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Last	time	

�  Review	of	Bayesian	inference	

�  Visualizing	high	dimensional	data	&	
Summarizing	data	

�  The	covariance	matrix	

	



Objectives	

gpr.in#*m-AnalysisTwo applications :O Dimension reduction
⑤ Compression , Reconstruction

t Ear
:*

see data
in those

directions ! !



Examples:	Immune	Cell	Data	
�  There	are	38816	white	

blood	immune	cells	from	
a	mouse	sample	

�  Each	immune	cell	has	
40+	features/
components	

�  Four	features	are	used	
as	illustraSon.	

�  There	are	at	least	3	cell	
types	involved	

T	cells	

B	cells	

Natural	killer	cells	

N --38816

DX N

T
measurements

↳
- choose subset

d=4



Scatter	matrix	of	Immune	Cells	
�  There	are	38816	white	

blood	immune	cells	from	
a	mouse	sample	

�  Each	immune	cell	has	
40+	features/
components	

�  Four	features	are	used	
for	the	illustraSon.	

�  There	are	at	least	3	cell	
types	involved	

Dark	red:	T	cells	
Brown:	B	cells	
Blue:	NK	cells	
Cyan:	other	small	populaSon	



PCA	of	Immune	Cells		
>	res1	
$values	
[1]	4.7642829	2.1486896	1.3730662	
0.4968255	
	
$vectors	
											[,1]								[,2]							[,3]							[,4]	
[1,]		0.2476698		0.00801294	-0.6822740		
0.6878210	
[2,]		0.3389872	-0.72010997	-0.3691532	
-0.4798492	
[3,]	-0.8298232		0.01550840	-0.5156117	
-0.2128324	
[4,]		0.3676152		0.69364033	-0.3638306	
-0.5013477	

Eigenvalues	

Eigenvectors	
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Properties	of	Covariance	matrix	

1	 2	 3	 4	 5	 6	 7	

1	 *	 *	 *	 *	 *	 *	 *	

2	 *	 *	 *	 *	 *	 *	 *	

3	 *	 *	 *	 *	 *	 *	 *	

4	 *	 *	 *	 *	 *	 *	 *	

5	 *	 *	 *	 *	 *	 *	 *	

6	 *	 *	 *	 *	 *	 *	 *	

7	 *	 *	 *	 *	 *	 *	 *	

Covmat(										)	{x} 7×7	

�  The	covariance	
matrix	is	symmetric!	

�  And	it’s	posi6ve	
semi-definite,	that	is	
all	λi	≥	0	

�  Covariance	matrix	is	
diagonalizable	

cov({x}; j, k) = cov({x}; k, j)

[
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Properties	of	Covariance	matrix	

1	 2	 3	 4	 5	 6	 7	

1	 *	 *	 *	 *	 *	 *	 *	

2	 *	 *	 *	 *	 *	 *	 *	

3	 *	 *	 *	 *	 *	 *	 *	

4	 *	 *	 *	 *	 *	 *	 *	

5	 *	 *	 *	 *	 *	 *	 *	

6	 *	 *	 *	 *	 *	 *	 *	

7	 *	 *	 *	 *	 *	 *	 *	

Covmat(										)	{x} 7×7	�  If	we	define	xc	as	the	
mean	centered	
matrix	for	dataset	{x}	

�  The	covariance	
matrix	is	a	d×d	matrix	

d	=7		

Covmat({x}) =
XcX
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What	is	the	correlation	between	the	2	
components	for	the	data	m?	

Covmat(m) =

[

20 25
25 40

]§
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Example:	covariance	matrix	of	a	data	set	

Mean	centering	
(I)	

A0 =

[

5 4 3 2 1

−1 1 0 1 −1

]

Inner	product	of	each	pairs:	
																		[1,1]	=	10	
																		[2,2]	=	4	
																		[1,2]	=	0	
	

(II)	

A2

A2

A2

A2 = A1A
T

1

A1 =

[

2 1 0 −1 −2

−1 1 0 1 −1

]

Covmat(							)	{x}

Divide	the	matrix	with	N	–	the	number	of	data	poits	

(III)	

=
1

N
A2 =

1

5

[

10 0

0 4

]

=

[

2 0

0 0.8

]

mean )

" t

CovC ' , 2) I 0

Corr Cl, 4=0



What	do	the	data	look	like	when	
Covmat({x})	is	diagonal?	

*	

*	

*	

*	

*	

Covmat(							)	{x} =
1

N
A2 =

1

5

[

10 0

0 4

]

=

[

2 0

0 0.8

]

A0 =

[

5 4 3 2 1

−1 1 0 1 −1

]

X(1)	

X(2)	

X(1)	

X(2)	

or,
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Diagonal : gatton
e -g-Et ' eisjrectz

c. one : e. Etc : :]
A X

" M X

M = X Xx
"

c:;H¥÷÷x÷÷x÷÷⇒
U U

A = UN UT



Diagonalization	of	a	symmetric	matrix	

�  If	A	is	an	n×n	symmetric	square	matrix,	the	eigenvalues	
are	real.	

�  If	the	eigenvalues	are	also	disSnct,	their	eigenvectors	
are	orthogonal	

�  We	can	then	scale	the	eigenvectors	to	unit	length,	and	
place	them	into	an	orthogonal	matrix	U	=	[u1	u2	….	un]	

�  We	can	write	the	diagonal	matrix																									such	
that	the	diagonal	entries	of	Λ	are	λ1,	λ2…	λn	in	that	order.		

Λ = U
T
AU



Diagonalization	example	

�  For		

A =

[

5 3

3 5

]

			

hi ? 1 A -AIL = 0

I 7.a)→ ⇒ I ? I
eigenvectors?
I , = 2

A U , = 2 Up

( A - 2114=0
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Diagonalization	example	

�  For		

A =

[

5 3

3 5

]

			

hi ? 1 A -NII = O

g

I 7.a)→ ⇒ l ? z

eigenvectors?
a. = 8 A 4=80 ,

( A - 8114=0

✓= lui al f} 3) v.→ ⇒ v. =/ ! )-

,

= ? ,
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Rotation Matrix

Def : RT = R
- t

we can prove
Ute V

"

if U is formed

by
,
generators

normalized .
T

U L U are called

orthonormal matrices

⇒ UT N u are rotation

matrices
.



*

of
'

: ! ! )
u . -- f ! ) u -=/!) as =L ! )

Dot nd ' ui÷m=÷T-←www.rfmdim
"

Ui . U z =

yay, = ? I Husk ? '
-

ti =



ZD

AT
"

-it:c.
-wi:3

-OT ut-f.sn:
"3.1

d
u
-"
x UTC Ux ) = ¥ .x

✓=u
"

⇒ UT. U = I



Q.#Is#this#true?#

Transforming+a+matrix+with+
orthonormal+matrix+only+rotates+the+
data+

A.+Yes+

B.+No+

UT x
D ux



Dimension	reduction	from	2D	to	1D	

Credit:	Prof.	Forsyth	



Step	1:	subtract	the	mean	

Credit:	Prof.	Forsyth	



Step	2:	Rotate	to	diagonalize	the	
covariance	

Credit:	Prof.	Forsyth	

⑧IT. im

§
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Step	3:	Drop	component(s)	

Credit:	Prof.	Forsyth	

up -7117



Principal	Components		

�  The	columns	of						are	the	normalized	eigenvectors	of	
the	Covmat({x})	and	are	called	the	principal	
components	of	the	data	{x}		

U	



Principal	components	analysis	
�  We	reduce	the	dimensionality	of	dataset	{x}	represented	by	

matrix													from	d	to	s	(s	<	d).		

�  Step	1.	define	matrix																such	that	

�  Step	2.	define	matrix																	such	that																												

	Where								saSsfies																																																								,							is	
	the	diagonalizaSon	of																												with	the	eigenvalues	
	sorted	in	decreasing	order,								is	the	orthonormal	
	eigenvectors’	matrix	

�  Step	3.	Define	matrix																such	that						is						with	the	last			
d-s	components	of					made	zero.																

Dd×n

md×n m = D −mean(D)

rd×n
ri = U

T
mi

U
T Λ = U

T
Covmat({x})U Λ

Covmat({x})

p r

r

U

pd×n

True tht.Tom



What	happened	to	the	mean?	
�  Step	1.		

�  Step	2.		

�  Step	3.		

mean(m) = mean(D −mean(D)) = 0

mean(r) = U
T
mean(m) = U

T0 = 0

mean(pi) = mean(ri) = 0 		

mean(pi) = 0 while i ∈ s+ 1 : d

while i ∈ 1 : s



What	happened	to	the	covariances?	
�  Step	1.		

�  Step	2.		

�  Step	3.																														is												with	the	last/smallest	d-s	
diagonal	terms	turned	to	0.	

Covmat(m) = Covmat(D) = Covmat({x})

Covmat(r) = U
T
Covmat(m)U = Λ

Covmat(p) Λ

T

r -- V m

the property for Granat 4A
= A Grunt3×3) AT



Sample	covariance	matrix	

�  In	many	staSsScal	programs,	the	sample	
covariance	matrix	is	defined	to	be	

�  Similar	to	what	happens	to	the	unbiased	
standard	deviaSon		

		

Covmat(m) =
m m

T

N − 1
c C



PCA	an	example	
�  Step	1.		

�  Step	2.		

�  Step	3.	

D =

[

3 −4 7 1 −4 −3

7 −6 8 −1 −1 −7

]

⇒ mean(D) =

[

0
0

]

m =

[

3 −4 7 1 −4 −3

7 −6 8 −1 −1 −7

]



PCA	an	example	
�  Step	1.		

�  Step	2.		

�  Step	3.	

D =

[

3 −4 7 1 −4 −3

7 −6 8 −1 −1 −7

]

⇒ mean(D) =

[

0
0

]

m =

[

3 −4 7 1 −4 −3

7 −6 8 −1 −1 −7

]

Covmat(m) =

[

20 25
25 40

]

λ1 ! 57; λ2 ! 3⇒

U
T
=

[

0.5606288 0.8280672

−0.8280672 0.5606288

]

⇒ U =

[

0.5606288 −0.8280672

0.8280672 0.5606288

]



PCA	an	example	
�  Step	1.		

�  Step	2.		

�  Step	3.	

D =

[

3 −4 7 1 −4 −3

7 −6 8 −1 −1 −7

]

⇒ mean(D) =

[

0
0

]

m =

[

3 −4 7 1 −4 −3

7 −6 8 −1 −1 −7

]

Covmat(m) =

[

20 25
25 40

]

λ1 ! 57; λ2 ! 3⇒

U
T
=

[

0.5606288 0.8280672

−0.8280672 0.5606288

]

⇒ r = U
T
m =

[

7.478 −7.211 10.549 −0.267 −3.071 −7.478

1.440 −0.052 −1.311 −1.389 2.752 −1.440

]

⇒ U =

[

0.5606288 −0.8280672

0.8280672 0.5606288

]



PCA	an	example	
�  Step	1.		

�  Step	2.		

�  Step	3.	

D =

[

3 −4 7 1 −4 −3

7 −6 8 −1 −1 −7

]

⇒ mean(D) =

[

0
0

]

m =

[

3 −4 7 1 −4 −3

7 −6 8 −1 −1 −7

]

Covmat(m) =

[

20 25
25 40

]

λ1 ! 57; λ2 ! 3⇒

U
T
=

[

0.5606288 0.8280672

−0.8280672 0.5606288

]

⇒ r = U
T
m =

[

7.478 −7.211 10.549 −0.267 −3.071 −7.478

1.440 −0.052 −1.311 −1.389 2.752 −1.440

]

⇒ U =

[

0.5606288 −0.8280672

0.8280672 0.5606288

]

⇒ p =

[

7.478 −7.211 10.549 −0.267 −3.071 −7.478

0 0 0 0 0 0

]→new coordinates

along Pcl



What	is	this	matrix	for	the	previous	
example?	

U
T
Covmat(m)U =? ±
e: :L

±



The	Mean	square	error	of	the	projection	

�  The	mean	square	error	is	the	sum	of	the	
smallest	d-s	eigenvalues	in		Λ

1

N − 1

∑

i

‖ri − pi‖
2 =

1

N − 1

∑

i

d∑

j=s+1

(r(j)i )2



The	Mean	square	error	of	the	projection	

�  The	mean	square	error	is	the	sum	of	the	
smallest	d-s	eigenvalues	in		Λ

1

N − 1

∑

i

‖ri − pi‖
2 =

1

N − 1

∑

i

d∑

j=s+1

(r(j)i )2 =
d∑

j=s+1

∑

i

1

N − 1
(r(j)i )2



The	Mean	square	error	of	the	projection	

�  The	mean	square	error	is	the	sum	of	the	
smallest	d-s	eigenvalues	in		Λ

1

N − 1

∑

i

‖ri − pi‖
2 =

1

N − 1

∑

i

d∑

j=s+1

(r(j)i )2 =
d∑

j=s+1

∑

i

1

N − 1
(r(j)i )2

=
d∑

j=s+1

var(r(j)i )



The	Mean	square	error	of	the	projection	

�  The	mean	square	error	is	the	sum	of	the	
smallest	d-s	eigenvalues	in		Λ

1

N − 1

∑

i

‖ri − pi‖
2 =

1

N − 1

∑

i

d∑

j=s+1

(r(j)i )2 =
d∑

j=s+1

∑

i

1

N − 1
(r(j)i )2

=
d∑

j=s+1

var(r(j)i )

=

d∑

j=s+1

λj



PCA	of	Immune	Cells		
>	res1	
$values	
[1]	4.7642829	2.1486896	1.3730662	
0.4968255	
	
$vectors	
											[,1]								[,2]							[,3]							[,4]	
[1,]		0.2476698		0.00801294	-0.6822740		
0.6878210	
[2,]		0.3389872	-0.72010997	-0.3691532	
-0.4798492	
[3,]	-0.8298232		0.01550840	-0.5156117	
-0.2128324	
[4,]		0.3676152		0.69364033	-0.3638306	
-0.5013477	

Eigenvalues	

Eigenvectors	

'

Data



What	is	the	percentage	of	variance	that	
PC1	covers?	

Given	the	eigenvalues:	4.7642829	2.1486896	
1.3730662	0.4968255,	what	is	the	
percentage	that	PC1	covers?	
	
A.  54%	
B.  16%	
C.  25%	

4- 264I ÷
-

4.7641-2.1487-1 1.373-10.4968



https://courses.engr.illinois.edu/
cs361/sp2019/notebooks/
L18.html

Notebook on PCA



Reconstructing	the	data	

�  Given	the	projected	data											and	mean({x}),	we	can	
approximately	reconstruct	the	original	data		

�  Each	reconstructed	data	item							is	a	linear	
combinaSon	of	the	columns	of						weighted	by		

�  The	columns	of						are	the	normalized	eigenvectors	of	
the	Covmat({x})	and	are	called	the	principal	
components	of	the	data	{x}		

pd×n

D̂i

U

piU

D̂ = Up+mean({x})
T rotation back



End-to-end	mean	square	error	

�  Each								becomes						by	translaSon	and	rotaSon	

�  Each							becomes							by	the	opposite	rotaSon	and	
translaSon	

�  Therefore	the	end	to	end	mean	square	error	is:	

�  																								are	the	smallest	d-s	eigenvalues	of	the	
Covmat({x})	
λs+1, ...,λd

1

N − 1

∑

i

‖x̂i − xi‖
2
=

1

N − 1

∑

i

‖ri − pi‖
2
=

d∑

j=s+1

λj

xi ri

pi x̂i



PCA:	Human		face	data		

�  The	dataset	consists	of	213	images	

�  Each	image	is	grayscale	and	has	64	by	64	resoluSon	

�  We	can	treat	each	image	as	a	vector	with	dimension	
d	=	4096	

Credit:	Prof.	Forsyth	

µ = 213

64×64=4096



How	quickly	the	eigenvalues	decrease?	

Credit:	Prof.	Forsyth	

turning flat

0



What	do	the	principal	components	of	the	
images	look	like?	

Mean	image	

The	first	16	
principal	
components	
arranged	into	
images	

Credit:	Prof.	Forsyth	



Reconstruction	of	the	image	

The	original	

1	Mean	 5	 10	 20	 50	 100	

1st	row	show	the	reconstrucSons	using	
some	number	of	principal	components	
2nd	row	show	the	corresponding	errors	

Credit:	Prof.	Forsyth	



Q.	Which	are	true?	

A	.	PCA	allows	us	to	project	data	to	the	
	direcSon	along	which	the	data	has	the	
	biggest	variance	

B.  PCA	allows	us	to	compress	data	
C.  PCA	uses	linear	transformaSon	to	show	

pa{erns	of	data	
D.  PCA	allows	us	to	visualize	data	in	lower	

dimensions	
E.  All	of	the	above	o



Assignments	

� Read	Chapter	10	of	the	textbook	

� Next	Sme:	Intro	to	classificaSon	
	



wtxtxw
argmnx ↳

Rayleigh QuotientHull =L

= the largest eigenvector u ,

= pc ,



Additional	References	

✺  Robert	V.	Hogg,	Elliot	A.	Tanis	and	Dale	L.	
Zimmerman.	“Probability	and	StaSsScal	
Inference”		

� Morris	H.	Degroot	and	Mark	J.	Schervish	
"Probability	and	StaSsScs”	



See	you	next	time	

See 
You! 


