Probability and Statistics for Computer Science

"All models are wrong, but some models are useful"--- George Box

Credit: wikipedia

Last time
Stochastic Gradient Descent
Naïve Bayesian Classifier
Regression

Some popular topics in Ngram

Google Books Ngram Viewer

Search in Google Books:
$\underline{1940-1982} \underline{\underline{1983-2002}} \underline{\underline{2003-2004}} \underline{\underline{2005-2006}} \quad \underline{2007-2008} \quad \underline{\text { computer security }}$ English

Objectives

* Linear regression defition.
* The least square solution
* Training and prediction
* R-squared for evaluating the fit.

Regression models are Machine learning methods

粦 Regression models have been around for a while

Dr. Kelvin Murphy's Machine Learning book has 3+ chapters on regression

The regression problem

Chicago social economic census

粦 The census included 77 communities in Chicago
The census evaluated the average hardship index of the residents
米 The census evaluated the following parameters for each community：
米 PERCENT＿OF＿HOUSING＿CROWDED
粦 PERCENT＿HOUSEHOLD＿BELOW＿POVERTY
粦 PERCENT＿AGED＿16p＿UNEMPLOYED
粦 PERCENT＿AGED＿25p＿WITHOUT＿HIGH＿SCHOOL＿DIPLOMA
粦 PERCENT＿AGED＿UNDER＿18＿OR＿OVER＿64
業 PER＿CAPITA＿INCOME
Given a new community and its parameters， can you predict its average hardship index with all these parameters？

Wait, have we seen the linear regression before?

It's about Relationship between data features

Example: Is the height of people related to their weight?

IDNO	BODYFAT	DENSITY	AGE	WEIGHT	HEIGHT
1	12.6	1.0708	23	154.25	67.75
2	6.9	1.0853	22	173.25	72.25
3	24.6	1.0414	22	154.00	66.25
4	10.9	1.0751	26	184.75	72.25
5	27.8	1.0340	24	184.25	71.25
6	20.6	1.0502	24	210.25	74.75
7	19.0	1.0549	26	181.00	69.75
8	12.8	1.0704	25	176.00	72.50
9	5.1	1.0900	25	191.00	74.00
10	12.0	1.0722	23	198.25	73.50

粦 x : HIGHT, y : WEIGHT

Some terminology

Suppose the dataset $\{(\mathbf{x}, y)\}$ consists of \mathbf{N} labeled items $\left(\mathbf{x}_{i}, y_{i}\right)$

If we represent the dataset as a table
粦 The d columns representing $\{\mathbf{x}\}$ are called explanatory variables $\mathbf{x}^{(j)}$
粦 The numerical column y is called the dependent variable
$N\left\{\begin{array}{c|c|c|}\hline \mathbf{x}^{(1)} & \mathbf{x}^{(2)} & y \\ \hline 1 & 3 & 0 \\ \hline 2 & 3 & 2 \\ \hline 3 & 6 & 5 \\ \hline\end{array}\right.$

Variables of the Chicago census

[1] "PERCENT_OF_HOUSING_CROWDED"
[2]"PERCENT_HOUSEHOLDS_BELOW_POVERTY"
[3] "PERCENT_AGED_16p_UNEMPLOYED"
[4]"PERCENT_AGED_25p_WITHOUT_HIGH_SCHOOL_DI
PLOMA"
[5] "PERCENT_AGED_UNDER_18_OR_OVER_64" [6]"PER_CAPITA_INCOME"
[7] "HardshipIndex"

Which is the dependent variable in the census example?

A. "PERCENT_OF_HOUSING_CROWDED"
B. "PERCENT_AGED_25p_WITHOUT_HIGH_SCHOOL_DIPLOMA"
C. "HardshipIndex"
D. "PERCENT_AGED_UNDER_18_OR_OVER_64"

Linear model

We begin by modeling y as a linear function of $\mathbf{x}^{(j)}$ plus randomness

$$
y=\mathbf{x}^{(1)} \beta_{1}+\mathbf{x}^{(2)} \beta_{2}+\ldots+\mathbf{x}^{(d)} \beta_{d}+\xi
$$

$$
\beta=\left[\begin{array}{c}
\beta_{1} \\
\beta_{2} \\
\vdots
\end{array}\right.
$$

Where ξ is a zero-mean random variable that represents model error $x^{\top}=\left[x^{(1)} x^{(2)} \cdots x^{(d)}\right]$ In vector notation:

$$
y=\mathbf{x}^{T} \boldsymbol{\beta}+\xi
$$

Where $\boldsymbol{\beta}$ is the d-dimensional vector of coefficients that we train

$\mathbf{X}^{(1)}$	$\mathbf{X}^{(2)}$	y
1	3	0
2	3	2
3	6	5

Each data item gives an equation

粦 The model: $y=\mathbf{x}^{T} \boldsymbol{\beta}+\xi=\mathbf{x}^{(1)} \beta_{1}+\mathbf{x}^{(2)} \beta_{2}+\xi$

$$
\begin{aligned}
y=0 & =1 \times \beta_{1}+3 \times \beta_{2}+\xi_{1} \\
2 & =2 \times \beta_{1}+3 \times \beta_{2}+\xi_{2}
\end{aligned}
$$

Training data

$\mathbf{X}^{(1)}$	$\mathbf{X}^{(2)}$	y
1	3	0
2	3	2
3	6	5

$$
5=3 \times \beta_{1}+6 \times \beta_{2}+3_{3}
$$

Which together form a matrix equation

粦 The model $y=\mathbf{x}^{T} \boldsymbol{\beta}+\xi=\mathbf{x}^{(1)} \beta_{1}+\mathbf{x}^{(2)} \beta_{2}+\xi$

$$
E[\xi]=0
$$

Which together form a matrix equation

The model $y=\mathbf{x}^{T} \boldsymbol{\beta}+\xi=\mathbf{x}^{(1)} \beta_{1}+\mathbf{x}^{(2)} \beta_{2}+\xi$

$\text { Training data }_{d}^{d}$			$\left[\begin{array}{l}0 \\ 2 \\ 5\end{array}\right]$	$=\left[\begin{array}{ll}1 & 3 \\ 2 & 3 \\ 3 & 6\end{array}\right]$	$\left[\begin{array}{l}\beta_{1} \\ \beta_{2}\end{array}\right]+$		$\left[\begin{array}{l} \xi_{1} \\ \xi_{2} \\ \xi_{3} \end{array}\right]$
$\mathrm{x}^{(1)}$	$\mathrm{x}^{(2)}$	y					
1		0					
2		2		$\mathbf{y}=X$	β	+ e	
3		5					

Q. What's the dimension of matrix X ?

A. $N \times d$
B. $d \times N$
C. $\mathrm{N} \times \mathrm{N}$
D. $d \times d$

Training the model is to choose β

Given a training dataset $\{(\mathrm{x}, y)\}$, we want to fit a model $y=\mathbf{x}^{T} \boldsymbol{\beta}+\xi$

Define $\mathbf{y}=\left[\begin{array}{c}y_{1} \\ \vdots \\ y_{N}\end{array}\right]$ and $X=\left[\begin{array}{c}\mathbf{x}_{1}^{T} \\ \vdots \\ \mathbf{x}_{N}^{T}\end{array}\right]$ and $\mathbf{e}=\left[\begin{array}{c}\xi_{1} \\ \vdots \\ \xi_{N}\end{array}\right]$
To train the model, we need to choose $\boldsymbol{\beta}$ that makes \mathbf{e} small in the matrix equation $\mathbf{y}=X \cdot \boldsymbol{\beta}+\mathbf{e}$

$$
\begin{aligned}
& \text { 1) Least Square }=\text { (2) } \text { ML }_{\text {Textsork pg } 3.9} \\
& \text { Lunation }
\end{aligned}
$$

Training using least squares

粼 In the least squares method, we aim to minimize $\|\mathrm{e}\|^{2}$
sci rr $\|\mathrm{e}\|^{2}=\|\mathrm{y}-X \boldsymbol{\beta}\|^{2}=\frac{\underbrace{(\mathrm{y}-X \boldsymbol{\beta})^{T}(\mathrm{y}-X \boldsymbol{\beta})}_{\uparrow} \quad|v|^{2}}{=v^{\top} v}$
Differentiating with respect to β and setting to zero

$$
X^{T} X \boldsymbol{\beta}-X^{T} \mathbf{y}=0
$$

$$
x^{\top} x \hat{\beta}=x^{\top} y
$$

If $X^{T} X$ is invertible, the least squares estimate of the coefficient is:

$$
\begin{array}{r}
\hat{\boldsymbol{\beta}}= \\
\left(X^{T} X\right)^{-1} X^{T} \mathbf{y} \\
y=x \beta+e
\end{array}
$$

$$
\begin{aligned}
& x^{\top} x \\
& x^{\top} \sim d x N \\
& x \sim N \times d \\
& X_{(d \times N)}^{\top} \cdot X_{(N \cdot d)} \\
& =X^{\top} x \sim d x d \\
& \text { symmerric. veal vilined } \\
& \text { for } x^{\top} x \text {, whe } \lambda: \geq 0
\end{aligned}
$$

Derivation of least square solution

$$
\begin{align*}
\|e\|^{2} & =(y-x \beta)^{\top}(y-x \beta) \\
& =y^{\top} y-\beta^{\top} x^{\top} y-y^{\top} x \beta+\beta^{\top} x^{\top} x \beta \tag{1}
\end{align*}
$$

useful derivative involving vector/matrix

$$
\begin{aligned}
& \frac{\partial\left(a^{\top} A a\right)}{\partial a}=\left(A+A^{\top}\right) a \\
& \frac{\partial\left(b^{\top} a\right)}{\partial a}=b \Rightarrow \frac{\partial\left(y^{\top} x \beta\right)}{\partial \beta}=x^{\top} y
\end{aligned}
$$

a, b are vectors; A is a square matrix
since $b^{\top} a$ is scalar

$$
\begin{aligned}
& \frac{2\left(b^{\top} a\right)}{2 a}=\frac{2\left(b^{\top} a\right)^{\top}}{2 a}=\frac{\partial\left(a^{\top} b\right)}{\partial a}=b \quad \Rightarrow \frac{2\left(\beta^{\top} x^{\top} y\right)}{\partial \beta}=x^{\top} y
\end{aligned}
$$

$\because X^{\top} x$ is symantric

$$
\because x^{\top} x=\left(x^{\top} x\right)^{\top}
$$

Note $\| \mathrm{Cl}{ }^{2}$ is scalar. all items in (1) are scalar

$$
\begin{aligned}
\frac{\partial\|e\|^{2}}{2 \beta}=0-x^{\top} y-x^{\top} y & +2 x^{\top} x \beta=0 \\
& \Rightarrow x^{\top} x \beta=x^{\top} y \\
& \Rightarrow \beta=\left(x^{\top} x\right)^{-1} x^{\top} y
\end{aligned}
$$

here y is vector

Derivation of least square solution

$$
\begin{array}{rlr}
& x^{\top} y=x^{\top} x \hat{\beta} \\
\Rightarrow & x^{\top}(y-x \hat{\beta})=0 & x^{\top} \sim d x N \\
\Rightarrow & \left.x^{\top} e=0 \quad(d x)\right) & e \sim N \times 1 \\
\Rightarrow & e^{\top} x=0 & (12 d) \\
\Rightarrow & \left.e^{\top} x e\right)^{\top}=0 \\
& e \perp x \hat{\beta}=0 \quad(1 x) \\
& e \dot{\beta} \quad \text { uncorvelured!! }
\end{array}
$$

Least square Loss function

$$
\begin{gathered}
\|c\|^{2}=f(\beta)=\sum_{j=1}^{k} Q_{j}(\beta)=\sum_{j=1}^{k}(\underbrace{x_{j}^{\top} \beta-y_{j}})^{2} \\
Q_{j}(\beta)=\left(x_{j}^{\top} \beta-y_{j}\right)^{2}
\end{gathered}
$$

in the final project

$$
\begin{aligned}
& Q_{j}(\theta)=\left|x_{j}^{\top} \theta-y_{j}\right|^{\gamma} \\
& \nabla Q_{j}=? \quad \frac{\partial Q_{j}}{\partial \theta}=?
\end{aligned}
$$

Convex set and convex function

If a set is convex, any line connecting two points in the set is completely

(a)

(b)

Figure 7.4 (a) Illustration of a convex set. (b) Illustration of a nonconvex set.
粦 A convex function: the area above the curve is convex $f(\lambda x+(1-\lambda) y)<\lambda f(x)+(1-\lambda) f(y)$

(a)

(b) function is convex

What's the dimension of matrix $X^{\top} X$?

A. $N \times d$
$X \sim N \times d$
B. $d \times N$
C. $\mathrm{N} \times \mathrm{N}$
$X^{\top} \sim d \times N$
D. $d \times d$

$$
X^{\top} X \sim d x d
$$

$d \rightarrow t$ of fertares
/explancany arr.

Is this statement true?

If the matrix $\mathbf{X}^{\top} \mathbf{X}$ does NOT have zero valued eigenvalues, it is invertible.

$$
\lambda_{i} \geq 0
$$

A. TRUE
B. FALSE

$$
\text { if } \lambda i \neq 0
$$

$$
\lambda>0
$$

Training using least squares example

Model: $y=x^{T} \boldsymbol{\beta}+\xi=\mathbf{x}^{(1)} \beta_{1}+\mathbf{x}^{(2)} \beta_{2}+\xi$

$\left(\right.$| Training data | | |
| :--- | :--- | :--- |
| $\mathbf{x}^{(1)}$ | $\mathbf{x}^{(2)}$ | y |
| 1 | 3 | 0 |
| 2 | 3 | 2 |
| 3 | 6 | 5 |

$$
\widehat{\boldsymbol{\beta}}=\left(X^{T} X\right)^{-1} X^{T} \mathbf{y}=\left[\begin{array}{c}
2 \\
-\frac{1}{3}
\end{array}\right]
$$

$$
\begin{aligned}
& \widehat{\boldsymbol{\beta}}_{1}=2 \\
& \widehat{\boldsymbol{\beta}}_{2}=-\frac{1}{3}
\end{aligned}
$$

Prediction

If we train the model coefficients $\widehat{\boldsymbol{\beta}}$, we can predict y_{0}^{p} from \mathbf{x}_{0}

$$
y_{0}^{p}=\mathbf{x}_{0}^{T} \widehat{\boldsymbol{\beta}}
$$

In the model $y=\mathbf{x}^{(1)} \beta_{1}+\mathbf{x}^{(2)} \beta_{2}+\xi$ with $\widehat{\boldsymbol{\beta}}=\left[\begin{array}{c}2 \\ -\frac{1}{3}\end{array}\right]$
粦 The prediction for $\mathrm{x}_{0}=\left[\begin{array}{l}2 \\ 1\end{array}\right]$ is $y_{0}^{p}=2 \times \beta_{1}+1 \times \beta_{2}$

$$
=4-1 \times \frac{1}{3}
$$

类 The prediction for $\mathbf{x}_{0}=\left[\begin{array}{l}0 \\ 0\end{array}\right]$ is y_{0}^{p}

A linear model with constant offset

The problem with the model $y=\mathbf{x}^{(1)} \beta_{1}+\mathbf{x}^{(2)} \beta_{2}+\xi$ is:

Let's add a constant offset β_{0} to the model
$y=0$

$$
\begin{aligned}
y= & \beta_{0}+\mathbf{x}^{(1)} \beta_{1}+\mathbf{x}^{(2)} \beta_{2}+\xi \\
& 1+\beta_{0}+x^{{ }^{\prime \prime}} \cdot \beta_{1-1}-\cdots .
\end{aligned}
$$

Training and prediction with constant offset

粦 The model $y=\beta_{0}+\mathbf{x}^{(1)} \beta_{1}+\mathbf{x}^{(2)} \beta_{2}+\xi=\mathbf{x}^{T} \boldsymbol{\beta}+\xi$
Training data:

$$
\begin{aligned}
& {\left[\begin{array}{lll}
1 & x^{(1)} & x^{(2)}
\end{array}\right] \quad \beta_{0} \frac{\text { intercept }}{\text { in }}} \\
& \widehat{\boldsymbol{\beta}}=\left(X^{T} X\right)^{-1} X^{T} \mathbf{y}=\left[\begin{array}{c}
-3 \\
2 \\
\frac{1}{3}
\end{array}\right] \\
& y_{0}^{p}=\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
-3 \\
2 \\
\frac{1}{3}
\end{array}\right]=-3
\end{aligned}
$$

Comparing our example models

$$
y=\mathbf{x}^{(1)} \beta_{1}+\mathbf{x}^{(2)} \beta_{2}+\xi
$$

$$
y=\beta_{0}+\mathbf{x}^{(1)} \beta_{1}+\mathbf{x}^{(2)} \beta_{2}+\xi
$$

Variance of the linear regression model

The least squares estimate satisfies this property

$$
\operatorname{var}\left(\left\{y_{i}\right\}\right)=\operatorname{var}\left(\left\{\mathbf{x}_{i}^{T} \widehat{\boldsymbol{\beta}}\right\}\right)+\operatorname{var}\left(\left\{\xi_{i}\right\}\right)
$$

$$
y=X \hat{\beta}+e \quad e \perp X \hat{\beta}
$$

The random error is uncorrelated to the least square solution of linear combination of explanatory variables.

$$
x^{\top} y=x^{\top} x \hat{\beta}
$$

Variance of the linear regression model: proof

The least squares estimate satisfies this property

$$
y=X \underset{\operatorname{var}\left(\left\{y_{i}\right\}\right)=\operatorname{var}\left(\left\{\mathbf{x}_{i}^{T} \widehat{\boldsymbol{\beta}}\right\}\right)+\operatorname{var}\left(\left\{\xi_{i}\right\}\right)}{ }
$$

Proof: $\operatorname{var}(y)=\operatorname{var}(X \beta)+\operatorname{var}(e)$

$$
+2 \operatorname{cov}(x \beta, e)
$$

$$
\begin{aligned}
\because \quad & x \beta \perp e \\
& \operatorname{cov}(x \beta, e)=0
\end{aligned}
$$

Variance of the linear regression model: proof

粦 The least squares estimate satisfies this property

$$
\operatorname{var}\left(\left\{y_{i}\right\}\right)=\operatorname{var}\left(\left\{\mathbf{x}_{i}^{T} \widehat{\boldsymbol{\beta}}\right\}\right)+\operatorname{var}\left(\left\{\xi_{i}\right\}\right)
$$

Proof:

$\operatorname{var}[y]=(1 / N)([X \hat{\beta}-\overline{X \hat{\beta}}]+[\mathbf{e}-\overline{\mathbf{e}}])^{T}([X \hat{\beta}-\overline{X \hat{\beta}}]+[\mathbf{e}-\overline{\mathbf{e}}])$ $\operatorname{var}[y]=(1 / N)\left([X \hat{\beta}-\overline{X \hat{\beta}}]^{T}[X \hat{\beta}-\overline{X \hat{\beta}}]+2[\mathbf{e}-\overline{\mathbf{e}}]^{T}[X \hat{\beta}-\overline{X \hat{\beta}}]+[\mathbf{e}-\overline{\mathbf{e}}]^{T}[\mathbf{e}-\overline{\mathbf{e}}]\right)$

Because $\overline{\mathbf{e}}=0 ; \quad \mathbf{e}^{T} X \widehat{\boldsymbol{\beta}}=0$ and $\mathbf{e}^{T} \mathbf{1}=0 \leftarrow$ Due to Least square minimized

$$
\begin{aligned}
& \operatorname{var}[y]=(1 / N)\left(\left[X \hat{\beta}-\overline{X \hat{\beta}} T^{T}[X \hat{\beta}-\overline{X \hat{\beta}}]+[\mathbf{e}-\overline{\mathbf{e}}]^{T}[\mathbf{e}-\overline{\mathbf{e}}]\right)\right. \\
& \operatorname{var}[y]=\operatorname{var}[X \widehat{\beta}]+\operatorname{var}[\mathbf{e}]
\end{aligned}
$$

Evaluating models using R-squared

The least squares estimate satisfies this property

$$
\operatorname{var}\left(\left\{y_{i}\right\}\right)=\operatorname{var}\left(\left\{\mathbf{x}_{i}^{T} \widehat{\boldsymbol{\beta}}\right\}\right)+\operatorname{var}\left(\left\{\xi_{i}\right\}\right)
$$

This property gives us an evaluation metric called Rsquared

$$
R^{2}=\frac{\operatorname{var}\left(\left\{\mathbf{x}_{i}^{T} \widehat{\boldsymbol{\beta}}\right\}\right)}{\operatorname{var}\left(\left\{y_{i}\right\}\right)}
$$

粦 We have $0 \leq R^{2} \leq 1$ with a larger value meaning a better fit.

Q: What is R -squared if there is only one explanatory variable in the model?

$$
R^{2} \rightarrow r^{\text {if }} \quad X=N \times 1_{d=1}
$$

Q: What is R -squared if there is only one explanatory variable in the model?

$$
\begin{aligned}
& \hat{y}=r \hat{x}+\varepsilon \\
& \operatorname{var}(\hat{y}]=r^{2} \operatorname{var}[\hat{x}]+\operatorname{var}[\varepsilon] \\
& R^{2}=\frac{r^{2} \operatorname{var}[\hat{x}]}{\operatorname{var}[\hat{y}]} \quad \operatorname{var}[\hat{x}]=1 \\
& \\
& =r^{2}
\end{aligned}
$$

Q: What is R-squared if there is only one explanatory variable in the model?

R-squared would be the correlation coefficient squared (textbook pgs 43-44)

R-squared examples

Chirp frequency vs temperature in crickets

Heart rate vs temperature in humans

Linear regression model for the Chicago census data

Call:
$\operatorname{lm}($ formula $=$ HardshipIndex \sim., data $=$ dat)
Residuals:

Min	$1 Q$	Median	$3 Q$	Max
-15.7157	-1.9230	0.1301	1.9810	8.6719

Coefficients:
(Intercept)
PERCENT_OF_HOUSING_CROWDED
PERCENT_HOUSEHOLDS_BELOW_POVERTY
PERCENT_AGED_16p_UNEMPLOYED
PERCENT_AGED_25p_WITHOUT_HIGH_SCHOOL_DIPLOMA
PERCENT_AGED_UNDER_18_OR_OVER_64
PER_CAPITA_INCOME

Estimate	Std. Error t value $\operatorname{Pr}(>\|t\|)$		
105.1394	37.3622	2.814	$0.006346^{* *}$
0.7189	0.2753	2.612	0.011014^{*}
0.6665	0.0781	8.534	$1.90 \mathrm{e}-12^{* * *}$
0.8023	0.1350	5.941	$9.93 \mathrm{e}-08^{* * *}$
0.7751	0.1063	7.293	$3.64 \mathrm{e}-10^{* * *}$
0.4807	0.1202	3.998	$0.000156^{* * *}$
-11.8819	3.1888	-3.726	$0.000391^{* * *}$

Signify. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ', 1
Residual standard error: 3.9 on 70 degrees of freedom $d \delta=70$ Multiple R-sauared: 0.983. Adjusted R-squared: 0.9815 F-statistic: 673.9 on 6 and 70 DF, p-value: $<2.2 \mathrm{e}-16$

$$
\begin{aligned}
& =N-d^{*} \\
& d^{*} \rightarrow \notin \text { of }
\end{aligned}
$$

Residual is normally distributed?

The Q-Q plot of the residuals is roughly normal

$$
e \quad\left\{e_{i}\right\}
$$

$$
\begin{gathered}
\uparrow \\
y_{0}=x_{0}^{\top} \beta_{4}+e_{0} \\
\left\{e_{i}\right\}
\end{gathered}
$$

Residual of the linear model for Chicago census

Normal Q-Q Plot

Prediction for another community

[1] "PERCENT_OF_HOUSING_CROWDED"
[2]"PERCENT_HOUSEHOLDS_BELOW_POVERTY "
[3] "PERCENT_AGED_16p_UNEMPLOYED"
[4]"PERCENT_AGED_25p_WITHOUT_HIGH_SC HOOL_DIPLOMA"
[5]
"PERCENT_AGED_UNDER_18_OR_OVER_64" [6]"PER_CAPITA_INCOME"

4.7
19.7
12.9
19.5
33.5
$\log (28202)$

Predicted hardship index: 41.46038
Note: maximum of hardship index in the training data is 98 , minimum is 1

The clusters of the Chicago communities: clusters and hardship

Clusters of community

Hardship index of communities

The clusters of the Chicago communities: per capital income and hardship

PER_CAPITAL_INCOME

The clusters of the Chicago communities: without diploma and hardship

Hardship index of communities
Hardship

Assignments

Read Chapter 13 of the textbook
Next time: More on linear regression

Additional References

䊩 Robert V. Hogg, Elliot A. Tanis and Dale L. Zimmerman. "Probability and Statistical Inference"

粦 Kelvin Murphy, "Machine learning, A Probabilistic perspective"

See you next time

See You!

