
ì	Probability	and	Statistics	
for	Computer	Science		

“…many	problems	are	naturally	
classifica4on	problems”---Prof.	
Forsyth	

Hongye	Liu,	Teaching	Assistant	Prof,	CS361,	UIUC,	11.12.2020	

Credit:	wikipedia	



Last	time	

✺ Decision	tree	(II)	

✺ Random	forest	

✺ Support	Vector	Machine	(I)	



Objectives	



Motivation	for	Studying	Support	Vector	
Machine	
✺  When	solving	a	classifica4on	problem,	it	is	good	to	

try	several	techniques.	

✺  Criteria	to	consider	in	choosing	the	classifier	include	
✺  Accuracy	
✺  Training	speed	
✺  Classifica4on	speed	
✺  Performance	with	small	training	set	
✺  Interpretability		

✔	

✔	

✔	



SVM	problem	formulation	

✺  At	first	we	assume	a	binary	classifica4on	problem	

✺  The	training	set	consists	of	N	items	
✺  Feature	vectors	xi	of	dimension	d	
✺  Corresponding	class	labels		yi ∈ {±1}

✺  We	can	picture	the	training	
data	as	a	d-dimensional	
scaZer	plot	with	colored	
labels	

x
(1)

x
(2)



Decision	boundary	of	SVM	

✺  SVM	uses	a	hyperplane	as	its	
decision	boundary	

✺  The	decision	boundary	is:	

✺  In	vector	nota4on,	the	
hyperplane	can	be	wriZen	as:	

a1x
(1)

+ a2x
(2)

+ ...+ adx
(d)

+ b = 0

a
T
x+ b = 0

a
T
x+ b = 0

x
(1)

x
(2)



Classification	function	of	SVM	

✺  SVM	assigns	a	class	label	to	a	
feature	vector	according	to	the	
following	rule:	

✺  In	other	words,	the	classifica4on	
func4on	is:	

a
T
x+ b = 0

x
(1)

x
(2)

✺  Note	that		
✺  If																						is	small,	then									was	close	to	the	decision	

boundary	
✺  If																						is	large,	then									was	far	from	the	decision	

boundary		

+1	if		
-1		if	

sign(aT
xi + b)

a
T
xi + b ≥ 0

a
T
xi + b < 0

∣

∣a
T
xi + b

∣

∣

∣

∣a
T
xi + b

∣

∣

xi

xi



What	if	there	is	no	clean	cut	boundary?	

✺  Some	boundaries	are	beZer	
than	others	for	the	training	data	

✺  Some	boundaries	are	likely	more	
robust	for	run-4me	data	

✺  We	need	to	a	quan4ta4ve	
measure	to	decide	about	the	
boundary	

✺  The	loss	func0on	can	help	
decide	if	one	boundary	is	beZer	
than	others	

a
T
x+ b = 0

x
(1)

x
(2)



Loss	function	1	

✺  For	any	given	feature	vector							with	class	label																		,	
we	want		
✺  Zero	loss	if								is	classified	correctly	
✺  Posi4ve	loss	if							is	misclassified	
✺  If						is	misclassified,	more	loss	is	assigned	if	it’s	further	away	

from	the	boundary	

✺  This	loss	func4on	1	meets	the	criteria	above:	

✺  Training	error	cost	

max(0,−yi(a
T
xi + b))

S(a, b) =
1

N

N∑

i=1

max(0,−yi(a
T
xi + b))

xi

xi

xi

xi

yi ∈ {±1}

Loss	

yi(a
T
xi + b)

sign(aT
xi + b) = yi

sign(aT
xi + b) ̸= yi



Q.	What’s	the	value	of	this	function		?	

A.		0.		
B.		others.	

max(0,−yi(a
T
xi + b)) if		 sign(aT

xi + b) = yi



Q.	What’s	the	value	of	this	function		?	

A.		0.		
B.		A	value	greater		
than	or	equal	to	0.	

max(0,−yi(a
T
xi + b)) if		 sign(aT

xi + b) ̸= yi



Loss	function	1	

✺  For	any	given	feature	vector							with	class	label																		,	
we	want		
✺  Zero	loss	if								is	classified	correctly	
✺  Posi4ve	loss	if							is	misclassified	
✺  If						is	misclassified,	more	loss	is	assigned	if	it’s	further	away	

from	the	boundary	

✺  This	loss	func4on	1	meets	the	criteria	above:	

✺  Training	error	cost	

max(0,−yi(a
T
xi + b))

S(a, b) =
1

N

N∑

i=1

max(0,−yi(a
T
xi + b))

xi

xi

xi

xi

yi ∈ {±1}

Loss	

yi(a
T
xi + b)

sign(aT
xi + b) = yi

sign(aT
xi + b) ̸= yi



The	problem	with	loss	function	1	

✺  Loss	func4on1	does	not	dis4nguish	between	the	following	
decision	boundaries	if	they	both	classify						correctly.	
✺  One	passes	the	two	classes	closely	
✺  One	that	passes	with	a	wider	margin	

Credit:	Kelvin	Murphy		

xi

✺  But	leaving	a	larger	margin	
gives	robustness	for	run-4me	
data-	the	large	margin	
principle	

✔	



Loss	function	2:	the	hinge	loss	

✺  We	want	to	impose	a	small	posi4ve	loss	if								is	correctly	
classified	but	close	to	the	boundary	

✺  The	hinge	loss	func4on	meets	the	criteria	above:	

✺  Training	error	cost	

xi

Loss	

yi(a
T
xi + b)

S(a, b) =
1

N

N∑

i=1

max(0, 1− yi(a
T
xi + b))

max(0, 1− yi(a
T
xi + b))

1	



The	problem	with	loss	function	2	

✺  Loss	func4on	2	favors	decision	boundaries	that	have	large								
because	increasing										can	zero	out	the	loss	for	a	correctly	
classified							near	the	boundary.	

	

✺  But	large										makes	the	classifica4on	func4on														
extremely	sensi4ve	to	small	changes	in							and	make	it	less	
robust	to	run-4me	data.	

✺  So	small										is	beZer.	

xi

xi

∥a∥
∥a∥

∥a∥

∥a∥

sign(aT
xi + b)



Hinge	loss	with	regularization	penalty	

✺  We	add	a	penalty	on	the	square	magnitude		

	

✺  Training	error	cost	

✺  The	regulariza0on	parameter					trade	off	between	these	two	
objec4ves	

∥a∥2 = a
T
a

S(a, b) =

[

1

N

N
∑

i=1

max(0, 1− yi(a
T
xi + b))

]

+ λ(
a
T
a

2
)

λ



Q.	What	does	the	penalty	discourage?	

A.		Too	big	a	magnitude	of	the	
vector	a		
B.		Too	many	data	points	in	the	
training	set	

S(a, b) =

[

1

N

N
∑

i=1

max(0, 1− yi(a
T
xi + b))

]

+ λ(
a
T
a

2
)



How	to	compute	the	decision	boundary?	



Convex	set	and	convex	function	
✺  If	a	set	is	convex,	

any	line	connec4ng	
two	points	in	the	
set	is	completely	
included	in	the	set		

✺  A	convex	func4on:	
the	area	above	the	
curve	is	convex		

Credit:	Dr.	Kelvin	Murphy	

f(λx+ (1− λ)y) < λf(x) + (1− λ)f(y)



Q.	Is	this	curve	a	convex	curve?	

A. YES	
B. NO	



Q.	Is	this	curve	a	convex	curve?	

A. YES	
B. NO	



Q.	Is	this	surface	convex?	

A. YES	
B. NO	

Source:	wikipedia	



Iterative	minimization	by	gradient	
descent		
✺  For	a	func4on	such	as	

	

✺  A	convex	surface	

Source:	wikipedia	



Gradient	Descent	



Stochastic	gradient	descent		

xk ∈ {xi}



The	difference	btw	GD	and	SGD	



Update	parameters	of	the	hyperplane	
during	the	stochastic	gradient	descent		
✺  Since																																																																								and																										

We	have	the	following	upda4ng	equa4ons:	
Sk(a, b) = max(0, 1− yk(a

T
xk + b)) S0(a, b) = λ(

a
T
a

2
)

If		 If		yk(a
T
xk + b) ≥ 1

a← a− η(λa)
b← b

yk(a
T
xk + b) < 1

a← a− η(λa− ykxk)

b← b− η(−yk)

Loss	

yi(a
T
xi + b)

1	



Training	procedure-minimizing	the	cost	
function	
✺  The	training	error	cost																		is	a	func4on	of	decision	

boundary	parameters													,	so	it	can	help	us	find	the	best	
decision	boundary.		

✺  Fix							and	set	some	ini4al	values	for	

✺  Search	itera4vely	for		

✺  Repeat	the	previous	steps	for	several	values	of						and	choose	
the	one	that	gives	the	decision	boundary	with	best	accuracy	on	
a	valida4on	data	set.	

S(a, b)
(a, b)

(a, b)

(a, b)

λ

λ



Validation/testing	of	SVM	model	

✺  Split	the	labeled	data	into	training,	valida0on	and	test	sets.	

✺  For	each	choice	of	λ,	run	stochas4c	gradient	descent	to	find	
the	best	decision	boundary	parameters	(a,	b)	using	the	
training	set.		

✺  Choose	the	best	λ	based	on	accuracy	on	the	valida4on	set.	
	

✺  Finally	evaluate	the	SVM’s	accuracy	on	the	test	set.		

✺  This	process	avoids	overfifng	the	data.	



Extension	to	multiclass	classification	

✺  All	vs.	all	
✺  Train	a	separate	binary	classifier	for	each	pair	of	classes.		
✺  To	classify,	run	all	classifiers	and	see	which	class	it	will	be	

labeled	most	with.		
✺  Computa4onal	complexity	is	quadra4c	to	the	number	of	

classes.			

✺  One	vs.	all	
✺  Train	a	separate	binary	classifier	for	each	class	against	all	else.	
✺  To	classify,	run	all	classifiers	and	see	which	label	gets	the	highest	

score	
✺  Computa4onal	complexity	scales	linearly.	



What	if	the	data	is	inseparable	linearly?	

✺  There	is	a	chance	the	data	is	inseparable	

✺  Use	the	non-linear	SVM	with	kernels!	

✺  Decision	boundary	is	curved	



Naïve	Bayes	classifier	

✺  Training	
✺  Use	the	training	data																	to	es4mate	a	

probability	model			
✺  Assume	that	the	features	of	{x}	are	condi4onally	

independent	given	the	class	label	y 

	

✺  Classifica4on	
✺  Assign	the	label																														to	a	feature	

vector	x		

P (x|y) =
d∏

j=1

P (x(j)|y)

{(xi, yi)}

P (y|x)

argmax
y

P (y|x)



Naïve	Bayes	Model	

	
	
	
	
	
	
	
	
	

argmax
y

P (y|x)

=

✺  MAP	es4mator	of	class	variable	y	given	the	data	x 



Naïve	Bayes	Model	

	
	
	
	
	
	
	
	
	

argmax
y

P (y|x)

= argmax
y

P (x|y)P (y)

P (x)

✺  MAP	es4mator	of	class	variable	y	given	the	data	x 



Naïve	Bayes	Model	

	
	
	
	
	
	
	
	
	

argmax
y

P (y|x)

= argmax
y

P (x|y)P (y)

P (x)

= argmax
y

P (x|y)P (y)

✺  MAP	es4mator	of	class	variable	y	given	the	data	x 

Because	P(x)	doesn’t	depend	on	y	



Naïve	Bayes	Model	

	
	
	
	
	
	
	
	
	

argmax
y

P (y|x)

= argmax
y

P (x|y)P (y)

P (x)

= argmax
y

P (x|y)P (y)

= argmax
y

[

d
∏

j=1

P (x(j)|y)

]

P (y)

“Naïve”	assump4on	
of	condi4onal	
independence	of	
features	

✺  MAP	es4mator	of	class	variable	y	given	the	data	x 



Naïve	Bayes	Model	

	
	
	
	
	
	
	
	
	

argmax
y

P (y|x)

= argmax
y

P (x|y)P (y)

P (x)

= argmax
y

P (x|y)P (y)

= argmax
y

[

d
∏

j=1

P (x(j)|y)

]

P (y)

“Naïve”	assump4on	
of	condi4onal	
independence	of	
features	

argmax
y

[

d
∑

j=1

logP (x(j)|y) + log P (y)

]

=

✺  MAP	es4mator	of	class	variable	y	given	the	data	x 



Modeling	the	prior	and	the	likelihoods	

✺  Model	the	prior	based	on	the	frequency	of	y	in	the	
training	set	
✺  For	a	binary	classifier,	this	model	is	a	Bernoulli	

random	variable	

✺  Model	each	likelihood																			by:	
✺  Selec4ng	an	appropriate	family	of	distribu4ons	
✺  Normal	for	real-valued	numerical	data	
✺  Poisson	for	counts	in	fixed	intervals	
✺  Etc.	

✺  Fifng	the	parameters	of	the	distribu4on	using	MLE	

P (x(j)|y)



An	example	of	Naive	Bayes	training	

Training	data	

X(1)	 X(2)	 y	

3.5	 10	 1	

1.0	 8	 1	

0.0	 10	 -1	

-3.0	 14	 -1	

Modeling															
as	normal	

P (x(1)|y)

P (x(1)|y = 1)

µMLE =
3.5 + 1.0

2
= 2.25

σMLE = 1.25

P (x(1)|y = −1)

µMLE = −1.5

σMLE = 1.5

Modeling															
as	Poisson	

P (x(2)|y)

P (x(2)|y = 1)

λMLE =
10 + 8

2
= 9

P (x(2)|y = −1)

λMLE = 12

Modeling															
as	Bernoulli	

P (y)

P (y = 1) =
2

4
= 0.5

P (y = −1) = 0.5



Classification	example:	

argmax
y

[

d
∑

j=1

logP (x(j)|y) + log P (y)

]

For	a	new	feature	vector	x	=	[x1,x2,…],	ie	x	=	[3,9]	in	
the	example	

																									
	
	
	
	
	



Classification	example:	

argmax
y

[

d
∑

j=1

logP (x(j)|y) + log P (y)

]

For	a	new	feature	vector	x	=	[x1,x2,…],	ie	x	=	[3,9]	in	
the	example	

g(y) =

{

y = 1
y = −1

																									
	
	
	
	
	



Example	of	Naïve	Bayesian	Model	

“Bag	of	words”	Naive	Bayesian	models	for	
document	class	

																
															 															

X-windows	 MS-windows	
document	(represented	as	a	
bag-of-words	bit	vector),	
each	column	is	a	word	



What	about	the	decision	boundary?	

✺  Not	explicit	as	in	the	case	of	decision	tree	

✺  This	method	is	parametric,	genera4ve	
✺  The	model	was	specified	with	parameters	to	

generate	label	for	test	data	



Pros	and	Cons	of	Naïve	Bayesian	Classifier	

✺  Pros:	
✺  Simple	approach	
✺  Good	accuracy	
✺  Good	for	high	dimensional	data	

✺  Cons:	
✺  The	assump4on	of	condi4onal	independence	of	

features	
✺  No	explicit	decision	boundary	
✺  Some4mes	has	numerical	issues	



Assignments	

✺ Finish	Chapter	11	of	the	textbook	

✺ Next	4me:	Linear	regression	
	



Additional	References	

✺  Robert	V.	Hogg,	Elliot	A.	Tanis	and	Dale	L.	
Zimmerman.	“Probability	and	Sta4s4cal	
Inference”		

✺  Kelvin	Murphy,	“Machine	learning,	A	
Probabilis4c	perspec4ve”	



See	you	next	time	

See 
You! 


