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“...many problems are naturally
classification problems”---Prof.
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Review of Covariance matrix
Dimension Reduction
Principal Component Analysis

Examples of PCA



Demo of Principal Component Analysis

Introduction to classification T
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Q. Which are true?

A . PCA allows us to project data to the
direction along which the data has the
biggest variance

B. PCA allows us to compress data

C. PCA uses linear transformation to show
patterns of data

D. PCA allows us to visualize data in lower
dimensions L S AT UL d

LE_\ All of the above



Demo of the PCA by solving
diagonalization of covariance matrix




Diagonalization example
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Q. Which of these is NOT true?

A. The eigenvectors of covariance can
have opposite signs and it won’t affect
the reconstruction

B. The PCA analysis in some statistical
program returns standard deviation
instead of variance

@ It doesn’t matter how you store the
data in matrix



Demo: PCA of Immune Cell Data

There are 38816 white
blood immune cells from
a mouse sample T cells

Each immune cell has
40+ features/

COmpOnentS | ‘ =,»_  \:\
B CE”S !»f'?w 5 4 w\g

Four features are used
as illustration.

There are at least 3 cell
types involved Natural killer cells




Scatter matrix of Immune Cells

There are 38816 White 2 4 6 8 10 2 4 6 8 10 2 4 6 8 10 2 4 6 8 10

blood immune cells from .
a mouse sample .| cCD45
Each immune cell has s
40+ features/ CD19 .
components .
Four features are used . A
as illustration.
Dark red: T cells i

There are at least 3 cell SC 1t

' Brown: B cells CD3e [°
types involved Blue: NK cells )

: other small population  —+————



PCA of Immune Cells
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Eigenvectors
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More features used

There are 38816 white N = 38,8/6
blood immune cells from
a mouse sample T cells

Each immune cell has 42 A=z
features/components

There are at least 3 cell B cells
types involved

WNMA (sbels

Natural killer cells




Eigenvalues of the covariance matrix
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Large variance doesn’t mean important

Dattern

Principal
component 1
is just cell
length




Principal component 2 and 3 show

8 00 Quartz 2 [*]

PCA Immune cells with 40+ features
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Principal component 4 is not very

Quartz 2 [*]

PC 4

PCA Immune cells with 40+ features




Principal component 5 is interesting
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PC5

PCA Immune cells with 40+ features




Principal component 6 is interesting

e OO0 Quartz 2 [*]

PCA Immune cells with 40+ features
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Scaling the data or not in PCA

Sometimes we need to scale the data for each feature
have very different value range.

After scaling the eigenvalues may change significantly.

Data needs to be investigated case by case



Eigenvalues of the covariance matrix

(scaled data)

8 O O Quartz 2 [*]

Eigenvalues (scaled data)

Eigenvalues
do not drop
off very < 1
quickly
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Principal component 1 & 2 (scaled data)

8 00 Quartz 2 [*]

PCA Immune cells with 40+ features (scaled data)

15

Even the first 2
PCs don’t separate
the different types
of cell very well
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PC 2







Q. Which of these are true?

\AyFeature selection should be
conducted with domain knowledge
\B/fmportant feature may not show big
variance

}S{Scaling doesn’t change eigenvalues of
/cgvariance matrix

[D]A&B




Q. Which of these are true?

A. Feature selection should be
conducted with domain knowledge

B. Important feature may not show big
variance

C. Scaling doesn’t change eigenvalues of

covariance matrix
D.A&B




Learning to classify

Given a set of feature vectors x,, where each has a class
label y,, we want to train a classifier that maps
unlabeled data with the same features to its label.
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Binary classifiers

A binary classifier maps each feature vector to one of
two classes.

For example, you can train the classifier to:

% Predict a gain or loss of an investment

% Predict if a gene is beneficial to survival or not
*



Multiclass classifiers

A multiclass classifier maps each feature vector to one
of three or more classes.

For example, you can train the classifier to:

% Predict the cell type given cells’ measurement

% Predict if an image is showing tree, or flower or car, etc
*



Given our knowledge of probability and
statistics, can you think of any classifiers?
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Given our knowledge of probability and

statistics, can you think of any classifiers?

We will cover classifiers such as nearest
neighbor, decision tree, random forest, Naive
Bayesian and support vector machine.



Nearest neighbors classifier

¢ Given an unlabeled feature vector
% Calculate the distance from x
% Find the closest labeled x;
% Assign the same label to x

% Practical issues
¥ We need a distance metric .
% We should first standardize the data Source: wikipedia

% Classification may be less effective for very high
dimensions




Variants of nearest neighbors classifier

In k-nearest neighbors, the classifier: g A

% Looks at the k nearest labeled ,
feature vectors x; .

% Assigns a label to x based on a
majority vote

~ - -

In (k, £)-nearest neighbors, the classifier:
% Looks at the k nearest labeled feature vectors

% Assigns a label to x if at least £ of them agree on the
classification



How do we know if our classifier is good?

We want the classifier to avoid some mistakes on
unlabeled data that we will see in run time.

Problem 1: some mistakes may be more costly than
others

We can tabulate the types of error and define a loss
function

Problem 2: It’s hard to know the true labels of the
run-time data

We must separate the labeled data into a training set
and test/validation set



Performance of a binary classifier

A binary classifier can make two types of errors
% False positive (FP)

% False negative (FN) Predicted
SomEﬁmes One type Actual Negative Posﬁive
Of error | S more co Stly &) | Negative True Negative ‘[ False Positive
" Drug effect test | | Positive | False Negative ]‘ True Positive
% Crime detection
TP FP

We can tabulate the performance 15 2
in a class confusion matrix 25

— TN

-—



Performance of a binary classifier

A loss function assigns costs to mistakes

The 0-1 loss function treats

FPs and FNs the same

% Assigns loss 1 to every
mistake

% Assigns loss O to every
correct decision

Under the 0-1 loss function
* accuracy= TP+ TN

Actual

Predicted

Negative Positive

Negative

True Negative I[ False Positive

Positive

False Negative ]I True Positive

I'P+TN+FP+ FN

The baseline is 50% which we get by

random decision.




Performance of a multiclass classifier

ASSU m | ng there a re C C|aSSES . Confusion matrix, without normalization

The class confusion matrix is setosa
CXC

10

versicolor -

True label

Under the 0-1 loss function

accuracy= sum of diagonal terms

virginica 0 I
sum of all terms 2
@é & & B
ie. in the right example, accuracy = ’ ;ﬁcted el €
32/38=84% c - L

i . " Source: scikit-learn
The baseline accuracy is 1/c. -



Training set vs. validation/test set

We expect a classifier to perform worse on run-time data

% Sometimes it will perform much worse: an overfitting in
training
% An extreme case is: the classifier correctly labeled 100% when

the input is in the training set, but otherwise makes a random
guess

To protect against overfitting, we separate training set
from validation/test set

% Training set for training the classifier
% Validation/test set is for evaluating the performance

It’s common to reserve at least 10% of the data for testing



Cross-validation

If we don’t want to “waste” labeled data on validation, we
can use cross-validation to see if our training method is

sound. n ((aleled “"“":_
Qlﬂ /l) > ‘t'm"‘v‘ | d’v"‘: ’ T3,
Split the labeled data into training and validation sets inl
j - N et
multiple ways M*‘j- I
N
For each split (called a fold) N A\ T
% Train a classifier on the training set § - _{,M‘.M}
% Evaluate its accuracy on the validation set
(I - -
IS

Average the accuracy to evaluate the training
methodology



How many trained models | can have for the leave

one out cross-validation?

If | have a data set that has 50 labeled data entries, how
many leave-one-out validations | can have?

EAJ >0 ( ga) — tert)

l
B. 49

-—

C.50*49



How many trained models | can have for the leave

one out cross-validation?

If | have a data set that has 50 labeled data entries, how
many leave-one-out validations | can have?

(50 )

B. 49

C.50*49



How many trained models can | have with this

cross-validation?

If | have a data set that has 51 labeled data entries, |
divide them into three folds (17,17,17). How many

trained models can | have? Av 5
Tl< k=3 Y,
N =17
@ S ///// ( )

*The common practice of using fold is to divide the samples into equal sized k groups
and reserve one of the group as the test data set.



How many trained models can | have with this

cross-validation?

If | have a data set that has 51 labeled data entries, |
divide them into three folds (17,17,17). How many
trained models can | have?

f(51> )
L7
- J




Decision tree: object classification

The object classification decision tree can classify
objects into multiple classes using sequence of
simple tests. It will naturally grow into a tree.
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Training a decision tree: example

The “lIris” data set Iris
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Q: What is accuracy of this decision tree

given the confusion matrix ?

50 0 O

0O 49 5

0 1 45
A. 6/150
@144/150

C. 145/150



Q: What is accuracy of this decision tree

given the confusion matrix ?

A. 6/150
[ B. 144/150 ]
C. 145/150




Decision Boundary
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Sepal width

Another Decision Boundary
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Training a decision tree

Choose a dimension/feature and a split



Training a decision tree

Choose a dimension/feature and a split

Split the training Data into left- and right-
child subsets D, and D,



Training a decision tree

Choose a dimension/feature and a split

Split the training Data into left- and right-
child subsets D, and D,

Repeat the two steps above recursively on
each child



Training a decision tree

Choose a dimension/feature and a split

Split the training Data into left- and right-
child subsets D, and D,

Repeat the two steps above recursively on
each child

Stop the recursion based on some conditions



Training a decision tree

Choose a dimension/feature and a split

Split the training Data into left- and right-
child subsets D, and D,

Repeat the two steps above recursively on
each child

Stop the recursion based on some conditions

Label the leaves with class labels



Classifying with a decision tree: example

oy 2N
The “Iris” data set Iris
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Choosing a split

An informative split

makes the subsets
more concentrated
and reduces

wabout
class labels




Choosing a split

An informative split

makes the subsets
more concentrated
and reduces o ©
uncertainty about - ° e
class labels o © o




Choosing a split

An informative split

makes the subsets

more concentrated v 4

and reduces fo x
uncertainty about .o ,

class labels . — x




is more informative?
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Quantifying uncertainty using entropy

We can measure uncertainty as the
number of bits of information needed
to distinguish between classes in a
dataset (first introduced by Claude

Shannon) 3]
S

% We need Log, 2 @?to /
distinguish 2 equal classes

% We need Log, 4 =2bitto 2 <

distinguish 4 equal classes ‘7 /,
Y ;o

Claude Shannon (1916-2001)
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Quantifying uncertainty using entropy

Entropy (Shannon entropy) is the measure of

uncertainty for a general distribution ,

% If class i contains a fractionf P(i))of the data, we need log>

Bl
bits for that class (ZL
% The entropy H(D) of a dataset is defined as the weighted
mean of entropy for every class: 0
€ 1 (2,
H(D) =Y (Pi)os: P(i) “ pa
/l\ i=1 — e

——

C-—)ﬂ'% ¢ (m2sen



Entropy: before the split

3 3 2 2
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Entropy: examples
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Entropy: examples

3 3 2 2

— 0.971 bits ﬂD_r) = _§l092§ — §1092§

= 0.918 bits
S



Information gain of a split

The information gain of a split is the amount of
entropy that was reduced on average after the split

I =(H(D) (P_I_(_l_?_l_) +@H(Dr))

where

* Npisthe number of items in the dataset D

* N, is the number of items in the left-child dataset D,
* Np, is the number of items in the left-child dataset D,



Information gain: examples
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Q. Is the splitting method global

optimum?

A. Yes
B. No

Pec i3 om o
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Q. Is the splitting method global

optimum?

A. Yes No+ heandar globed
' B. No | ?




Read Chapter 11 of the textbook

Next time: Decision tree, Random
forest classifier

Prepare for midterm2 exam
% Lec 11-Lec 18, Chapter 6-10



Additional References

Robert V. Hogg, Elliot A. Tanis and Dale L.
Zimmerman. “Probability and Statistical
Inference”

Morris H. Degroot and Mark J. Schervish
"Probability and Statistics”



See you next time




