
ì	Probability	and	Statistics	
for	Computer	Science		

“…many	problems	are	naturally	
classifica4on	problems”---Prof.	
Forsyth	

Hongye	Liu,	Teaching	Assistant	Prof,	CS361,	UIUC,	11.5.2020	

Credit:	wikipedia	



Last	time	
✺ Demo	of	Principal	Component	
Analysis	

✺ Introduc4on	to	classifica4on	



Objectives	
✺ Decision	tree	(II)	

✺ Random	forest	

✺ Support	Vector	Machine	(I)	



Classifiers	
✺  Why	do	we	need	classifiers?	

✺  What	do	we	use	to	quan4fy	the	performance	of	a	classifier?	

✺  What	is	the	baseline	accuracy	of	a	5-class	classifier	using	0-1	
loss	func4on?	

✺  What’s	valida4on	and	cross-valida4on	in	classifica4on?	



Performance	of	a	multiclass	classifier	
✺  Assuming	there	are	c	classes:	

✺  The	class	confusion	matrix	is	
c	×	c	

✺  Under	the	0-1	loss	func4on	
accuracy=	

ie.	in	the	right	example,	accuracy	=	
32/38=84%	

✺  The	baseline	accuracy	is	1/c.	

sum of diagonal terms

sum of all terms

Source:	scikit-learn	



Cross-validation	
✺  If	we	don’t	want	to	“waste”	labeled	data	on	valida4on,		we	

can	use	cross-valida+on	to	see	if	our	training	method	is	
sound.	

✺  Split	the	labeled	data	into	training	and	valida4on	sets	in	
mul4ple	ways	

✺  For	each	split	(called	a	fold)	
✺  Train	a	classifier	on	the	training	set	
✺  Evaluate	its	accuracy	on	the	valida4on	set	

✺  Average	the	accuracy	to	evaluate	the	training	
methodology	



Q1.	Cross-validation	

Cross-valida+on	is	a	method	used	to	prevent	
overficng	in	classifica4on.	

A.  TRUE	

B.  FALSE	



Decision	tree:	object	classification	

✺  The	object	classifica4on	decision	tree	can	classify	
objects	into	mul4ple	classes	using	sequence	of	
simple	tests.	It	will	naturally	grow	into	a	tree.	

Cat	

toddler	

dog	

chair	leg	

sofa	 box	



Training	a	decision	tree:	example	

✺  The	“Iris”	data	set	

Setosa	 Versicolor	

Virginica	

Features:	Sepal.Length,	Sepal.Width,	Petal.Length,	
Petal.Width	Label:	Species	



Training	a	decision	tree	

✺  Choose	a	dimension/feature	and	a	split	

✺  Split	the	training	Data	into	lef-	and	right-	
child	subsets	Dl	and	Dr	

✺  Repeat	the	two	steps	above	recursively	on	
each	child	

✺  Stop	the	recursion	based	on	some	condi4ons	

✺  Label	the	leaves	with	class	labels	



Classifying	with	a	decision	tree:	example	

✺  The	“Iris”	data	set	

Setosa	 Versicolor	

Virginica	



Choosing	a	split	
✺  An	informa4ve	split	

makes	the	subsets	
more	concentrated	
and	reduces	
uncertainty	about	
class	labels	

			
	
	
	
	
	
	
	
	
	
	
	
	



Choosing	a	split	
✺  An	informa4ve	split	

makes	the	subsets	
more	concentrated	
and	reduces	
uncertainty	about	
class	labels	

			
	
	
	
	
	
	
	
	
	
	
	
	



Choosing	a	split	
✺  An	informa4ve	split	

makes	the	subsets	
more	concentrated	
and	reduces	
uncertainty	about	
class	labels	

			
	
	
	
	
	
	
	
	
	
	
	
	

✔	

✖	



Which	is	more	informative?	



Quantifying	uncertainty	using	entropy	

✺  We	can	measure	uncertainty	as	the	
number	of	bits	of	informa4on	needed	
to	dis4nguish	between	classes	in	a	
dataset	(first	introduced	by	Claude	
Shannon)	
✺  We	need	Log2	2	=1	bit	to	

dis4nguish	2	equal	classes	
✺  We	need	Log2	4	=2	bit	to	

dis4nguish	4	equal	classes	

Claude	Shannon	(1916-2001)	



Quantifying	uncertainty	using	entropy	

✺  Entropy	(Shannon	entropy)	is	the	measure	of	
uncertainty	for	a	general	distribu4on	
✺  If	class	i	contains	a	frac4on	P(i)	of	the	data,	we	need																		

bits	for	that	class	
✺  The	entropy	H(D)	of	a	dataset	is	defined	as	the	weighted	

mean	of	entropy	for	every	class:	

H(D) =
c∑

i=1

P (i)log2
1

P (i)

log2
1

P (i)



Entropy:	before	the	split	

	
	
	
	
	
	
	
	
	

= 0.971 bits

H(D) = −

3

5
log2

3

5
−

2

5
log2

2

5



Entropy:	examples	

	
	
	
	
	
	
	
	
	

= 0.971 bits

H(D) = −

3

5
log2

3

5
−

2

5
log2

2

5
H(Dl) = −1 log21 = 0 bits



Entropy:	examples	

	
	
	
	
	
	
	
	
	

= 0.971 bits

H(D) = −

3

5
log2

3

5
−

2

5
log2

2

5
H(Dl) = −1 log21 = 0 bits

H(Dr) = −

1

3
log2

1

3
−

2

3
log2

2

3
= 0.918 bits



Information	gain	of	a	split		

✺  The	informa4on	gain	of	a	split	is	the	amount	of	
entropy	that	was	reduced	on	average	afer	the	split	

	

✺  where	
✺  ND	is	the	number	of	items	in	the	dataset	D	
✺  NDl	is	the	number	of	items	in	the	lef-child	dataset	Dl	
✺  NDr	is	the	number	of	items	in	the	lef-child	dataset	Dr	

I = H(D)− (
NDl

ND

H(Dl) +
NDr

ND

H(Dr))



Information	gain:	examples	

	
	
	
	
	
	
	
	
	

I = H(D)− (
NDl

ND

H(Dl) +
NDr

ND

H(Dr))

= 0.971− (
24

60
× 0 +

36

60
× 0.918)

= 0.420 bits



Q.	Is	the	splitting	method		global	
optimum?	

A. 		Yes	
B. 		No	



How	to	choose	a	dimension	and	split	

✺  If	there	are	d	dimensions,	choose	approximately						
of	them	as	candidates	at	random	

✺  For	each	candidate,	find	the	split	that	maximizes	the	
informa4on	gain	

✺  Choose	the	best	overall	dimension	and	split	

✺  Note	that	splicng	can	be	generalized	to	categorical	
features	for	which	there	is	no	natural	ordering	of	the	
data	

√

d



When	to	stop	growing	the	decision	tree?	

✺  Growing	the	tree	too	deep	can	lead	to	
overficng	to	the	training	data	

✺  Stop	recursion	on	a	data	subset	if	any	of	the	
following	occurs:	
✺  All	items	in	the	data	subset	are	in	the	same	class	
✺  The	data	subset	becomes	smaller	than	a	predetermined	

size	
✺  A	predetermined	maximum	tree	depth	has	been	reached.	



How	to	label	the	leaves	of	a	decision	tree	

✺  A	leaf	will	usually	have	a	data	subset	containing	
many	class	labels		

✺  Choose	the	class	that	has	the	most	items	in	the	
subset	

✺  Alterna4vely,	label	the	leaf	with	the	number	it	
contains	in	each	class	for	a	probabilis4c	“sof”	
classifica4on.	



Pros	and	Cons	of	a	decision	tree	

✺  Pros:	
✺  Easy	to	interpret.	
✺  Handles	both	discrete	and	con4nuous	inputs	
✺  Insensi4ve	to	scaling	
✺  Fast	running	4me	

✺  Cons:	
✺  Accuracy	is	not	great,	due	to	the	greedy	algorithm	
✺  Tends	to	be	unstable	(high	variance)	



From	decision	trees	to	random	forest	

✺  Decision	trees	have	some	drawbacks	
✺  May	not	perform	well	on	training	data	because	its	

simplis4c	random	training	
✺  May	not	perform	well	on	test	data	because	of	

overficng	

✺  A	random	forest	is	a	randomly	generated	ensemble	
of	decision	trees	that	avoids	both	of	the	above	
problems	by	merging	the	classifica4ons	of	the	
individual	trees.	



Training,	evaluation	and	classification	

✺  Build	the	random	forest	by	training	each	decision	tree	on	a	
random	subset	with	replacement	from	the	training	data	and	
subset	of	features	are	also	randomly	selected---	“Bagging”	

✺  Evaluate	the	random	forest	by	tes4ng	on	its	out-of-bag	
items	

✺  Classify	by	merging	the	classifica4ons	of	individual	decision	
trees	
✺  By	simple	vote	
✺  Or	by	adding	sof	classifica4ons	together	and	then	take	a	

vote	



An	example	of	bagging	

Drawing	random	samples	
from	our	training	set	with	
replacement.	E.g.,	if	our	
training	set	consists	of	7	
training	samples,	our	
bootstrap	samples	(here:	
n=7)	can	look	as	follows,	
where	C1,	C2,	…	Cm	shall	
symbolize	the	decision	
tree	classifiers.	

Sample	
indices	

Bagging	
Round	1	

Bagging	
Round	2	

…	 Bagging	
Round	M	

1	 2	 7	

2	 2	 3	

3	 1	 2	

4	 3	 1	

5	 4	 1	

6	 7	 7	

7	 2	 1	

C1	 C2	



Pros	and	Cons	of	Random	forest	

✺  Pros:	
✺  Mul4ple	trees	are	de-correlated,	so	ensemble	

predic4on	is	more	accurate	
✺  Less	prone	to	overficng	
✺  Fast	running	4me	

✺  Cons:	
✺  	Difficult	to	interpret	



Q2.	Do	you	think	random	forest	will	
always	outperform	simple	decision	tree?		

A. 		Yes	
B. 		No	



Considerations	in	choosing	a	classifier	

✺  When	solving	a	classifica4on	problem,	it	is	good	to	
try	several	techniques.	

✺  Criteria	to	consider	in	choosing	the	classifier	include	
✺  Accuracy	
✺  Training	speed	
✺  Classifica4on	speed	
✺  Performance	with	small	training	set	
✺  Interpretability		



Support	Vector	Machine	(SVM)	overview	

✺  The	Decision	boundary	and	func4on	of	a	
Support	Vector	Machine	

✺  Loss	func4on	(cost	func4on	in	the	book)	

✺  Training	

✺  Valida4on	

✺  Extension	to	mul4class	classifica4on	



SVM	problem	formulation	

✺  At	first	we	assume	a	binary	classifica4on	problem	

✺  The	training	set	consists	of	N	items	
✺  Feature	vectors	xi	of	dimension	d	
✺  Corresponding	class	labels		yi ∈ {±1}

✺  We	can	picture	the	training	
data	as	a	d-dimensional	
scaoer	plot	with	colored	
labels	

x
(1)

x
(2)



Decision	boundary	of	SVM	

✺  SVM	uses	a	hyperplane	as	its	
decision	boundary	

✺  The	decision	boundary	is:	

✺  In	vector	nota4on,	the	
hyperplane	can	be	wrioen	as:	

a1x
(1)

+ a2x
(2)

+ ...+ adx
(d)

+ b = 0

a
T
x+ b = 0

a
T
x+ b = 0

x
(1)

x
(2)



Q3.	How	many	solutions	can	we	have	for	
the	decision	boundary?	

a
T
x+ b = 0

x
(1)

x
(2)

A. 	One	
B. 	Several	
C. 	Infinite	



Classification	function	of	SVM	

✺  SVM	assigns	a	class	label	to	a	
feature	vector	according	to	the	
following	rule:	

✺  In	other	words,	the	classifica4on	
func4on	is:	

a
T
x+ b = 0

x
(1)

x
(2)

✺  Note	that		
✺  If																						is	small,	then									was	close	to	the	decision	

boundary	
✺  If																						is	large,	then									was	far	from	the	decision	

boundary		

+1	if		
-1		if	

sign(aT
xi + b)

a
T
xi + b ≥ 0

a
T
xi + b < 0

∣

∣a
T
xi + b

∣

∣

∣

∣a
T
xi + b

∣

∣

xi

xi



What	if	there	is	no	clean	cut	boundary?	

✺  Some	boundaries	are	beoer	
than	others	for	the	training	data	

✺  Some	boundaries	are	likely	more	
robust	for	run-4me	data	

✺  We	need	to	a	quan4ta4ve	
measure	to	decide	about	the	
boundary	

✺  The	loss	func+on	can	help	
decide	if	one	boundary	is	beoer	
than	others	

a
T
x+ b = 0

x
(1)

x
(2)



Loss	function	1	

✺  For	any	given	feature	vector							with	class	label																		,	
we	want		
✺  Zero	loss	if								is	classified	correctly	
✺  Posi4ve	loss	if							is	misclassified	
✺  If						is	misclassified,	more	loss	is	assigned	if	it’s	further	away	

from	the	boundary	

✺  This	loss	func4on	1	meets	the	criteria	above:	

✺  Training	error	cost	

max(0,−yi(a
T
xi + b))

S(a, b) =
1

N

N∑

i=1

max(0,−yi(a
T
xi + b))

xi

xi

xi

xi

yi ∈ {±1}

Loss	

yi(a
T
xi + b)

sign(aT
xi + b) = yi

sign(aT
xi + b) ̸= yi



Q4.	What’s	the	value	of	this	function		?	

A.		0.		
B.		others.	

max(0,−yi(a
T
xi + b)) if		 sign(aT

xi + b) = yi



Q5.	What’s	the	value	of	this	function		?	

A.		0.		
B.		A	value	greater		
than	or	equal	to	0.	

max(0,−yi(a
T
xi + b)) if		 sign(aT

xi + b) ̸= yi



The	problem	with	loss	function	1	

✺  Loss	func4on1	does	not	dis4nguish	between	the	following	
decision	boundaries	if	they	both	classify						correctly.	
✺  One	passes	the	two	classes	closely	
✺  One	that	passes	with	a	wider	margin	

Credit:	Kelvin	Murphy		

xi

✺  But	leaving	a	larger	margin	
gives	robustness	for	run-4me	
data-	the	large	margin	
principle	

✔	



Q6.	Wondering	what	does		
	“support	vector”	mean?	

A.		Yes.		
B.		No.	

Support	vectors	are	those	data	points	in	the	training	data	that	uniquely	
define	the	decision	boundary	



Q7.	SVM	classification	is	faster	than	
decision	tree	in	terms	of	time	complexity	

A.		TRUE.		
B.		FALSE.	



Loss	function	2:	the	hinge	loss	

✺  We	want	to	impose	a	small	posi4ve	loss	if								is	correctly	
classified	but	close	to	the	boundary	

✺  The	hinge	loss	func4on	meets	the	criteria	above:	

✺  Training	error	cost	

xi

Loss	

yi(a
T
xi + b)

S(a, b) =
1

N

N∑

i=1

max(0, 1− yi(a
T
xi + b))

max(0, 1− yi(a
T
xi + b))

1	



Loss	function	2:	the	hinge	loss	

✺  We	want	to	impose	a	small	posi4ve	loss	if								is	correctly	
classified	but	close	to	the	boundary	

✺  The	hinge	loss	func4on	meets	the	criteria	above:	

✺  Training	error	cost	

xi

Loss	

yi(a
T
xi + b)

S(a, b) =
1

N

N∑

i=1

max(0, 1− yi(a
T
xi + b))

max(0, 1− yi(a
T
xi + b))

1	



The	problem	with	loss	function	2	

✺  Loss	func4on	2	favors	decision	boundaries	that	have	large								
because	increasing										can	zero	out	the	loss	for	a	correctly	
classified							near	the	boundary.	

	

✺  But	large										makes	the	classifica4on	func4on														
extremely	sensi4ve	to	small	changes	in							and	make	it	less	
robust	to	run-4me	data.	

✺  So	small										is	beoer.	

xi

xi

∥a∥
∥a∥

∥a∥

∥a∥

sign(aT
xi + b)



Assignments	

✺ Read	Chapter	11	of	the	textbook	

✺ Next	4me:	SVM-regulariza4on,	
Stochas4c	descent	
	



Additional	References	

✺  Robert	V.	Hogg,	Elliot	A.	Tanis	and	Dale	L.	
Zimmerman.	“Probability	and	Sta4s4cal	
Inference”		

✺ Morris	H.	Degroot	and	Mark	J.	Schervish	
"Probability	and	Sta4s4cs”	

✺  Kelvin	Murphy,	“Machine	learning,	A	
Probabilis4c	perspec4ve”	



See	you	next	time	

See 
You! 


