Probability and Statistics for Computer Science

"...many problems are naturally classification problems"---Prof. Forsyth

Credit: wikipedia

Hongye Liu, Teaching Assistant Prof, CS361, UIUC, 11.12.2020

Last time

Random forest

Objectives

* Recap of SVM, Kinge Loss It Hinge Loss + Regularization & Convex function, Gradient Descent Stochastic Gradient Descent * Traing & Validation

Motivation for Studying Support Vector Machine

- When solving a classification problem, it is good to try several techniques.
- * Criteria to consider in choosing the classifier include

- # Accuracy
- # Training speed
- # Performance with small training set
- # Interpretability

SVM problem formulation

- * At first we assume a binary classification problem
- * The training set consists of N items
 - ✤ Feature vectors x_i of dimension d
 - **★** Corresponding class labels $y_i \in \{\pm 1\}$
- We can picture the training data as a d-dimensional scatter plot with colored labels

Decision boundary of SVM

- SVM uses a hyperplane as its decision boundary
- * The decision boundary is:

$$a_1 x^{(1)} + a_2 x^{(2)} + \dots + a_d x^{(d)} + b = 0$$

In vector notation, the hyperplane can be written as:

$$a^T x + b = 0$$

Classification function of SVM

SVM assigns a class label to a feature vector according to the following rule:

+1 if $a^T x_i + b \ge 0$ -1 if $a^T x_i + b < 0$

* In other words, the classification function is: $sign(\boldsymbol{a}^T\boldsymbol{x}_i + b)$

- Note that
 - * If $|m{a}^Tm{x}_i + b|$ is small, then $m{x}_i$ was close to the decision boundary
 - * If $|\boldsymbol{a}^T \boldsymbol{x}_i + b|$ is large, then \boldsymbol{x}_i was far from the decision boundary

What if there is no clean cut boundary?

- Some boundaries are better than others for the training data
- Some boundaries are likely more robust for run-time data
- We need to a quantitative measure to decide about the boundary
 - The loss function can help decide if one boundary is better than others

Loss function 1

- For any given feature vector $oldsymbol{x}_i$ with class label $y_i \in \{\pm 1\}$, we want
 - st Zero loss if $oldsymbol{x}_i$ is classified correctly $sign(oldsymbol{a}^Toldsymbol{x}_i+b)=y_i$
 - * Positive loss if \boldsymbol{x}_i is misclassified $sign(\boldsymbol{a}^T\boldsymbol{x}_i+b) \neq y_i$
 - * If $oldsymbol{x}_i$ is misclassified, more loss is assigned if it's further away from the boundary
- This loss function 1 meets the criteria above:

$$\max(0, -y_i(\boldsymbol{a}^T \boldsymbol{x}_i + b))$$
Training error cost
$$S(\boldsymbol{a}, b) = \frac{1}{N} \sum_{i=1}^{N} \max(0, -y_i(\boldsymbol{a}^T \boldsymbol{x}_i + b))$$

$$y_i(\boldsymbol{a}^T \boldsymbol{x}_i + b)$$

Q. What's the value of this function ?

$$max(0, -y_i(\boldsymbol{a}^T\boldsymbol{x}_i + b))$$
 if $sign(\boldsymbol{a}^T\boldsymbol{x}_i + b) = y_i$
Somethy labeled

Q. What's the value of this function ?

$$max(0, -y_i(\boldsymbol{a}^T\boldsymbol{x}_i + b)) \quad \text{if} \quad sign(\boldsymbol{a}^T\boldsymbol{x}_i + b) \neq y_i$$

A. 0.B. A value greaterthan or equal to 0.

Loss function 1

- For any given feature vector $oldsymbol{x}_i$ with class label $y_i \in \{\pm 1\}$, we want
 - * Zero loss if \boldsymbol{x}_i is classified correctly $sign(\boldsymbol{a}^T\boldsymbol{x}_i+b)=y_i$
 - * Positive loss if \boldsymbol{x}_i is misclassified $sign(\boldsymbol{a}^T\boldsymbol{x}_i+b) \neq y_i$
 - * If $oldsymbol{x}_i$ is misclassified, more loss is assigned if it's further away from the boundary
- * This loss function 1 meets the criteria above:

$$max(0, -y_i(\boldsymbol{a}^T\boldsymbol{x}_i + b))$$

Training error cost
$$S(\boldsymbol{a}, b) = \frac{1}{N} \sum_{i=1}^{N} max(0, -y_i(\boldsymbol{a}^T\boldsymbol{x}_i + b))$$

The problem with loss function 1

- Loss function1 does not distinguish between the following decision boundaries if they both classify $m{x}_i$ correctly.
 - * One passes the two classes closely
 - * One that passes with a wider margin

 But leaving a larger margin gives robustness for run-time data- the large margin principle

Figure 14.11 Illustration of the large margin principle. Left: a separating hyper-plane with large margin. Right: a separating hyper-plane with small margin.

Credit: Kelvin Murphy

Loss function 2: the hinge loss

We want to impose a small positive loss if $oldsymbol{x}_i$ is correctly classified but close to the boundary

* The **hinge loss** function meets the criteria above:

$$max(0, 1 - y_i(\boldsymbol{a}^T\boldsymbol{x}_i + b))$$

Training error cost

$$S(\boldsymbol{a}, b) = \frac{1}{N} \sum_{i=1}^{N} max(0, 1 - y_i(\boldsymbol{a}^T \boldsymbol{x}_i + b))$$
Is the hange (ors in - 1 (ors in the second sec

The problem with loss function 2

- Loss function 2 favors decision boundaries that have large $\|a\|$ because increasing $\|a\|$ can zero out the loss for a correctly classified x_i near the boundary.
- * But large ||a|| makes the classification function $sign(a^T x_i + b)$ extremely sensitive to small changes in x_i and make it less robust to run-time data.
- * So small $\|a\|$ is better.

Hinge loss with regularization penalty

- * The **regularization parameter** λ trade off between these two objectives

Q. What does the penalty discourage?

$$S(\boldsymbol{a}, b) = \left[\frac{1}{N}\sum_{i=1}^{N}max(0, 1 - y_i(\boldsymbol{a}^T\boldsymbol{x}_i + b))\right] + \lambda(\frac{\boldsymbol{a}^T\boldsymbol{a}}{2})$$

$$\uparrow$$

$$(A.) Too big a magnitude of the$$

vector **a** B. Too many data points in the training set

How to compute the decision boundary?

minimize Loss function S(ã, b)

(a, b) = argmin(S(a, b))

ad

Convex set and convex function

- If a set is convex, any line connecting two points in the set is completely included in the set
- A convex function: the area above the curve is convex

$$f(\lambda x + (1 - \lambda)y) < \lambda f(x) + (1 - \lambda)f(y)$$

Figure 7.4 (a) Illustration of a convex set. (b) Illustration of a nonconvex set.

Credit: Dr. Kelvin Murphy

Q. Is this curve a convex curve?

A.YES B.NO

Q. Is this curve a convex curve?

A.YES B.NO

Q. Is this surface convex?

Source: wikipedia

Iterative minimization by gradient descent

foxeox) = fox) + f'. ox

Gradient Descent

$$\vec{a} = \begin{bmatrix} a_1 & a_2 & \cdots & a_d \end{bmatrix}^T \quad [er's \text{ ormit } b \text{ for how} \\ \underline{low \text{ function}} & f = f(\vec{a}) \\ \vec{a} \neq f = \begin{pmatrix} \vec{a} \neq i \\ \vec{a} \neq i \\ \vdots \\ \vec{a} \neq i \end{pmatrix} \quad \vec{a} \neq f(\vec{a}) \quad (\text{function}) = f(\vec{a}) \\ \vec{a} \neq i = a_n + \eta p_n \quad \text{Targler} \quad \vec{a} \Rightarrow a_i = -\nabla f(\vec{a}) \\ f(\vec{a} \Rightarrow i) = f(\vec{a} + \eta \vec{p}) = f(\vec{a}) + \eta [\nabla f)^T \vec{p} + O(\eta^2) \quad \eta > 0 \\ \vec{a} \neq i = f(\vec{a}) + \eta (\vec{a}) + \eta (\nabla f)^T \vec{p} + O(\eta^2) \quad \eta > 0 \\ \vec{a} \neq i = f(\vec{a}) - \eta_n (\nabla f)^T \nabla f \quad (\text{topsise}) \\ = f(\vec{a}) - \eta_n ||\nabla f||^2 \quad \text{topsise} \\ = f(\vec{a}) - \eta_n ||\nabla f||^2$$

Stochastic gradient descent

$$if \quad f(\vec{a}) = \frac{1}{|k|} \stackrel{k}{\underset{j=1}{\sum}} \stackrel{k \to kt \ of \ duta}{\underset{in \ training \ set}{}}$$

$$S to chastic gradient \ descent$$

$$a_{prressimutes} \quad f(\vec{a}) \stackrel{s}{=} g(\vec{a}) = \frac{1}{b} \stackrel{k \to kt \ of \ duta}{\underset{i=1}{\sum}} \stackrel{k \to kt \ of \ duta}{\underset{i=1}{\sum} \stackrel{k \to kt \ of \ of$$

The difference btw GD and SGD

GD $f(\vec{a}) = \frac{1}{K} \sum_{j=1}^{K} Q(\vec{a}, j)$ $j = \frac{1}{K} \sum_{j=1}^{K} Q(\vec{a}, j)$ SGD Loss: $g(\vec{a}) = \pm \sum_{i=1}^{b} Q(\vec{a}, i) + penaloy$ $g(\vec{a}) = \pm (\vec{a}) + z$ noise Loss: anti = an - 7 vg(an) $\vec{a}_{n+1} = \vec{a}_n - \eta \nabla f(\vec{a}_n)$ $\lim_{n\to\infty} E\left[(a_n - a^*)^2\right] = 0$ $\lim_{n \to \infty} a_n = \underset{a}{\operatorname{argmin}} (f(a))$ given convex Loss and other if fis convex

Update parameters of the hyperplane during the stochastic gradient descent

* Since
$$S_k(\boldsymbol{a}, b) = max(0, 1 - y_k(\boldsymbol{a}^T\boldsymbol{x}_k + b))$$
 and $S_0(\boldsymbol{a}, b) = \lambda(\frac{\boldsymbol{a}^T\boldsymbol{a}}{2})$
We have the following updating equations:

If
$$y_k(a^T x_k + b) \ge 1$$

 $a \leftarrow a - \eta(\lambda a)$
 $b \leftarrow b$
 $s(a, b) = So(a)$
 $s(a, b) = Se(a, b) + So(a)$
 $y_i(a^T x_i + b)$
If $y_k(a^T x_k + b) < 1$
 $a \leftarrow a - \eta(\lambda a - y_k x_k)$
 $b \leftarrow b - \eta(-y_k)$
Loss
hinge lon
 $y_i(a^T x_i + b)$

Training procedure-minimizing the cost function

- * The training error cost S(a, b) is a function of decision boundary parameters (a, b), so it can help us find the best decision boundary.
- * Fix λ and set some initial values for $(oldsymbol{a},b)$
- * Search iteratively for $(oldsymbol{a},b)$
- * Repeat the previous steps for several values of λ and choose the one that gives the decision boundary with best accuracy on a validation data set.

Validation/testing of SVM model

- Split the labeled data into training, validation and test sets.
- For each choice of λ, run stochastic gradient descent to find the best decision boundary parameters (a, b) using the training set.
- * Choose the best λ based on accuracy on the validation set.
- * Finally evaluate the SVM's accuracy on the **test** set.
- * This process avoids overfitting the data.

Extension to multiclass classification

* All vs. all

- * Train a separate binary classifier for each pair of classes.
- * To classify, run all classifiers and see which class it will be labeled most with.
- Computational complexity is quadratic to the number of classes.
- One vs. all
 - * Train a separate binary classifier for each class against all else.
 - * To classify, run all classifiers and see which label gets the highest score
 - * Computational complexity scales linearly.

What if the data is inseparable linearly?

- * There is a chance the data is inseparable
- # Use the non-linear SVM with kernels!
- Decision boundary is curved

Naïve Bayes classifier

Training

P(0|D)

- Use the training data $\{(\mathbf{x}_i, y_i)\}$ to estimate a スッD probability model $P(y|\boldsymbol{x})$
- Assume that the features of $\{x\}$ are conditionally ▓ independent given the class label y p(Angle) $P(\boldsymbol{x}|\boldsymbol{y}) = \prod_{j=1}^{d} P(\boldsymbol{x}^{(j)}|\boldsymbol{y}) = \frac{P(A(c) P(B(c)))}{p(a|\boldsymbol{x}|\boldsymbol{y})}$
- Classification
 - Assign the label $argmax P(y|\boldsymbol{x})$ to a feature ▓ vector x

* MAP estimator of class variable y given the data x

* MAP estimator of class variable y given the data x

$$\underset{y}{\operatorname{argmax}} \begin{array}{l} P(y|\boldsymbol{x}) \\ = \underset{y}{\operatorname{argmax}} \begin{array}{l} \frac{P(\boldsymbol{x}|y)P(y)}{P(\boldsymbol{x})} \end{array}$$

* MAP estimator of class variable y given the data x

$$argmax P(y|\mathbf{x})$$

$$= argmax y$$

$$\frac{P(\mathbf{x}|y)P(y)}{P(\mathbf{x})}$$

$$= argmax P(\mathbf{x}|y)P(y)$$

$$y$$

Because P(x) doesn't depend on y

* MAP estimator of class variable y given the data x

$$argmax P(y|\mathbf{x})$$

$$= argmax \frac{P(\mathbf{x}|y)P(y)}{P(\mathbf{x})}$$

$$= argmax P(\mathbf{x}|y)P(y)$$

$$= argmax P(\mathbf{x}|y)P(y)$$

$$= argmax \left[\prod_{j=1}^{d} P(\mathbf{x}^{(j)}|y)\right] P(y)$$

$$P(x)$$

$$= argmax \left[\prod_{j=1}^{d} P(\mathbf{x}^{(j)}|y)\right] P(y)$$

* MAP estimator of class variable y given the data x

Modeling the prior and the likelihoods

- Model the prior based on the frequency of y in the training set
 - * For a binary classifier, this model is a Bernoulli random variable
- * Model each likelihood $P(\boldsymbol{x}^{(j)}|y)$ by:
 - Selecting an appropriate family of distributions
 - * Normal for real-valued numerical data
 - Poisson for counts in fixed intervals
 - ₭ Etc.
 - * Fitting the parameters of the distribution using MLE

An example of Naive Bayes training

 $(1)_{1}$

Training data

X ⁽¹⁾		X ⁽²⁾		У
\int	3.5	10		1
	1.0	8		1
0.0		10		-1
Ŀ	-3.0	14		-1

Modeling $P(\boldsymbol{x}^{(2)}|y)$ as Poisson $P(\boldsymbol{x}^{(2)}|y=1)$ $\lambda_{MLE} = \frac{10+8}{2} = 9$ $P(\boldsymbol{x}^{(2)}|y=-1)$ $\lambda_{MLE} = 12$ Modeling P(y)as Bernoulli $P(y=1) = \frac{2}{4} = 0.5$ P(y = -1) = 0.5

Classification example:

For a new feature vector $\mathbf{x} = [\mathbf{x}\mathbf{1}, \mathbf{x}\mathbf{2}, ...]$, ie $\mathbf{x} = [\mathbf{3}, \mathbf{9}]$ in the example $argmax_{y} \left[\sum_{i=1}^{d} log P(\mathbf{x}^{(i)}|y) + log P(y) \right]$

Classification example:

For a new feature vector $x = [x_1, x_2, ...]$, ie x = [3, 9] in the example $\operatorname{argmax}_{y} \left| \sum_{i=1}^{d} log P(\boldsymbol{x}^{(j)}|y) + log P(y) \right|$ $g(y) = \begin{cases} \log \frac{e^{-\frac{(3-2\cdot5)^{\nu}}{2\times1\cdot\cdot5^{\nu}}}}{\sqrt{\sqrt{\pi}\cdot\cdot\cdot5^{\nu}}} + \log \frac{e^{-9}}{9!} + \log \frac{1}{2} + \log \frac{1$ $i \neq \frac{g(g=1)}{g(g=-1)} > 1$ then (asel for X

Example of Naïve Bayesian Model

"Bag of words" Naive Bayesian models for

What about the decision boundary?

- * Not explicit as in the case of decision tree
- * This method is parametric, generative
 - * The model was specified with parameters to generate label for test data

Pros and Cons of Naïve Bayesian Classifier

% Pros:

- Simple approach
- ✤ Good accuracy
- * Good for high dimensional data
- Cons:

ى

- * The assumption of conditional independence of features
- * No explicit decision boundary
- Sometimes has numerical issues

Assignments

****** Finish Chapter 11 of the textbook

* Next time: Linear regression

Additional References

- Robert V. Hogg, Elliot A. Tanis and Dale L. Zimmerman. "Probability and Statistical Inference"
- * Kelvin Murphy, "Machine learning, A Probabilistic perspective"

See you next time

See You!

