
ì	Probability	and	Statistics	
for	Computer	Science		

“…many	problems	are	naturally	
classifica4on	problems”---Prof.	
Forsyth	

Hongye	Liu,	Teaching	Assistant	Prof,	CS361,	UIUC,	10.29.2020	

Credit:	wikipedia	



Last	time	

�  Review	of	Covariance	matrix	

�  Dimension	Reduc4on	

�  Principal	Component	Analysis	

�  Examples	of	PCA	



Objectives	

�  Demo	of	Principal	Component	Analysis	

�  Introduc4on	to	classifica4on	-
Dimension

Reduction



Q.	Which	are	true?	

A	.	PCA	allows	us	to	project	data	to	the	
	direc4on	along	which	the	data	has	the	
	biggest	variance	

B.  PCA	allows	us	to	compress	data	
C.  PCA	uses	linear	transforma4on	to	show	

paWerns	of	data	
D.  PCA	allows	us	to	visualize	data	in	lower	

dimensions	
E.  All	of	the	above	If

unsupervised



Demo	of	the	PCA	by	solving	
diagonalization	of	covariance	matrix	

Menu centering

Rotate the data to eigenvectors
Cdiagonalize

the covalent

Project the dots
.

I choose a few )

important PCs

Notebook 18



Diagonalization	example	

�  For		
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Q.	Which	of	these	is	NOT	true?	

A.	The	eigenvectors	of	covariance	can	
have	opposite	signs	and	it	won’t	affect	
the	reconstruc4on	
B.	The	PCA	analysis	in	some	sta4s4cal	
program	returns	standard	devia4on	
instead	of	variance	
C.	It	doesn’t	maWer	how	you	store	the	
data	in	matrix	
D



Demo:	PCA	of	Immune	Cell	Data	
�  There	are	38816	white	

blood	immune	cells	from	
a	mouse	sample	

�  Each	immune	cell	has	
40+	features/
components	

�  Four	features	are	used	
as	illustra4on.	

�  There	are	at	least	3	cell	
types	involved	

T	cells	

B	cells	

Natural	killer	cells	



Scatter	matrix	of	Immune	Cells	
�  There	are	38816	white	

blood	immune	cells	from	
a	mouse	sample	

�  Each	immune	cell	has	
40+	features/
components	

�  Four	features	are	used	
as	illustra4on.	

�  There	are	at	least	3	cell	
types	involved	

Dark	red:	T	cells	
Brown:	B	cells	
Blue:	NK	cells	
Cyan:	other	small	popula4on	



PCA	of	Immune	Cells		
>	res1	
$values	
[1]	4.7642829	2.1486896	1.3730662	
0.4968255	
	
$vectors	
											[,1]								[,2]							[,3]							[,4]	
[1,]		0.2476698		0.00801294	-0.6822740		
0.6878210	
[2,]		0.3389872	-0.72010997	-0.3691532	
-0.4798492	
[3,]	-0.8298232		0.01550840	-0.5156117	
-0.2128324	
[4,]		0.3676152		0.69364033	-0.3638306	
-0.5013477	

Eigenvalues	

Eigenvectors	
T cells

Nk cells

B cells



More	features	used	
�  There	are	38816	white	

blood	immune	cells	from	
a	mouse	sample	

�  Each	immune	cell	has	42	
features/components	

�  There	are	at	least	3	cell	
types	involved	

T	cells	

B	cells	

Natural	killer	cells	

N =3 8,816

D= Ez

-

-

curated labels



Eigenvalues	of	the	covariance	matrix	



Large	variance	doesn’t	mean	important	
pattern	

Principal	
component	1	
is	just	cell	
length	

T

B

NK



Principal	component	2	and	3	show	
different	cell	types	

B

T

NK



Principal	component	4	is	not	very	
informative	

NK B T



Principal	component	5	is	interesting	

NK B T
,

Tz



Principal	component	6	is	interesting	

NK . B T

NKZ



Scaling	the	data	or	not	in	PCA	

�  Some4mes	we	need	to	scale	the	data	for	each	feature	
have	very	different	value	range.		

�  Ager	scaling	the	eigenvalues	may	change	significantly.	

�  Data	needs	to	be	inves4gated	case	by	case	



Eigenvalues	of	the	covariance	matrix	
(scaled	data)	

Eigenvalues	
do	not	drop	
off	very	
quickly	



Principal	component	1	&	2	(scaled	data)	

Even	the	first	2	
PCs	don’t	separate	
the	different	types	
of	cell	very	well	
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Q.	Which	of	these	are	true?	

A.	Feature	selec4on	should	be	
conducted	with	domain	knowledge	
B.	Important	feature	may	not	show	big	
variance	
C.	Scaling	doesn’t	change	eigenvalues	of	
covariance	matrix	
D.	A	&	B	

✓
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Q.	Which	of	these	are	true?	

A.	Feature	selec4on	should	be	
conducted	with	domain	knowledge	
B.	Important	feature	may	not	show	big	
variance	
C.	Scaling	doesn’t	change	eigenvalues	of	
covariance	matrix	
D.	A	&	B	



Learning	to	classify	

�  Given	a	set	of	feature	vectors	xi,	where	each	has	a	class	
label	yi,	we	want	to	train	a	classifier	that	maps		
unlabeled	data	with	the	same	features	to	its	label.	

CD45	 CD19	 CD11b	 CD3e	 Type	

6.59564671	 1.297765164	 7.073280884	 1.155202366	 1	
6.742586812	 4.692018952	 3.145976639	 1.572686963	 4	
6.300680301	 1.20613983	 6.393630905	 1.424572629	 2	
5.455310882	 0.958837541	 6.149306002	 1.493503124	 1	
5.725565772	 1.719787885	 5.998232014	 1.310208305	 1	
5.552847151	 0.881373587	 6.02155471	 0.881373587	 3	

{
5

°
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Binary	classifiers	

�  A	binary	classifier	maps	each	feature	vector	to	one	of	
two	classes.	

�  For	example,	you	can	train	the	classifier	to:	
�  Predict	a	gain	or	loss	of	an	investment	
�  Predict	if	a	gene	is	beneficial	to	survival	or	not	
�  …	



Multiclass	classifiers	

�  A	mul4class	classifier	maps	each	feature	vector	to	one	
of	three	or	more	classes.	

�  For	example,	you	can	train	the	classifier	to:	
�  Predict	the	cell	type	given	cells’	measurement	
�  Predict	if	an	image	is	showing	tree,	or	flower	or	car,	etc	
�  ...	



Given	our	knowledge	of	probability	and	
statistics,	can	you	think	of	any	classifiers?	

Bayesian hormone

probability PIOID)



Given	our	knowledge	of	probability	and	
statistics,	can	you	think	of	any	classifiers?	
�  We	will	cover	classifiers	such	as	nearest	

neighbor,	decision	tree,	random	forest,	Naïve	
Bayesian	and	support	vector	machine.	



Nearest	neighbors	classifier	

�  Given	an	unlabeled	feature	vector	
�  Calculate	the	distance	from	x	
�  Find	the	closest	labeled	xi	
�  Assign	the	same	label	to	x	

�  Prac4cal	issues	
�  We	need	a	distance	metric	
�  We	should	first	standardize	the	data	
�  Classifica4on	may	be	less	effec4ve	for	very	high	

dimensions	

Source:	wikipedia	
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Variants	of	nearest	neighbors	classifier	

�  In	k-nearest	neighbors,	the	classifier:	
�  Looks	at	the	k	nearest	labeled	

feature	vectors	xi	
�  Assigns	a	label	to	x	based	on	a	

majority	vote	

�  In	(k,	l)-nearest	neighbors,	the	classifier:	
�  Looks	at	the	k	nearest	labeled	feature	vectors	
�  Assigns	a	label	to	x	if	at	least	l	of	them	agree	on	the	

classifica4on	



How	do	we	know	if	our	classifier	is	good?	

�  We	want	the	classifier	to	avoid	some	mistakes	on	
unlabeled	data	that	we	will	see	in	run	4me.	

�  Problem	1:	some	mistakes	may	be	more	costly	than	
others	
We	can	tabulate	the	types	of	error	and	define	a	loss	
func4on	

�  Problem	2:	It’s	hard	to	know	the	true	labels	of	the	
run-4me	data	
We	must	separate	the	labeled	data	into	a	training	set	
and	test/valida4on	set	



Performance	of	a	binary	classifier	

�  A	binary	classifier	can	make	two	types	of	errors	
�  False	posi4ve	(FP)	
�  False	nega4ve	(FN)	

�  Some4mes	one	type	
of	error	is	more	costly	
�  Drug	effect	test	
�  Crime	detec4on	

�  We	can	tabulate	the	performance	
in	a	class	confusion	matrix	

15	 3	

7	 25	

FP	TP	

TN	FN	

O l

±



Performance	of	a	binary	classifier	
�  A	loss	func4on	assigns	costs	to	mistakes	

�  The	0-1	loss	func4on	treats	
FPs	and	FNs	the	same	
�  Assigns	loss	1	to	every	

mistake	
�  Assigns	loss	0	to	every	

correct	decision	

�  Under	the	0-1	loss	func4on	
�  accuracy=	

�  The	baseline	is	50%	which	we	get	by	
random	decision.	

TP + TN

TP + TN + FP + FN



Performance	of	a	multiclass	classifier	
�  Assuming	there	are	c	classes:	

�  The	class	confusion	matrix	is	
c	×	c	

�  Under	the	0-1	loss	func4on	
accuracy=	

ie.	in	the	right	example,	accuracy	=	
32/38=84%	

�  The	baseline	accuracy	is	1/c.	

sum of diagonal terms

sum of all terms

Source:	scikit-learn	
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Training	set	vs.	validation/test	set	
�  We	expect	a	classifier	to	perform	worse	on	run-4me	data	
�  Some4mes	it	will	perform	much	worse:	an	overfiDng	in	

training	
�  An	extreme	case	is:	the	classifier	correctly	labeled	100%	when	

the	input	is	in	the	training	set,	but	otherwise	makes	a	random	
guess		

	�  To	protect	against	overfisng,	we	separate	training	set	
from	valida4on/test	set	
�  Training	set	for	training	the	classifier	
�  ValidaHon/test	set	is	for	evalua4ng	the	performance	

�  It’s	common	to	reserve	at	least	10%	of	the	data	for	tes4ng	



Cross-validation	
�  If	we	don’t	want	to	“waste”	labeled	data	on	valida4on,		we	

can	use	cross-validaHon	to	see	if	our	training	method	is	
sound.	

�  Split	the	labeled	data	into	training	and	valida4on	sets	in	
mul4ple	ways	

�  For	each	split	(called	a	fold)	
�  Train	a	classifier	on	the	training	set	
�  Evaluate	its	accuracy	on	the	valida4on	set	

�  Average	the	accuracy	to	evaluate	the	training	
methodology	

n labeled arts

Ch - i) → train.gl doggy
Pts

.

testing
↳

testy

N . N - I
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↳WU - -
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How	many	trained	models	I	can	have	for	the	leave	
one	out	cross-validation?	

If	I	have	a	data	set	that	has	50	labeled	data	entries,	how	
many	leave-one-out	valida4ons	I	can	have?	

A.	50	

B.	49	

C.	50*49	

I (f) → testing .
-



How	many	trained	models	I	can	have	for	the	leave	
one	out	cross-validation?	

If	I	have	a	data	set	that	has	50	labeled	data	entries,	how	
many	leave-one-out	valida4ons	I	can	have?	

A.	50	

B.	49	

C.	50*49	



How	many	trained	models	can	I	have	with	this	
cross-validation?	

If	I	have	a	data	set	that	has	51	labeled	data	entries,	I	
divide	them	into	three	folds	(17,17,17).	How	many	
trained	models	can	I	have?	

*The	common	pracHce	of	using	fold	is	to	divide	the	samples	into	equal	sized	k	groups	
and	reserve	one	of	the	group	as	the	test	data	set.	

µ 5 I

Te k =3 µ

N
Te = 17

a

④ IE Iii)
testy train-y



How	many	trained	models	can	I	have	with	this	
cross-validation?	

If	I	have	a	data	set	that	has	51	labeled	data	entries,	I	
divide	them	into	three	folds	(17,17,17).	How	many	
trained	models	can	I	have?	

(

51

17

)



Decision(tree:(object(classification(

�  The$object$classifica4on$decision(tree$can$classify$
objects$into$mul4ple$classes$using$sequence$of$
simple$tests.$It$will$naturally$grow$into$a$tree.$

Cat(

toddler(

dog(

chair(leg(

sofa( box(

moving nature-ing
parts

or whole

o o

human
"" -

big or surge,



Iris example : which type is this ?



Training(a(decision(tree:(example(

�  The$“Iris”$data$set$

Setosa$ Versicolor$

Virginica$

1?$Where?$

m
O Phish

T

O a

t

50 Seto sa

o Virginica
o Versicolor

-



Q:(What(is(accuracy(of(this(decision(tree(
given(the(confusion(matrix(?(




50 0 0

0 49 5

0 1 45





A. $6/150$
B. $144/150$
C. $145/150$
a



Q:(What(is(accuracy(of(this(decision(tree(
given(the(confusion(matrix(?(




50 0 0

0 49 5

0 1 45





A. $6/150$
B. $144/150$
C. $145/150$



Decision(Boundary(

1.75$

2.45$



Another(Decision(Boundary(

Credit:$Kelvin$Murphy,$“Machine$Learning:$A$Probabilis4c$Perspec4ve”,$2012$



Training(a(decision(tree(

�  Choose(a(dimension/feature(and(a(split(



Training(a(decision(tree(

�  Choose$a$dimension/feature$and$a$split$

�  Split(the(training(Data(into(leH:(and(right:(
child(subsets(Dl(and(Dr(



Training(a(decision(tree(

�  Choose$a$dimension/feature$and$a$split$

�  Split$the$training$Data$into$lelW$and$rightW$
child$subsets$Dl$and$Dr$

�  Repeat(the(two(steps(above(recursively(on(
each(child(



Training(a(decision(tree(

�  Choose$a$dimension/feature$and$a$split$

�  Split$the$training$Data$into$lelW$and$rightW$
child$subsets$Dl$and$Dr$

�  Repeat$the$two$steps$above$recursively$on$
each$child$

�  Stop(the(recursion(based(on(some(condiBons(



Training(a(decision(tree(

�  Choose$a$dimension/feature$and$a$split$

�  Split$the$training$Data$into$lelW$and$rightW$
child$subsets$Dl$and$Dr$

�  Repeat$the$two$steps$above$recursively$on$
each$child$

�  Stop$the$recursion$based$on$some$condi4ons$

�  Label(the(leaves(with(class(labels(



Classifying(with(a(decision(tree:(example(

�  The$“Iris”$data$set$

Setosa$ Versicolor$

Virginica$



Choosing(a(split(
�  An$informa4ve$split$

makes$the$subsets$
more$concentrated$
and$reduces$
uncertainty$about$
class$labels$

$$$
$
$
$
$
$
$
$
$
$
$
$
$

• Of



Choosing(a(split(
�  An$informa4ve$split$

makes$the$subsets$
more$concentrated$
and$reduces$
uncertainty$about$
class$labels$
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$
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$
$
$
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$



Choosing(a(split(
�  An$informa4ve$split$

makes$the$subsets$
more$concentrated$
and$reduces$
uncertainty$about$
class$labels$

$$$
$
$
$
$
$
$
$
$
$
$
$
$

✔$

✖$

to

t



Which(is(more(informative?(



Quantifying(uncertainty(using(entropy(

�  We$can$measure$uncertainty$as$the$
number$of$bits$of$informa4on$needed$
to$dis4nguish$between$classes$in$a$
dataset$(first$introduced$by$Claude$
Shannon)$
�  We$need$Log2$2$=1$bit$to$

dis4nguish$2$equal$classes$
�  We$need$Log2$4$=2$bit$to$

dis4nguish$4$equal$classes$

Claude$Shannon$(1916W2001)$

-

o
-

O l
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logo N



Quantifying(uncertainty(using(entropy(

�  Entropy$(Shannon$entropy)$is$the$measure$of$
uncertainty$for$a$general$distribu4on$
�  If$class$i$contains$a$frac4on$P(i)$of$the$data,$we$need$$$$$$$$$$$$$$$$$$

bits$for$that$class$
�  The$entropy$H(D)$of$a$dataset$is$defined$as$the$weighted(

mean$of$entropy$for$every$class:$

H(D) =
c∑

i=1

P (i)log2
1

P (i)

log2
1

P (i)E- O
-

O Logan

T
a-¥,

C → # of classes



Entropy:(before(the(split(

$
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= 0.971 bits
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Entropy:(examples(

$
$
$
$
$
$
$
$
$

= 0.971 bits

H(D) = −

3

5
log2

3

5
−

2

5
log2
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H(Dl) = −1 log21 = 0 bits
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Entropy:(examples(
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Information(gain(of(a(split((

�  The$informa4on$gain$of$a$split$is$the$amount$of$
entropy$that$was$reduced$on$average$aler$the$split$

$

�  where$
�  ND$is$the$number$of$items$in$the$dataset$D"
�  NDl$is$the$number$of$items$in$the$lelWchild$dataset$Dl"
�  NDr$is$the$number$of$items$in$the$lelWchild$dataset$Dr"

I = H(D)− (
NDl

ND

H(Dl) +
NDr

ND

H(Dr))OO- 8-



Information(gain:(examples(

$
$
$
$
$
$
$
$
$

I = H(D)− (
NDl

ND

H(Dl) +
NDr

ND

H(Dr))

= 0.971− (
24
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Q.(Is(the(splitting(method((global(
optimum?(

A. $$Yes$
B. $$No$

o_0

An
ox on R

Decision for

che lowest entropy
is made at each node

locally for
the data at
that point anffdeuture



Q.(Is(the(splitting(method((global(
optimum?(

A. $$Yes$
B. $$No$

Not necessarily global



Assignments	

� Read	Chapter	11	of	the	textbook	

� Next	4me:	Decision	tree,	Random	
forest	classifier	

� Prepare	for	midterm2	exam	
�  Lec	11-Lec	18,	Chapter	6-10	



Additional	References	

✺  Robert	V.	Hogg,	Elliot	A.	Tanis	and	Dale	L.	
Zimmerman.	“Probability	and	Sta4s4cal	
Inference”		

� Morris	H.	Degroot	and	Mark	J.	Schervish	
"Probability	and	Sta4s4cs”	



See	you	next	time	

See 
You! 


