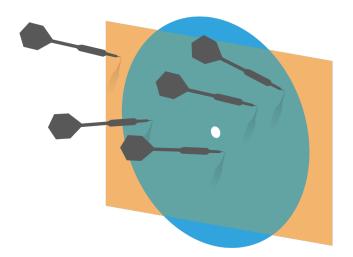
Probability and Statistics for Computer Science



Principal Component Analysis ---Exploring the data in less dimensions

Credit: wikipedia

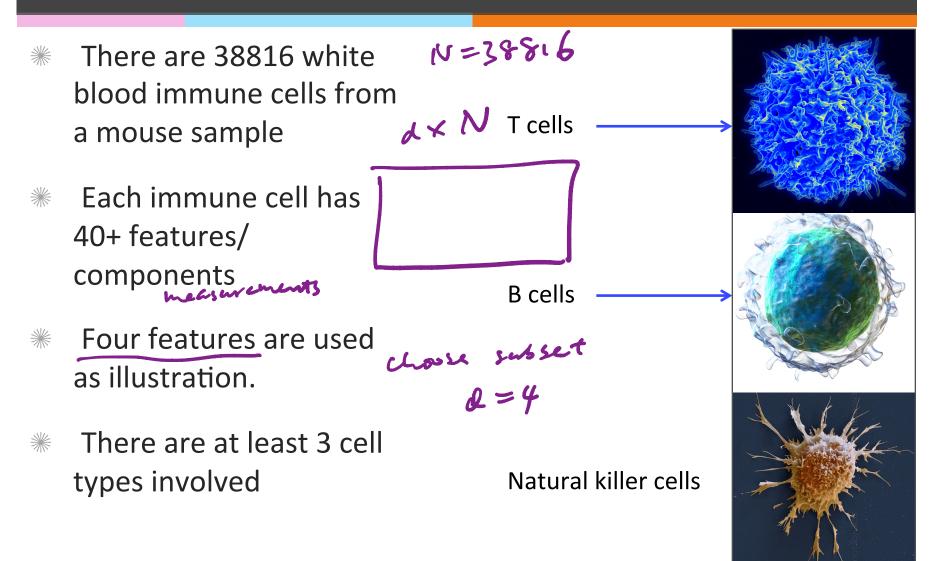
Hongye Liu, Teaching Assistant Prof, CS361, UIUC, 10.27.2020

Last time

- Review of Bayesian inference
- Wisualizing high dimensional data & Summarizing data
- ***** The covariance matrix

Objectives Principal Component Analysis Two applications: DD: mension reduction @Compression, Reconstruction O Congression, Reconstruction Find e: genvectors of Counat of a data see Inta in those antrix! directions! 1

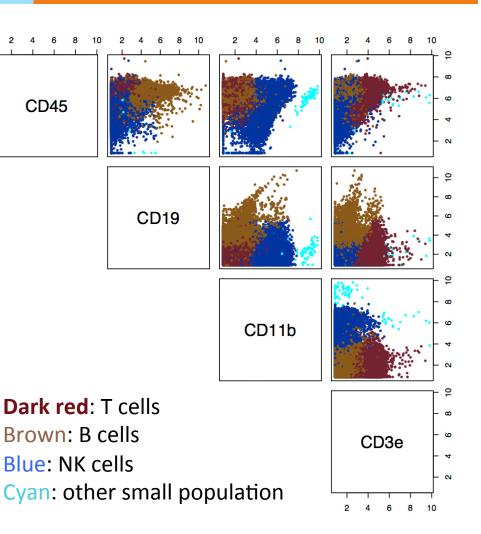
Examples: Immune Cell Data



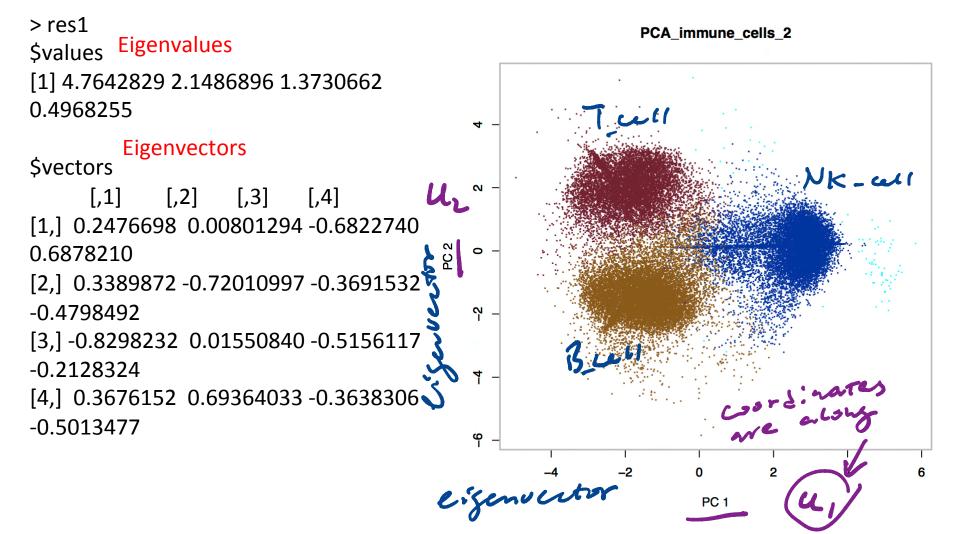
Scatter matrix of Immune Cells

01

- There are 38816 white blood immune cells from a mouse sample
- Each immune cell has
 40+ features/
 components
- Four features are used for the illustration.
- * There are at least 3 cell types involved



PCA of Immune Cells Data



Properties of Covariance matrix

$$cov(\{x\}; j, k) = cov(\{x\}; k, j)$$

- * The covariance matrix is symmetric!
- And it's positive semi-definite, that is all $λ_i ≥ 0$



	1	2			5	6	7	
1	5,2	*	*	*	×	*	*	
2	*	* 5	*	*	*	*	*	
3	*	*	*	*	*	*	*	
4	*	*	*	*	*	*	*	
5	*	*	*	*	*	*	*	
6	*	*	*	*	*	*	*	
7	*	*	*	*	*	*	*	

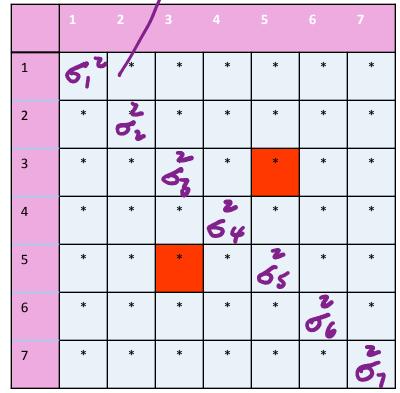
Properties of Covariance matrix

If we define x_c as the mean centered matrix for dataset {x}

$$Covmat(\{x\}) = \frac{X_c X_c^T}{N}$$

* The covariance matrix is a d×d matrix

$$Covmat({\mathbf{X}}) 7 \times 7$$



What is the correlation between the 2 components for the data m?

$$Covmat(\mathbf{m}) = \begin{bmatrix} 20 & 25 \\ 25 & 40 \end{bmatrix}, \quad Corr(feur', feur'), \\ \underbrace{25}_{6v} & \underbrace{25}_{76v} & \underbrace{25}_{76v} & \underbrace{25}_{76v} & \underbrace{25}_{76v} & \underbrace{10}_{76v} & \underbrace{10}_{76$$

Example: covariance matrix of a data set

$$\begin{array}{c} \text{Mean centering} \\ \text{(II)} \\ A_{0} = \begin{bmatrix} 5 & 4 & 3 & 2 & 1 \\ -1 & 1 & 0 & 1 & -1 \end{bmatrix} \\ A_{1} = \begin{bmatrix} 2 & 1 & 0 & -1 & -2 \\ -1 & 1 & 0 & 1 & -1 \end{bmatrix} \\ A_{1} = \begin{bmatrix} 2 & 1 & 0 & -1 & -2 \\ -1 & 1 & 0 & 1 & -1 \end{bmatrix} \\ \text{Divide the matrix with N - the number of data poits} \\ \text{Covmat}(\{\mathbf{x}\}) = \frac{1}{N}A_{2} = \frac{1}{5} \begin{bmatrix} 10 & 0 \\ 0 & 4 \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 0 & 0.8 \end{bmatrix} \\ \end{array}$$

What do the data look like when Covmat({x}) is diagonal?

X⁽²⁾ $A_0 = \begin{bmatrix} 5 & 4 & 3 & 2 & 1 \\ -1 & 1 & 0 & 1 & -1 \end{bmatrix} \mathbf{x}^{(1)} \mathbf{x}^{(2)} \bullet$ Covmat({x}) = $\frac{1}{N}A_2 = \frac{1}{5}\begin{bmatrix} 10 & 0\\ 0 & 4 \end{bmatrix} =$ 2

: agonal: zarion

$\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & -1 \end{bmatrix} \begin{bmatrix} 1 & 5 \\ 0 & 6 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 6 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 6 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 6 \end{bmatrix}$ $\begin{array}{ccc} X^{-\prime} & M \\ M = X \Lambda X^{-\prime} \end{array}$ [3]=「点点」[53]「点点] $A = U \wedge U^T$

Diagonalization of a symmetric matrix

- If A is an n×n symmetric square matrix, the eigenvalues are real.
- If the eigenvalues are also distinct, their eigenvectors are orthogonal
- We can then scale the eigenvectors to unit length, and place them into an orthogonal matrix $U = [\mathbf{u}_1 \, \mathbf{u}_2 \, ..., \, \mathbf{u}_n]$
- * We can write the diagonal matrix $\Lambda = U^T A U$ such that the diagonal entries of Λ are $\lambda_1, \lambda_2 \dots \lambda_n$ in that order.

Diagonalization example

 λ_i ? 1A-22=0 **⊮** For $\begin{vmatrix} 5-\lambda & 3 \\ 3 & 5-\lambda \end{vmatrix} = 0 \Longrightarrow \begin{cases} \lambda_1 = 2 \\ \lambda_2 = 8 \end{cases}$ $A = \begin{bmatrix} 5 & 3 \\ 3 & 5 \end{bmatrix}$ l: genvectors? Zi=Z $AV_{1} = 2V_{1}$ (A-21)V1=0 U = [u, uv] $\begin{pmatrix} 3 & 3 \\ 3 & 3 \end{pmatrix} V_1 = o = \mathcal{V} \mathcal{V}_1 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$ = [[,]] ⇒u,= == [-] ハータ ルマニテン[1] normalized c'genvents, $\Lambda = \left[\begin{array}{c} 2 & 0 \\ 0 & 8 \end{array} \right]$ $\Lambda = U^T A U$

Diagonalization example

λ;? |A-λ2|= 0 **⊮** For $\begin{vmatrix} 5-\lambda & 3 \\ 3 & 5-\lambda \end{vmatrix} = 0 \implies \begin{cases} \lambda_1 = 0 \\ \lambda_2 = 2 \end{cases}$ $A = \begin{bmatrix} 5 & 3 \\ 3 & 5 \end{bmatrix}$ U=["""] $\begin{pmatrix} -3 & 3 \\ 3 & -3 \end{pmatrix} V_1 = o = V_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ ふ=2 いこ= 売[-1] →いに= 売[] = ? $\Lambda = ? \begin{bmatrix} 8 & 0 \\ 0 & 2 \end{bmatrix}$ $\Lambda = U^T A U$

Rotation Matrix
Def:
$$R^{T} = R^{-1}$$

We can prove $U^{T} = U^{-1}$ if U is formed
us cigenvectors
normalised.
U' & U are called
orthonormal matrices
 $\Rightarrow U^{T} \otimes U$ are rotation
hatrices.

$$U = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$u_{1} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \quad u_{2} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$u_{3} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$u_{1} \cdot u_{3} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$u_{1} \cdot u_{3} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$u_{2} \cdot u_{3} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$|(u_{1}|| = 2 t ||u_{3}|| = 2 t ||u_{3}|| = 2 t$$

1. X LV $U = \begin{bmatrix} c_0 & 0 & 0 \\ -S & 0 & 0 \\ S & 0 & 0 \\ -S & 0 & 0$ $U^{T} = \begin{bmatrix} cossa & sins \\ -sins & cossa \end{bmatrix}$ $\overline{U}(U \times) = 2 \cdot \times$ $()^{T} = U^{-1} \Rightarrow U^{T} \cdot U = 1$

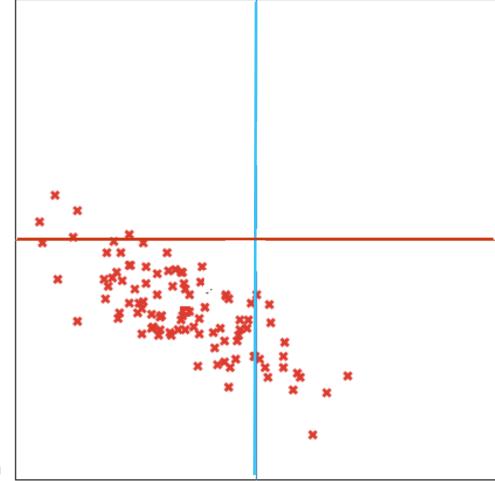
Q. Is this true?

Transforming a matrix with orthonormal matrix only rotates the data

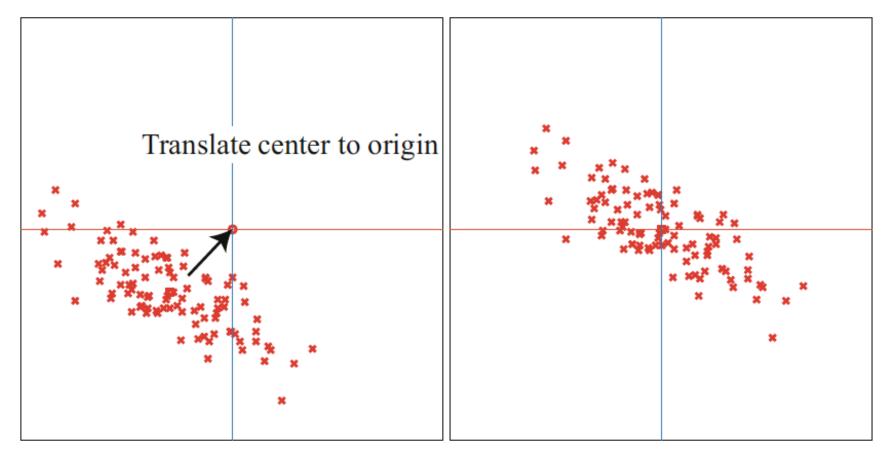
B. No

υx

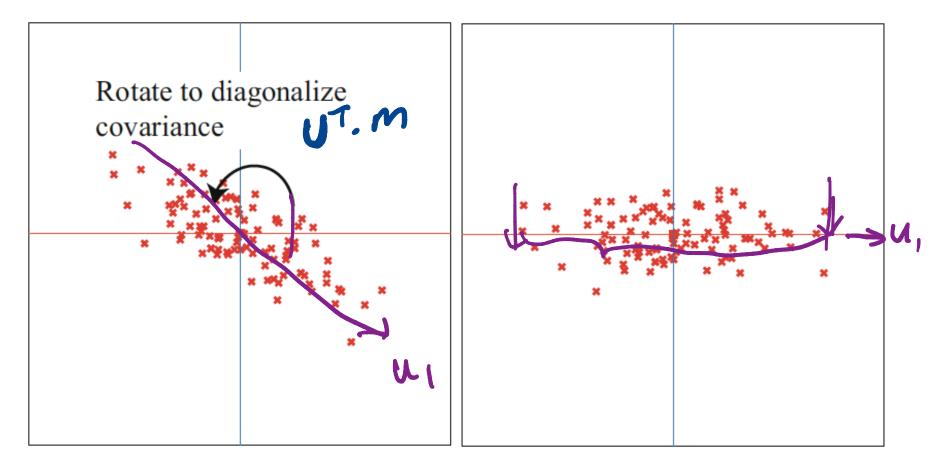
Dimension reduction from 2D to 1D



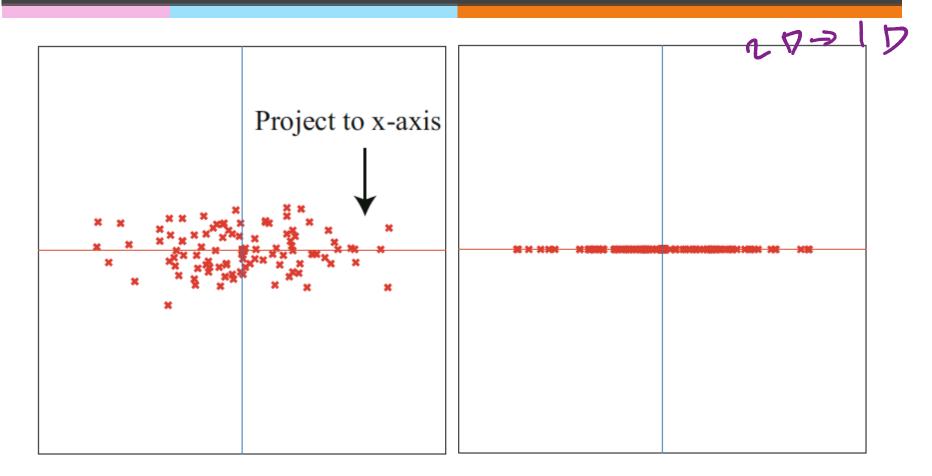
Step 1: subtract the mean



Step 2: Rotate to diagonalize the covariance



Step 3: Drop component(s)



Principal Components

The columns of U are the normalized eigenvectors of the Covmat({x}) and are called the principal components of the data {x}

Principal components analysis

- * We reduce the dimensionality of dataset $\{x\}$ represented by matrix $D_{d \times n}$ from d to s (s < d).
- * Step 1. define matrix $oldsymbol{m}_{d imes n}$ such that $oldsymbol{m} = oldsymbol{D} mean(oldsymbol{D})$
- Step 2. define matrix $\boldsymbol{r}_{d \times n}$ such that $\boldsymbol{r}_i = \boldsymbol{U}^T \boldsymbol{m}_i$ Where \boldsymbol{U}^T satisfies $\boldsymbol{\Lambda} = \boldsymbol{U}^T \ Covmat(\{\boldsymbol{x}\})\boldsymbol{U}, \boldsymbol{\Lambda}$ is the diagonalization of $Covmat(\{\boldsymbol{x}\})$ with the eigenvalues sorted in decreasing order, \boldsymbol{U} is the orthonormal eigenvectors' matrix
- * Step 3. Define matrix $p_{d imes n}$ such that p is r with the last d-s components of r made zero.

What happened to the mean?

* Step 1.

$$mean(\boldsymbol{m}) = mean(\boldsymbol{D} - mean(\boldsymbol{D})) = 0$$

Step 2.

$$mean(\boldsymbol{r}) = \boldsymbol{U}^T mean(\boldsymbol{m}) = \boldsymbol{U}^T \boldsymbol{0} = \boldsymbol{0}$$

* Step 3.

$$mean(\boldsymbol{p_i}) = mean(\boldsymbol{r_i}) = 0 \quad while \ i \in 1:s$$
$$mean(\boldsymbol{p_i}) = 0 \quad while \ i \in s+1:d$$

What happened to the covariances?

Step 1.

$$Covmat(\boldsymbol{m}) = Covmat(\boldsymbol{D}) = Covmat(\{\boldsymbol{x}\})$$

* Step 2. $Covmat(\mathbf{r}) = \mathbf{U}^{T}Covmat(\mathbf{m})\mathbf{U} = \mathbf{\Lambda}$ $\underbrace{\mathbf{v}_{\mathbf{r}} \ \mathbf{p}^{\mathbf{r}} \ \mathbf{r}^{\mathbf{r}} \ \mathbf{v}^{\mathbf{r}} \ \mathbf{v}^{\mathbf{$

Sample covariance matrix

In many statistical programs, the sample covariance matrix is defined to be

$$Covmat(\boldsymbol{m}) = \frac{\boldsymbol{m_{c}} \boldsymbol{m_{c}}^{T}}{N-1}$$

Similar to what happens to the unbiased standard deviation

Step 1.

$$D = \begin{bmatrix} 3 & -4 & 7 & 1 & -4 & -3 \\ 7 & -6 & 8 & -1 & -1 & -7 \end{bmatrix} \Rightarrow mean(D) = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
$$m = \begin{bmatrix} 3 & -4 & 7 & 1 & -4 & -3 \\ 7 & -6 & 8 & -1 & -1 & -7 \end{bmatrix}$$
Step 2

Step 2.

* Step 3.

Step 1.

⊯

$$D = \begin{bmatrix} 3 & -4 & 7 & 1 & -4 & -3 \\ 7 & -6 & 8 & -1 & -1 & -7 \end{bmatrix} \Rightarrow mean(D) = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
$$m = \begin{bmatrix} 3 & -4 & 7 & 1 & -4 & -3 \\ 7 & -6 & 8 & -1 & -1 & -7 \end{bmatrix}$$
Step 2.
$$Covmat(m) = \begin{bmatrix} 20 & 25 \\ 25 & 40 \end{bmatrix} \Rightarrow \lambda_1 \simeq 57; \ \lambda_2 \simeq 3$$
$$\Rightarrow U = \begin{bmatrix} 0.5606288 & -0.8280672 \\ 0.8280672 & 0.5606288 \end{bmatrix} \qquad U^T = \begin{bmatrix} 0.5606288 & 0.8280672 \\ -0.8280672 & 0.5606288 \end{bmatrix}$$

* Step 3.

Step 1.

⊯

$$D = \begin{bmatrix} 3 & -4 & 7 & 1 & -4 & -3 \\ 7 & -6 & 8 & -1 & -1 & -7 \end{bmatrix} \Rightarrow mean(D) = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
$$m = \begin{bmatrix} 3 & -4 & 7 & 1 & -4 & -3 \\ 7 & -6 & 8 & -1 & -1 & -7 \end{bmatrix}$$
Step 2.
$$Covmat(m) = \begin{bmatrix} 20 & 25 \\ 25 & 40 \end{bmatrix} \Rightarrow \lambda_1 \simeq 57; \ \lambda_2 \simeq 3$$
$$\Rightarrow U = \begin{bmatrix} 0.5606288 & -0.8280672 \\ 0.8280672 & 0.5606288 \end{bmatrix} \qquad U^T = \begin{bmatrix} 0.5606288 & 0.8280672 \\ -0.8280672 & 0.5606288 \end{bmatrix}$$
$$\Rightarrow r = U^T m = \begin{bmatrix} 7.478 & -7.211 & 10.549 & -0.267 & -3.071 & -7.478 \\ 1.440 & -0.052 & -1.311 & -1.389 & 2.752 & -1.440 \end{bmatrix}$$

Step 3.

Step 1.

$$D = \begin{bmatrix} 3 & -4 & 7 & 1 & -4 & -3 \\ 7 & -6 & 8 & -1 & -1 & -7 \end{bmatrix} \Rightarrow mean(D) = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$m = \begin{bmatrix} 3 & -4 & 7 & 1 & -4 & -3 \\ 7 & -6 & 8 & -1 & -1 & -7 \end{bmatrix}$$

$$m = \begin{bmatrix} 20 & 25 \\ 25 & 40 \end{bmatrix} \Rightarrow \lambda_1 \simeq 57; \ \lambda_2 \simeq 3$$

$$\Rightarrow U = \begin{bmatrix} 0.5606288 & -0.8280672 \\ 0.8280672 & 0.5606288 \end{bmatrix} \quad U^T = \begin{bmatrix} 0.5606288 & 0.8280672 \\ -0.8280672 & 0.5606288 \end{bmatrix}$$

$$\Rightarrow r = U^T m = \begin{bmatrix} 7.478 & -7.211 & 10.549 & -0.267 & -3.071 & -7.478 \\ 1.440 & -0.052 & -1.311 & -1.389 & 2.752 & -1.440 \end{bmatrix}$$

$$m = \begin{bmatrix} 7.478 & -7.211 & 10.549 & -0.267 & -3.071 & -7.478 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

What is this matrix for the previous example?

$\boldsymbol{U}^{T} Covmat(\boldsymbol{m})\boldsymbol{U} = ? \land$ $= \begin{bmatrix} \boldsymbol{\varsigma} \boldsymbol{\gamma} & \boldsymbol{\circ} \\ \boldsymbol{\circ} & \boldsymbol{\varsigma} \end{bmatrix}$

The Mean square error of the projection

* The mean square error is the sum of the smallest d-s eigenvalues in Λ

$$\frac{1}{N-1}\sum_{i}\|r_{i}-p_{i}\|^{2} = \frac{1}{N-1}\sum_{i}\sum_{j=s+1}^{d}(r_{i}^{(j)})^{2}$$

The Mean square error of the projection

* The mean square error is the sum of the smallest d-s eigenvalues in Λ

$$\frac{1}{N-1}\sum_{i}\|r_{i}-p_{i}\|^{2} = \frac{1}{N-1}\sum_{i}\sum_{j=s+1}^{d}(r_{i}^{(j)})^{2} = \sum_{j=s+1}^{d}\sum_{i}\frac{1}{N-1}(r_{i}^{(j)})^{2}$$

The Mean square error of the projection

* The mean square error is the sum of the smallest d-s eigenvalues in Λ

$$\frac{1}{N-1} \sum_{i} ||r_{i} - p_{i}||^{2} = \frac{1}{N-1} \sum_{i} \sum_{j=s+1}^{d} (r_{i}^{(j)})^{2} = \sum_{j=s+1}^{d} \sum_{i} \frac{1}{N-1} (r_{i}^{(j)})^{2}$$
$$= \sum_{j=s+1}^{d} var(r_{i}^{(j)})$$

The Mean square error of the projection

* The mean square error is the sum of the smallest d-s eigenvalues in Λ

$$\frac{1}{N-1} \sum_{i} ||r_{i} - p_{i}||^{2} = \frac{1}{N-1} \sum_{i} \sum_{j=s+1}^{d} (r_{i}^{(j)})^{2} = \sum_{j=s+1}^{d} \sum_{i} \frac{1}{N-1} (r_{i}^{(j)})^{2}$$
$$= \sum_{j=s+1}^{d} var(r_{i}^{(j)})$$
$$= \sum_{j=s+1}^{d} \lambda_{j}$$

PCA of Immune Cells ' Dara

> res1
\$values
Eigenvalues
[1] 4.7642829 2.1486896 1.3730662
0.4968255

Eigenvectors

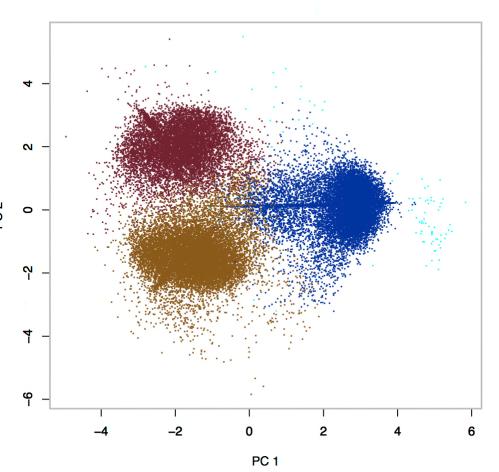
\$vectors

[,1] [,2] [,3] [,4] [1,] 0.2476698 0.00801294 -0.6822740 0.6878210

[2,] 0.3389872 -0.72010997 -0.3691532 -0.4798492

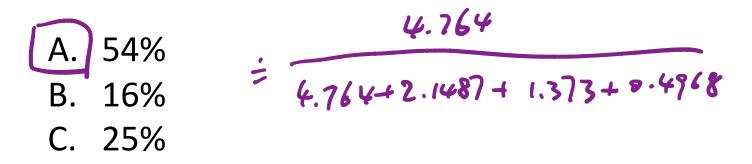
[3,] -0.8298232 0.01550840 -0.5156117 -0.2128324

[4,] 0.3676152 0.69364033 -0.3638306 -0.5013477 PCA_immune_cells_2



What is the percentage of variance that <u>PC1 covers?</u>

Given the eigenvalues: 4.7642829 2.1486896 1.3730662 0.4968255, what is the percentage that PC1 covers?



Notebook on PCA

https://courses.engr.illinois.edu/ cs361/sp2019/notebooks/ L18.html

Reconstructing the data

* Given the projected data $oldsymbol{p}_{d imes n}$ and mean({x}), we can approximately reconstruct the original data

$$\widehat{D} = Up + mean(\{x\})$$

$$\uparrow rotation back$$

- * Each reconstructed data item $\widehat{m{D}_i}$ is a linear combination of the columns of $m{U}$ weighted by $m{p}_i$
- * The columns of U are the normalized eigenvectors of the Covmat({x}) and are called the principal components of the data {x}

End-to-end mean square error

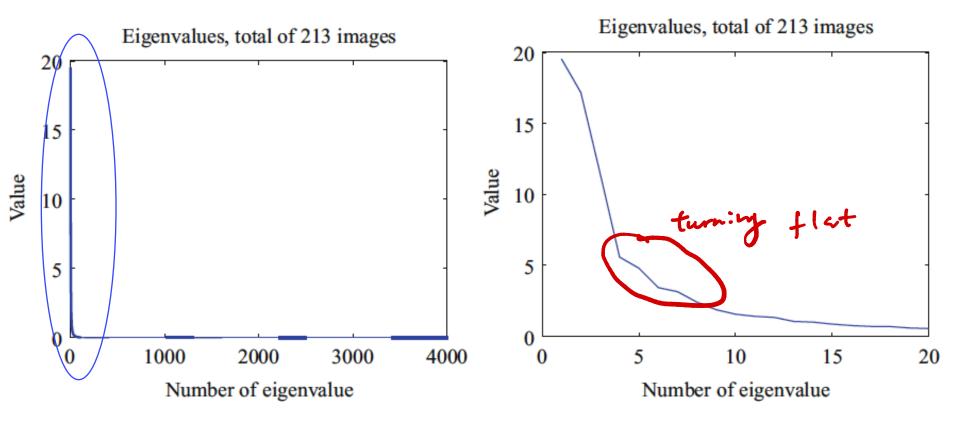
- * Each $oldsymbol{x}_i$ becomes $oldsymbol{r}_i$ by translation and rotation
- * Each $oldsymbol{p}_i$ becomes $\widehat{oldsymbol{x}}_i$ by the opposite rotation and translation
- ** Therefore the end to end mean square error is: $\frac{1}{N-1}\sum_{i}\|\widehat{x}_{i}-x_{i}\|^{2} = \frac{1}{N-1}\sum_{i}\|r_{i}-p_{i}\|^{2} = \sum_{j=s+1}^{d}\lambda_{j}$ ** $\lambda_{s+1}, ..., \lambda_{d}$ are the smallest d-s eigenvalues of the Covmat({x})

PCA: Human face data

- The dataset consists of 213 images
 N = 213
- * Each image is grayscale and has 64 by 64 resolution
- * We can treat each image as a vector with dimension d = 4096 $64 \times 64 = 466$

Credit: Prof. Forsyth

How quickly the eigenvalues decrease?



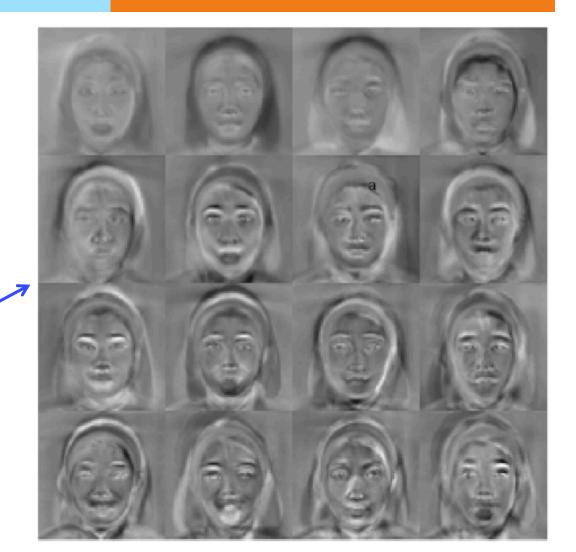
Credit: Prof. Forsyth

What do the principal components of the images look like?

Mean image

The first 16 principal components arranged into images

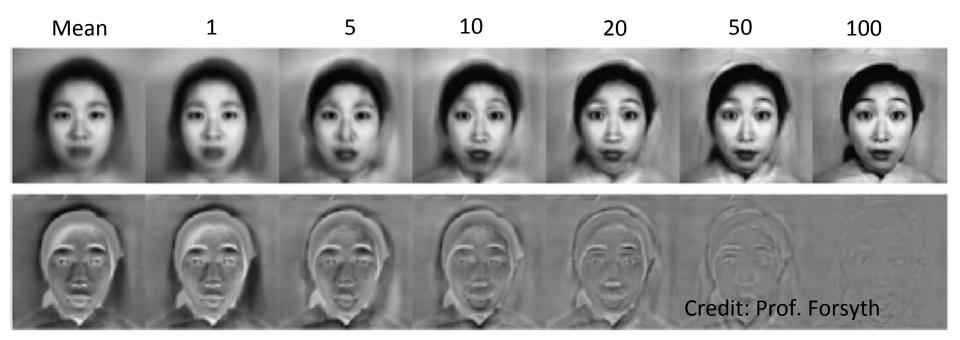
Credit: Prof. Forsyth



Reconstruction of the image

The original

1st row show the reconstructions using some number of principal components 2nd row show the corresponding errors



Q. Which are true?

- A . PCA allows us to project data to the direction along which the data has the biggest variance
- B. PCA allows us to compress data
- C. PCA uses linear transformation to show patterns of data
- D. PCA allows us to visualize data in lower dimensions

All of the above

Assignments

Read Chapter 10 of the textbook

* Next time: Intro to classification

argmax { w'X'Xw w'w Rayleigh Quotient ||w|| > |

= the largest eigenvector U,

= pc,

Additional References

- Robert V. Hogg, Elliot A. Tanis and Dale L. Zimmerman. "Probability and Statistical Inference"
- Morris H. Degroot and Mark J. Schervish "Probability and Statistics"

See you next time

See You!

