}\right]
\end{aligned}
$$

$\lambda_{2}=0$

$$
A U_{2}=0
$$

$$
\nu_{2}=\left[\begin{array}{c}
-2 \\
1
\end{array}\right] \Rightarrow u_{2}=\frac{1}{\sqrt{5}}\left[\begin{array}{c}
-2 \\
1
\end{array}\right]
$$

## Diagonalization of a symmetric matrix

粦 If $A$ is an $n \times n$ symmetric square matrix，the eigenvalues are real．

米
If the eigenvalues are also distinct，their eigenvectors are orthogonal

We can then scale the eigenvectors to unit length，and place them into an orthogonal matrix $U=\left[\mathbf{u}_{1} \mathbf{u}_{2} \ldots . . \mathbf{u}_{n}\right]$

粦 We can write the diagonal matrix $\Lambda=U^{T} A U$ such that the diagonal entries of $\Lambda$ are $\lambda_{1}, \lambda_{2} \ldots \lambda_{n}$ in that order． Why do we do this？

Diagonalization example

$$
\begin{aligned}
& \text { For } \quad \lambda_{1}=8 \quad u_{1}=\frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
1
\end{array}\right] \\
& A=\left[\begin{array}{ll}
5 & 3 \\
3 & 5
\end{array}\right] \quad \lambda_{2}=2 \quad u_{2}=\frac{1}{\sqrt{2}}\left[\begin{array}{c}
1 \\
-1
\end{array}\right] \quad u_{1} \quad u_{2} \\
& \left.\left.\begin{array}{cc}
{\left[\begin{array}{ll}
8 & 0 \\
0 & 2
\end{array}\right]} \\
\Lambda & u^{\top}
\end{array} \begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}
\end{array}\right]\left[\begin{array}{ll}
5 & 3 \\
3 & 5
\end{array}\right] \begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{\downarrow}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}
\end{array}\right]
\end{aligned}
$$

## Q. Are these two vectors orthogonal?

$V_{1}=\left[\begin{array}{ll}3 & 6\end{array}\right], V_{2}=\left[\begin{array}{ll}-2 & 1\end{array}\right]$
A. Yes $3 \times(-2)+6 \times 1=0$
B. No

$$
\Sigma v_{1 i} \cdot v_{2 i}=0
$$

$\left[\begin{array}{l}1 \\ 0\end{array}\right]$ \& $\left[\begin{array}{l}0 \\ 1\end{array}\right]$ orthogonal $\operatorname{dot} \operatorname{prod}\left(U_{p}, U_{2}\right)=0$

## Q. Is this true?

When two zero-mean vectors of data are orthogonal, they are uncorrelated
 mean $\left[U_{i}\right)=0$
A. Yes
B. No

$$
\begin{aligned}
& \sum\left(\frac{(x-\operatorname{mean}(\{x\}))}{}\right)\left(y-\frac{\operatorname{man}(i z\})}{=}\right) \\
& \frac{\sum \hat{x} \hat{y}}{N}
\end{aligned}
$$

## Q. Is this true?

When two zero-mean vectors of data are orthogonal, they are uncorrelated
A. Yes
B. No

## Assignments

粦 Read Chapter 10 of the textbook
䊩 Next time: PCA

## Additional References

粦 Robert V. Hogg, Elliot A. Tanis and Dale L. Zimmerman. "Probability and Statistical Inference"

Morris H. Degroot and Mark J. Schervish "Probability and Statistics"

## See you next time

See You!


