Probability and Statistics for Computer Science

"...many problems are naturally classification problems"---Prof. Forsyth

Credit: wikipedia

Hongye Liu, Teaching Assistant Prof, CS361, UIUC, 10.29.2020

Last time

粦 Review of Covariance matrix
Dimension Reduction
粦 Principal Component Analysis
类 Examples of PCA

Objectives

䊩 Demo of Principal Component Analysis

粦 Introduction to classification

Q. Which are true?

A. PCA allows us to project data to the direction along which the data has the biggest variance
B. PCA allows us to compress data
C. PCA uses linear transformation to show patterns of data
D. PCA allows us to visualize data in lower dimensions
cunsupervised
E. All of the above

Demo of the PCA by solving diagonalization of covariance matrix

Mean centering
Rotate the data to eigenvectors Cdisondice count
Project the data
choose - for important $p C_{s}{ }^{\prime}$
Notebook 18

Diagonalization example

For
λ_{i} ?

$$
\begin{aligned}
& |A-\lambda I|=0 \\
& \left|\begin{array}{cc}
5-\lambda & 3 \\
3 & 5-\lambda
\end{array}\right|=0 \Rightarrow\left\{\begin{array}{l}
\lambda_{1}=8 \\
\lambda_{2}=2
\end{array}\right.
\end{aligned}
$$

$A=\left[\begin{array}{ll}5 & 3 \\ 3 & 5\end{array}\right]$

$$
\begin{aligned}
U & =\left[\begin{array}{ll}
u_{1} & u_{2}
\end{array}\right] \\
& =?
\end{aligned}
$$

$$
\Lambda=U^{\top} A U
$$

$$
\begin{aligned}
& \lambda_{1}=8 \text { ? } \\
& \Delta \nu_{1}=8 v_{1} \\
& v_{1}=\left[\begin{array}{c}
-1 \\
-1 \\
-1
\end{array}\right] \\
& \text { (} A-8 I) v_{1}=0 \quad u_{1}^{\prime}=\frac{1}{\sqrt{2}}\left[\begin{array}{l}
-1 \\
-1
\end{array}\right] \\
& \left(\begin{array}{cc}
-3 & 3 \\
3 & -3
\end{array}\right) v_{1}=0 \Rightarrow v_{1}=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \\
& \Rightarrow u_{1}=\frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
1
\end{array}\right] \\
& \lambda_{2}=2 \quad u_{2}=\frac{1}{\sqrt{2}}\left[\begin{array}{c}
1 \\
-1
\end{array}\right] \\
& \uparrow \\
& \text { normalized } \\
& \text { eigenvector }
\end{aligned}
$$

Q. Which of these is NOT true?

A. The eigenvectors of covariance can have opposite signs and it won't affect the reconstruction
B. The PCA analysis in some statistical program returns standard deviation instead of variance
C. It doesn't matter how you store the data in matrix

Demo: PCA of Immune Cell Data

粦 There are 38816 white blood immune cells from a mouse sample

Scatter matrix of Immune Cells

䊩 There are 38816 white blood immune cells from a mouse sample

粦 Each immune cell has
40＋features／ components

䊩 Four features are used as illustration．

粦 There are at least 3 cell types involved

Dark red：T cells
Brown：B cells
Blue：NK cells
Cyan：other small population

PCA of Immune Cells

> res1

\$values Eigenvalues
[1] 4.76428292 .14868961 .3730662 0.4968255

Eigenvectors
\$vectors

$$
[, 1] \quad[, 2] \quad[, 3] \quad[, 4]
$$

[1,] $0.24766980 .00801294-0.6822740$ 0.6878210
[2,] $0.3389872-0.72010997-0.3691532$ -0.4798492
[3,] -0.8298232 0.01550840-0.5156117
-0.2128324
[4,] 0.3676152 0.69364033-0.3638306 -0.5013477

PCA_immune_cells_2

More features used

粦 There are 38816 white $N=38,816$ blood immune cells from a mouse sample

T cells
䊩 Each immune cell has $42 d=\mathbb{\&}$ features/components

There are at least 3 cell types involved
curated labels
B cells

Natural killer cells

Eigenvalues of the covariance matrix

Eigenvalues (unscaled data)

Large variance doesn't mean important pattern

Principal component 2 and 3 show different cell types

OOO Quartz 2 [*]

Principal component 4 is not very informative

PCA Immune cells with 40+ features

Principal component 5 is interesting

Principal component 6 is interesting

Scaling the data or not in PCA

Sometimes we need to scale the data for each feature have very different value range.

After scaling the eigenvalues may change significantly.
Data needs to be investigated case by case

Eigenvalues of the covariance matrix (scaled data)

Principal component 1 \& 2 (scaled data)

Covmat $(\{x\})$

$$
u=\left[\begin{array}{llll}
u_{1} & u_{2} & \cdots & u_{d}
\end{array}\right]
$$

$r=U^{\top} m$

$$
\text { covmat }(\{r\})=1
$$

$m=$ matrix $d \times N$
$d^{\text {row }}$ \qquad tenture 1

Q. Which of these are true?

A. Feature selection should be
conducted with domain knowledge B. Important feature may not show big variance
\&. Scaling doesn't change eigenvalues of covariance matrix
D A \& B

Q. Which of these are true?

A. Feature selection should be conducted with domain knowledge B. Important feature may not show big variance
C. Scaling doesn't change eigenvalues of covariance matrix
D. $A \& B$

Learning to classify

粦 Given a set of feature vectors x_{i}, where each has a class label y_{i}, we want to train a classifier that maps unlabeled data with the same features to its label.

Binary classifiers

A binary classifier maps each feature vector to one of two classes.

For example, you can train the classifier to:
粦 Predict a gain or loss of an investment
粦 Predict if a gene is beneficial to survival or not

Multiclass classifiers

A multiclass classifier maps each feature vector to one of three or more classes．

粦 For example，you can train the classifier to：
粦 Predict the cell type given cells＇measurement
粦 Predict if an image is showing tree，or flower or car，etc

Given our knowledge of probability and statistics, can you think of any classifiers?
B bayesian inference
prowalling
$P(\theta \mid D)$

Given our knowledge of probability and statistics, can you think of any classifiers?

We will cover classifiers such as nearest neighbor, decision tree, random forest, Naïve Bayesian and support vector machine.

Nearest neighbors classifier

Given an unlabeled feature vector
粦 Calculate the distance from \mathbf{x}
粦 Find the closest labeled \mathbf{x}_{i}
粦 Assign the same label to \mathbf{x}

Practical issues

米
＊
We should first standardize the data

Source：wikipedia

Classification may be less effective for very high dimensions

Variants of nearest neighbors classifier

粦 In k－nearest neighbors，the classifier：
粦 Looks at the k nearest labeled feature vectors \mathbf{x}_{i}
粦 Assigns a label to \mathbf{x} based on a majority vote

粦 In（k，ℓ ）－nearest neighbors，the classifier：
粦 Looks at the k nearest labeled feature vectors
粦 Assigns a label to \mathbf{x} if at least $\boldsymbol{\ell}$ of them agree on the classification

How do we know if our classifier is good?

We want the classifier to avoid some mistakes on unlabeled data that we will see in run time.

Problem 1: some mistakes may be more costly than others
We can tabulate the types of error and define a loss function

Problem 2: It's hard to know the true labels of the

 run-time dataWe must separate the labeled data into a training set and test/validation set

Performance of a binary classifier

A binary classifier can make two types of errors
粦 False positive（FP）
粦 False negative（FN）
粦 Sometimes one type of error is more costly

Drug effect test

Crime detection

We can tabulate the performance in a class confusion matrix

TP	FP
$\mathbf{1 5}$	3
7	25
FN	

Performance of a binary classifier

A loss function assigns costs to mistakes
The 0－1 loss function treats FPs and FNs the same

Assigns loss 1 to every mistake

米 Assigns loss 0 to every correct decision

Actual	Predicted		
		Negative	Positive
	Negative	True Negative	False Positive
	Positive	False Negative	True Positive

米 Under the 0－1 loss function
类 accuracy $=\frac{T P+T N}{T P+T N+F P+F N}$
The baseline is 50% which we get by random decision．

Performance of a multiclass classifier

Assuming there are c classes:
The class confusion matrix is $\mathrm{c} \times \mathrm{c}$

米 Under the 0-1 loss function accuracy $=\frac{\text { sum of diagonal terms }}{\text { sum of all terms }}$
ie. in the right example, accuracy = $32 / 38=84 \%$

Training set vs．validation／test set

粦 We expect a classifier to perform worse on run－time data
粦 Sometimes it will perform much worse：an overfitting in training
粦 An extreme case is：the classifier correctly labeled 100% when the input is in the training set，but otherwise makes a random guess
To protect against overfitting，we separate training set from validation／test set
类 Training set for training the classifier
粦 Validation／test set is for evaluating the performance
粦 It＇s common to reserve at least 10% of the data for testing

Cross－validation

粦 If we don＇t want to＂waste＂labeled data on validation，we can use cross－validation to see if our training method is sound．

$$
(n-1) \rightarrow \text { trainiz } 1 \text { dents pts. }
$$

粦 Split the labeled data into training and validation sets in ${ }^{\circ}$ multiple ways

粦 For each split（called a fold）
粦 Train a classifier on the training set
粦 Evaluate its accuracy on the validation set

粦 Average the accuracy to evaluate the training methodology

How many trained models I can have for the leave one out cross-validation?

If I have a data set that has 50 labeled data entries, how many leave-one-out validations I can have?
A 50
B. 49

$$
\binom{5^{\circ}}{1} \rightarrow \text { testing. }
$$

C. $50 * 49$

How many trained models I can have for the leave one out cross-validation?

If I have a data set that has 50 labeled data entries, how many leave-one-out validations I can have?
A. 50
B. 49
C. $50 * 49$

How many trained models can I have with this cross-validation?

If I have a data set that has 51 labeled data entries, I divide them into three folds $(17,17,17)$. How many trained models can I have?

$$
\frac{N}{k} \quad k=3
$$

$$
\frac{N}{K}=17
$$

*The common practice of using fold is to divide the samples into equal sized k groups and reserve one of the group as the test data set.

How many trained models can I have with this cross-validation?

If I have a data set that has 51 labeled data entries, I divide them into three folds $(17,17,17)$. How many trained models can I have?

$$
\binom{51}{17}
$$

Decision tree: object classification

The object classification decision tree can classify objects into multiple classes using sequence of simple tests. It will naturally grow into a tree.

Iris examp'e: which rype is ehis

Irises

NO COPYRIGHT - UNITED STATES
© $Q \quad C \quad \begin{gathered}\boldsymbol{K} \pi\end{gathered}$ ゅ DOWNLOAD
This image is available for download, without charge, under the Getty's Open Content Program.

Training a decision tree: example

The "Iris" data set
Iris

Q: What is accuracy of this decision tree given the confusion matrix ?
$\left[\begin{array}{ccc}50 & 0 & 0 \\ 0 & 49 & 5 \\ 0 & 1 & 45\end{array}\right]$

> A. $6 / 150$ B. $144 / 150$ C. $145 / 150$

Q: What is accuracy of this decision tree given the confusion matrix ?

$$
\left[\begin{array}{ccc}
50 & 0 & 0 \\
0 & 49 & 5 \\
0 & 1 & 45
\end{array}\right]
$$

A. $6 / 150$
B. $144 / 150$
C. $145 / 150$

Decision Boundary

Iris

Another Decision Boundary

(a)
unpruned decision tree

(b)

Credit: Kelvin Murphy, "Machine Learning: A Probabilistic Perspective", 2012

Training a decision tree

Choose a dimension/feature and a split

Training a decision tree

Choose a dimension/feature and a split
Split the training Data into left- and rightchild subsets D_{1} and D_{r}

Training a decision tree

Choose a dimension/feature and a split
Split the training Data into left- and rightchild subsets D_{1} and D_{r}

Repeat the two steps above recursively on each child

Training a decision tree

Choose a dimension/feature and a split
Split the training Data into left- and rightchild subsets D_{1} and D_{r}

Repeat the two steps above recursively on each child

Stop the recursion based on some conditions

Training a decision tree

Choose a dimension/feature and a split
Split the training Data into left- and rightchild subsets D_{1} and D_{r}

Repeat the two steps above recursively on each child

粦 Stop the recursion based on some conditions
粦 Label the leaves with class labels

Classifying with a decision tree: example

The "Iris" data set
Iris

Petal.Length<2.45

Choosing a split

An informative split makes the subsets more concentrated and reduces uncertaintuabout class labels

Choosing a split

An informative split makes the subsets more concentrated and reduces uncertainty about class labels

Choosing a split

An informative split makes the subsets more concentrated and reduces uncertainty about class labels

Which is more informative?

Quantifying uncertainty using entropy

粦 We can measure uncertainty as the number of bits of information needed to distinguish between classes in a dataset（first introduced by Claude Shannon）
粦 We need $\log _{2} 2=1$ bit to distinguish 2 equal classes
粦 We need $\log _{2} 4=2$ bit to distinguish 4 equal classes

$\log _{2} N$

Quantifying uncertainty using entropy

* Entropy (Shannon entropy) is the measure of uncertainty for a general distribution
粦 If class \boldsymbol{i} contains a fraction $\boldsymbol{P}(\boldsymbol{\tau})$ of the data, we need $\log _{2} \frac{1}{P(i)}$ bits for that class \qquad

Entropy: before the split

Entropy: examples

$H(D)=-\frac{3}{5} \log _{2} \frac{3}{5}-\frac{2}{5} \log _{2} \frac{2}{5}$
$=0.971$ bits

$\underline{H\left(D_{l}\right)}=-1 \log _{2} 1=0$ bits

Entropy: examples

$D_{l} \quad D_{r}$

$$
\begin{aligned}
H(D) & =-\frac{3}{5} \log _{2} \frac{3}{5}-\frac{2}{5} \log _{2} \frac{2}{5} \\
& =0.971 \text { bits }
\end{aligned}
$$

$H\left(D_{l}\right)=-1 \log _{2} 1=0$ bits
$\overline{{H\left(D_{r}\right)}}=-\frac{1}{3} \log _{2} \frac{1}{3}-\overline{\frac{2}{3} \log _{2} \frac{2}{3}}$
$=0.918$ bits

Information gain of a split

The information gain of a split is the amount of entropy that was reduced on average after the split

$$
I=H(D)-\left(\frac{N_{D}}{N_{D}} H\left(D_{l}\right)+\frac{N_{D v}}{N_{D}} H\left(D_{r}\right)\right)
$$

粦 where
粦 N_{D} is the number of items in the dataset D
粦 $N_{D l}$ is the number of items in the left－child dataset D_{1}
粦 $N_{D r}$ is the number of items in the left－child dataset D_{r}

Information gain: examples

$I=H(D)-\left(\frac{N_{D l}}{N_{D}} H\left(D_{l}\right)+\frac{N_{D r}}{N_{D}} H\left(D_{r}\right)\right)$
$=0.971-\left(\frac{24}{60} \times 0+\frac{36}{60} \times 0.918\right)$
$=0.420$ bits
uncertainty is $r<$ duce d!

Q. Is the splitting method global optimum?

A. Yes B. No

Deceis.en for
che lowest entropy
is made wt each node
locally for the data at

Q. Is the splitting method global optimum?

A. Yes
 B. No

Not necessarily global

Assignments

Read Chapter 11 of the textbook

Next time: Decision tree, Random forest classifier

Prepare for midterm2 exam

粦 Lec 11-Lec 18, Chapter 6-10

Additional References

粦 Robert V. Hogg, Elliot A. Tanis and Dale L. Zimmerman. "Probability and Statistical Inference"

Morris H. Degroot and Mark J. Schervish "Probability and Statistics"

See you next time

See You!

