Probability and Statistics 2

for Computer Science

“...many problems are naturally
classification problems”---Prof.
Forsyth
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Decision tree (ll)
Random forest

Support Vector Machine (1) (svm)
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Motivation for Studying Support Vector

Machine

When solving a classification problem, it is good to
try several techniques.

Criteria to consider in choosing the classifier include

* Accuracy v

% Training speed

% Classification speed

% Performance with small training set
% Interpretability v



SVM problem formulation

At first we assume a binary classification problem

The training set consists of N items
% Feature vectors x, of dimension d
% Corresponding class labels y; € {+1}

. o 21
We can picture the training .
data as a d-dimensional ®o
scatter plot with colored © o © o
labels o o o ©
o
()




Decision boundary of SVM

SVM uses a hyperplane as its

decision boundary MEN
o . ° a'x+b=0

The decision boundary is: 0o o
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Classification function of SVM

SVM assigns a class label to a CIIN
feature vector according to the o alx +b=
. /

following rule: @0 !

#1if @’z +b>0 oo ©. e
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In other words, the classification e ® ey
function is: sign(aTmi +b)
Note that
* If |a’x; + b| is small, then &; was close to the decision
boundary

¥ If a,Ta:Z- + bl is large, then &; was far from the decision
boundary



What if there is no clean cut boundary?

Some boundaries are better
than others for the training data

Some boundaries are likely more
robust for run-time data

We need to a quantitative
measure to decide about the
boundary

The loss function can help
decide if one boundary is better
than others




L oss function 1

For any given feature vector &; with class label y; € {£1},
we want

. - T
% Zerolossif &; is classified correctly SZ{]TL(CL T; 1 b) = Yi
%  Positive loss if ; is misclassified sign(a’x; + b) # v;

% IfL;is misclassified, more loss is assigned if it’s further away
from the boundary

This loss function 1 meets the criteria above:
maz (0, —y;(a’ x; + b)) 4 Loss

—

Training error cost

N
1
S(a,b) = = > max(0, —yi(a’x; + b)) vi(aTx; +b)
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Q. What's the value of this function ?

maz (0, —y;(a’x; + b)) if sign(a’x; +b) =y,
¥
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Q. What's the value of this function ?

max (0, —y;(a’x; + b)) if sign(a’x; +b) £y
,‘uca-r"(/""")
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A. O.
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B. A value greater
than or equal to 0. |




L oss function 1

For any given feature vector &; with class label y; € {£1},
we want

% Zerolossif &; is classified correctly Sign(aTCUi =+ b) = Yi
%  Positive loss if ; is misclassified sign(a’x; + b) # v;

% IfL;is misclassified, more loss is assigned if it’s further away
from the boundary

This loss function 1 meets the criteria above:

maz (0, —y;(a’ x; + b)) 4 Loss
Training error cost \
N
S(a,b) = ! g b T
(a,b) = = > maz(0, ~y,(a"z; + b)) yi(aTm, +b)

=1



The problem with loss function 1

Loss function1 does not distinguish between the following
decision boundaries if they both classify &; correctly.

% One passes the two classes closely

% One that passes with a wider margin

But leaving a larger margin
gives robustness for run-time
data- the large margin_
principle

Figure 14.11 llustration of the large margin principle. Left: a separating hyper-plane with large margin.
Right: a separating hyper-plane with small margin.

Credit: Kelvin Murphy



Loss function 2: the hinge loss

We want to impose a small positive loss if &; is correctly
classified but close to the boundary

The hinge loss function meets the criteria above:

maz(0,1 — y;(a’ x; + b))

Training error cost

N
1 Loss
S(a,7 b) — N E ma:z:((), 1 — yz‘(CLTCBi —+ b))

1=1
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The problem with loss function 2

Loss function 2 favors decision boundaries that have large ||a||
because increasing ||a|| can zero out the loss for a correctly
classified @; near the boundary.

But large ||@]| makes the classification function sign(a’x; + b)
extremely sensitive to small changes in &; and make it less
robust to run-time data.

So small ||a]| is better.



Hinge loss with regularization penalty

We add a penalty on the square magnitude ||a|’ = a”a
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The regularization parameter )\ trade off between these two
objectives



Q. What does the penalty discourage?

e

S(a,b) = {% Z max(0,1 — y;(a’ z; + b))

1=1

@Too big a magnitude of the
vector a
B. Too many data points in the
training set )




How to compute the decision boundary?
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Convex set and convex function

If a set is convex,

any line connecting <:> @

two points in the

set is completely " o

included in the set  rgure 7.4 @ tustration of a conves set. ®) Mustration of a nonconvex set

A convex function:
the area above the
curve is convex

FOa+ (1= Ny) <A@+ (1 - Nf@) X v .
(a) (b)

Credit: Dr. Kelvin Murphy



Q. Is this curve a convex curve?




Q. Is this curve a convex curve?




Q. Is this surface convex?

Source: wikipedia



Iterative minimization by gradient

descent

. 2
For a function such as +{a) = Q

—
A convex surface f( a)
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Gradient Descent
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Stochastic gradient descent
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The difference btw GD and SGD
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Update parameters of the hyperplane

during the stochastic gradient descent

Ta

Since Sy, (a, b) = max (0,1 — y,(a’ =1, + b)) and Sy(a,b) = )\(GT)
We have the following updating equations:
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Training procedure-minimizing the cost

function

The training error cost S(a,b) is a function of decision
boundary parameters (a7 b), so it can help us find the best
decision boundary.

Fix A and set some initial values for (@, b)
Search iteratively for (@, b)

Repeat the previous steps for several values of \ and choose
the one that gives the decision boundary with best accuracy on
a validation data set.



Validation/testing of SVM model

Split the labeled data into training, validation and test sets.

For each choice of A, run stochastic gradient descent to find
the best decision boundary parameters (a, b) using the
training set.

Choose the best A based on accuracy on the validation set.

Finally evaluate the SVM’s accuracy on the test set.

This process avoids overfitting the data.



Extension to multiclass classification

All vs. all
% Train a separate binary classifier for each pair of classes.

% To classify, run all classifiers and see which class it will be
labeled most with.

% Computational complexity is quadratic to the number of
classes.

One vs. all
% Train a separate binary classifier for each class against all else.

% To classify, run all classifiers and see which label gets the highest
score

% Computational complexity scales linearly.



What if the data is inseparable linearly?

There is a chance the data is inseparable
Use the non-linear SVM with kernels!

Decision boundary is curved

Training data Test data
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Naive Bayes classifier

Training Pco | D)
% Use the training data {(x;,v;)} to estimate a
probability model P(y|x) R z> D

% Assume that the features of {x} are conditionally
independent given the cIass label y penneg [ o)
= Pealc) pLBlc)

P(xly) = HP (a]y) wepa Uage @t

‘ \ \

Classification )l

% Assign the label argma:c P(y|x) to a feature | .1

vector x




Naive Bayes Model

MAP estimator of class variable y given the data x

argmazx P(y|x)
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Naive Bayes Model

MAP estimator of class variable y given the data x

argmazx P(y|x)
y

e DY) P(Y)
- P(z)




Naive Bayes Model

MAP estimator of class variable y given the data x
argmazx P(y|x)
Yy
P P
_ argmaz (x]y)P(y)
y P(x)

= argmax P(x|y)P(y)
y

Because P(x) doesn’t depend ony



Naive Bayes Model

MAP estimator of class variable y given the data x

argmaz P(y|a) pangic)
! - PlAalc) pBlc
— argmazx P(x|y)P(y) = b " ()P | /
v Pl@) P
= argma P($|y) (y) independence of
Y features

= argmax HP (J)‘y )| P(y)

Y _31




Naive Bayes Model

MAP estimator of class variable y given the data x

argmazx P(y|x)
y

— argmax
y

P(x|y)P(y)

P(x)

— argmax P(fB|y) (v)

Yy

= argmax
y

= argmax
y

Hp (J)‘y

_31

P(y)

S:logP(w(j)\y) +1log P(y)

p—

L J=1

“Naive” assumption
of conditional
independence of
features




Modeling the prior and the likelihoods

Model the prior based on the frequency of y in the
training set

% For a binary classifier, this model is a Bernoulli
random variable

Model each likelihood P(x?)|y) by:

% Selecting an appropriate family of distributions
Normal for real-valued numerical data
Poisson for counts in fixed intervals
Etc.

% Fitting the parameters of the distribution using MLE



An example of Naive Bayes training

Training data Modeling P(z'"|y) Modeling P(z®y)
as hormal as Poisson
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Classification example:

For a new feature vector x = [x1,x2,...], ie x=[3,9] in
the example -

d
argmaz | Y logP(zP]y) + log P(y)

Y

L =1



Classification example:

For a new feature vector x = [x1,x2,...], ie x=[3,9] in
the example -

d
argmaz | Y logP(zP]y) + log P(y)

Y

| j=1 _
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Example of Naive Bayesian Model

“Bag of words” Naive Bayesian models for .
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each column is a word



What about the decision boundary?

Not explicit as in the case of decision tree

This method is parametric, generative

% The model was specified with parameters to
generate label for test data



Pros and Cons of Naive Bayesian Classifier

Pros:

% Simple approach /
* Good accuracy v

% Good for high dimensional data
/-\/_\ T —
Cons:

% The assumption of conditional independence of
features

% No explicit decision boundary
¥ Sometimes has numerical issues



Finish Chapter 11 of the textbook

Next time: Linear regression



Additional References

Robert V. Hogg, Elliot A. Tanis and Dale L.
Zimmerman. “Probability and Statistical
Inference”

Kelvin Murphy, “Machine learning, A
Probabilistic perspective”



See you next time




