Probability and Statistics for Computer Science

"All models are wrong, but some models are useful"--- George Box

Credit: wikipedia

Hongye Liu, Teaching Assistant Prof, CS361, UIUC, 11.17.2020

Last time

Stochastic Gradient Descent Z classifier

* Naïve Bayesian Classifier

Regress.'m

Some popular topics in Ngram

Objectives

* Linear regression detition. I The least square solution * Training and prediction * R-squared for evaluating the fit.

Regression models are Machine learning methods

- Regression models have been around for a while
- Dr. Kelvin Murphy's Machine Learning book has 3+ chapters on regression

The regression problem

Keyon is

Chicago social economic census

- * The census included 77 communities in Chicago
- * The census evaluated the average hardship index of the residents
- * The census evaluated the following parameters for each community:
 - # PERCENT_OF_HOUSING_CROWDED
 - # PERCENT_HOUSEHOLD_BELOW_POVERTY
 - # PERCENT_AGED_16p_UNEMPLOYED
 - # PERCENT_AGED_25p_WITHOUT_HIGH_SCHOOL_DIPLOMA
 - # PERCENT_AGED_UNDER_18_OR_OVER_64
 - # PER_CAPITA_INCOME

Given a new community and its parameters, can you predict its average hardship index with all these parameters?

Wait, have we seen the linear regression before?

It's about *Relationship* between data features

IDNO	BODYFAT	DENSITY	AGE	WEIGHT	HEIGHT
1	12.6	1.0708	23	154.25	67.75
2	6.9	1.0853	22	173.25	72.25
3	24.6	1.0414	22	154.00	66.25
4	10.9	1.0751	26	184.75	72.25
5	27.8	1.0340	24	184.25	71.25
6	20.6	1.0502	24	210.25	74.75
7	19.0	1.0549	26	181.00	69.75
8	12.8	1.0704	25	176.00	72.50
9	5.1	1.0900	25	191.00	74.00
10	12.0	1.0722	23	198.25	73.50

x : HIGHT, y: WEIGHT ▓

Some terminology

- * Suppose the dataset $\{(\mathbf{x}, y)\}$ consists of N labeled items (\mathbf{x}_i, y_i)
- If we represent the dataset as a table
 - * The d columns representing $\{\mathbf{x}\}$ are called **explanatory variables** $\mathbf{x}^{(j)}$
 - * The numerical column y is called the dependent variable

-	$\mathbf{x}^{(1)}$	$\mathbf{x}^{(2)}$	y
5	1	3	0
)	2	3	2
l	3	6	5

Variables of the Chicago census

[1] "PERCENT_OF_HOUSING_CROWDED"
[2] "PERCENT_HOUSEHOLDS_BELOW_POVERTY"
[3] "PERCENT_AGED_16p_UNEMPLOYED"
[4] "PERCENT_AGED_25p_WITHOUT_HIGH_SCHOOL_DI
PLOMA"
[5] "PERCENT_AGED_UNDER_18_OR_OVER_64"
[6] "PER_CAPITA_INCOME"
[7] "HardshipIndex"

Which is the dependent variable in the census example?

A. "PERCENT_OF_HOUSING_CROWDED"
B. "PERCENT_AGED_25p_WITHOUT_HIGH_SCHOOL_DIPLOMA"
C. "HardshipIndex"
D. "PERCENT_AGED_UNDER_18_OR_OVER_64"

Linear model

We begin by modeling y as a linear function of $\mathbf{x}^{(j)}$ plus randomness $u = \mathbf{x}^{(1)}\beta_1 + \mathbf{x}^{(2)}\beta_2 + \cdots + \mathbf{x}^{(d)}\beta_3 + \cdots + \mathbf{x}^{(d)}\beta_4 + \mathbf{x}$

$$y = \mathbf{x}^{(1)}\beta_1 + \mathbf{x}^{(2)}\beta_2 + \dots + \mathbf{x}^{(d)}\beta_d + \xi$$
Where ξ is a zero-mean random varia

Where ξ is a zero-mean random variable that β represents model error $\sqrt{-1} = \left[\sqrt{2} + \sqrt{2} +$

In vector notation:

$$y = \mathbf{x}^T \boldsymbol{\beta} + \boldsymbol{\xi}$$

₩

Where β is the d-dimensional vector of coefficients that we train

$\mathbf{x}^{(1)}$	$\mathbf{x}^{(2)}$	y
1	3	0
2	3	2
3	6	5

Each data item gives an equation

The model:
$$y = \mathbf{x}^T \boldsymbol{\beta} + \boldsymbol{\xi} = \mathbf{x}^{(1)} \beta_1 + \mathbf{x}^{(2)} \beta_2 + \boldsymbol{\xi}$$

 $\boldsymbol{y} = \boldsymbol{\vartheta} = \mathbf{i} \times \boldsymbol{\beta}_1 + \boldsymbol{z} \times \boldsymbol{\beta}_2 + \boldsymbol{\beta}_1$
 $\boldsymbol{z} = \boldsymbol{z} \times \boldsymbol{\beta}_1 + \boldsymbol{z} \times \boldsymbol{\beta}_2 + \boldsymbol{\beta}_2$
Training data
 $\boldsymbol{\xi} = \boldsymbol{z} \times \boldsymbol{\beta}_1 + \boldsymbol{\delta} \times \boldsymbol{\beta}_2 + \boldsymbol{\beta}_3$

$\mathbf{x}^{(1)}$	$\mathbf{x}^{(2)}$	y
1	3	0
2	3	2
3	6	5

Which together form a matrix equation

* The model
$$y = \mathbf{x}^T \boldsymbol{\beta} + \xi = \mathbf{x}^{(1)} \beta_1 + \mathbf{x}^{(2)} \beta_2 + \xi$$

Training data

ELJ

Which together form a matrix equation

* The model $y = \mathbf{x}^T \boldsymbol{\beta} + \xi = \mathbf{x}^{(1)} \beta_1 + \mathbf{x}^{(2)} \beta_2 + \xi$

$$\begin{bmatrix} 0\\2\\5 \end{bmatrix} = \begin{bmatrix} 1 & 3\\2 & 3\\3 & 6 \end{bmatrix} \begin{bmatrix} \beta_1\\\beta_2 \end{bmatrix} + \begin{bmatrix} \xi_1\\\xi_2\\\xi_3 \end{bmatrix}$$
$$\mathbf{y} = X \cdot \boldsymbol{\beta} + \mathbf{e}$$

Q. What's the dimension of matrix X?

A.N × d B. d × N C. N × N D. d × d

Training the model is to choose β

* Given a training dataset $\{(\mathbf{x}, y)\}$, we want to fit a model $y = \mathbf{x}^T \boldsymbol{\beta} + \xi$

** Define
$$\mathbf{y} = \begin{bmatrix} y_1 \\ \vdots \\ y_N \end{bmatrix}$$
 and $X = \begin{bmatrix} \mathbf{x}_1^T \\ \vdots \\ \mathbf{x}_N^T \end{bmatrix}$ and $\mathbf{e} = \begin{bmatrix} \xi_1 \\ \vdots \\ \xi_N \end{bmatrix}$

* To train the model, we need to choose β that makes e small in the matrix equation $y = X \cdot \beta + e$

Training using least squares

In the least squares method, we aim to minimize $\|\mathbf{e}\|^2$ $\|\mathbf{e}\|^2 = \|\mathbf{y} - X\boldsymbol{\beta}\|^2 = (\mathbf{y} - X\boldsymbol{\beta})^T (\mathbf{y} - X\boldsymbol{\beta})$ Differentiating with respect to β and setting to zero $x^T \times \hat{\beta} = x^T y$ $X^T X \boldsymbol{\beta} - X^T \mathbf{y} = 0$ * If $(X^T X)$ is invertible, the least squares estimate of $\beta = \arg \min_{B} ||e||^{2}$ the coefficient is: $\widehat{\boldsymbol{\beta}} = (X^T X)^{-1} X^T \mathbf{y}$ $\mathbf{y} = \mathbf{x} \mathbf{\beta} + \mathbf{e}$

 $\mathbf{x}^{\mathsf{T}}\mathbf{x}$ $\times^{\mathsf{T}} \sim d \times N$ X~ NXd XOLXNJ. X(N.d) 7. = XX ~ dxd symmetric, real valued Fr XX, we 7:70

Derivation of least square solution

$$|| e ||^{2} = (\frac{n}{2} - x\beta)^{T} (\frac{n}{2} - x\beta)$$

$$= \frac{n^{T}y}{2} - \frac{n^{T}x\beta}{2} + \frac{n^{T}x\beta$$

Derivation of least square solution

 $\chi^T \gamma = \chi^T \times \hat{\beta}$ X'~ dxN >> x (y - x p)=0 - NXI (d×1) =) xTe = 0 $(x^7 e)^T = o$ (12d) > e × = 0 = e × ŝ=o (1×1) er XB uncorvelared !!

Least square Loss function

 $\left|\left|e\right|\left(\frac{2}{2}+(\beta)=\sum_{i=1}^{k}Q_{i}(\beta)=\sum_{i=1}^{k}\left(\frac{x_{i}^{2}\beta-y_{i}}{x_{i}}\right)^{2}\right|$ $Q_{i}(\beta) = (X_{i}^{T}\beta - y_{i})^{2}$

in the final project $Q_{j}(\theta) = |x_{j}^{T}\theta - y_{j}|^{s}$ $\nabla Q_{i} = ? \qquad \frac{2Q_{i}}{2Q} = ?$

Convex set and convex function

 If a set is convex, any line connecting two points in the set is completely included in the set

* A convex function: the area above the curve is convex $f(\lambda x + (1 - \lambda)y) < \lambda f(x) + (1 - \lambda)f(y)$ * The least square
(a)
(a)
(b)

Credit: Dr. Kelvin Murphy

What's the dimension of matrix X^TX?

A. N × d B. d × N C. N × N D. d × d

X~ NXq

XT~ dxN

d -> tt of ferenes rexplanding un.

Is this statement true?

If the matrix **X^TX** does NOT have zero valued eigenvalues, it is invertible.

Training using least squares example

* Model:
$$y = \mathbf{x}^T \boldsymbol{\beta} + \xi = \mathbf{x}^{(1)} \beta_1 + \mathbf{x}^{(2)} \beta_2 + \xi$$

Training data

$$\widehat{\boldsymbol{\beta}}_1 = 2$$
$$\widehat{\boldsymbol{\beta}}_2 = -\frac{1}{3}$$

Prediction

If we train the model coefficients $\widehat{m{eta}}$, we can predict y_0^p from \mathbf{x}_0

$$y_0^p = \mathbf{x}_0^T \widehat{\boldsymbol{\beta}}$$

In the model $y = \mathbf{x}^{(1)}\beta_1 + \mathbf{x}^{(2)}\beta_2 + \xi$ with $\widehat{\boldsymbol{\beta}} = \begin{bmatrix} 2\\ -\frac{1}{3} \end{bmatrix}$ * The prediction for $\mathbf{x}_0 = \begin{bmatrix} 2\\ 1 \end{bmatrix}$ is $y_0^p = \mathbf{z} \times [\mathbf{\beta}_1 + \mathbf{\beta}_2] \times [\mathbf{\beta}_2 + \mathbf{\beta}_2]$ * The prediction for $\mathbf{x}_0 = \begin{bmatrix} 2\\ 1 \end{bmatrix}$ is $y_0^p = \mathbf{z} \times [\mathbf{\beta}_1 + \mathbf{\beta}_2] \times [\mathbf{\beta}_2 + \mathbf{\beta}_2]$

A linear model with constant offset

The problem with the model $y = \mathbf{x}^{(1)}\beta_1 + \mathbf{x}^{(2)}\beta_2 + \xi$ when $\chi'' = 0$, $\chi'' = 0$ is: Let's add a constant offset β_0 to the model $y = \beta_0 + \mathbf{x}^{(1)}\beta_1 + \mathbf{x}^{(2)}\beta_2 + \xi$

Training and prediction with constant offset

$$*$$
 The model $y = eta_0 + \mathbf{x}^{(1)}eta_1 + \mathbf{x}^{(2)}eta_2 + \xi = \mathbf{x}^Toldsymbol{eta}$ -

Training data:

r & irter Bo $\begin{bmatrix} 1 & x^{(1)} & x^{(2)} \end{bmatrix}$ $\widehat{\boldsymbol{\beta}} = (X^T X)^{-1} X^T \mathbf{y} = \begin{bmatrix} -3\\2\\\frac{1}{2} \end{bmatrix}$ $y_0^p = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{vmatrix} -3 \\ 2 \\ \frac{1}{2} \end{vmatrix} = -3$

Comparing our example models

$$y = \mathbf{x}^{(1)}\beta_1 + \mathbf{x}^{(2)}\beta_2 + \xi$$
 $y = \beta_0 + \mathbf{x}^{(1)}\beta_1 + \mathbf{x}^{(2)}\beta_2 + \xi$

Variance of the linear regression model

* The least squares estimate satisfies this property

$$var(\{y_i\}) = var(\{\mathbf{x}_i^T \hat{\boldsymbol{\beta}}\}) + var(\{\xi_i\})$$

$$\mathbf{y} = \mathbf{x} \hat{\boldsymbol{\beta}} + \mathbf{e} \qquad \mathbf{e} \perp \mathbf{x} \hat{\boldsymbol{\beta}}$$

* The random error is uncorrelated to the least square solution of linear combination of explanatory variables.

$$\chi^T \gamma = \chi^T \chi \hat{\beta}$$

Variance of the linear regression model: proof

* The least squares estimate satisfies this property $\mathbf{y} = \mathbf{x} (\mathbf{x} + \mathbf{z})$ $var(\{y_i\}) = var(\{\mathbf{x}_i^T \hat{\boldsymbol{\beta}}\}) + var(\{\xi_i\})$

Proof:
$$Vur(\mathcal{Y}) = vur(\mathcal{X}\beta) + vur(e)$$

+ $2 uv(\mathcal{X}\beta, e)$

$$\begin{array}{c} X\beta + e\\ C V (X,\beta,e) = 0 \end{array}$$

Variance of the linear regression model: proof

* The least squares estimate satisfies this property

$$var(\{y_i\}) = var(\{\mathbf{x}_i^T \widehat{\boldsymbol{\beta}}\}) + var(\{\xi_i\})$$

Proof:

$$var[y] = (1/N)([X\hat{\beta} - \overline{X\hat{\beta}}] + [\mathbf{e} - \overline{\mathbf{e}}])^T([X\hat{\beta} - \overline{X\hat{\beta}}] + [\mathbf{e} - \overline{\mathbf{e}}])$$

 $var[y] = (1/N)([X\hat{\beta} - \overline{X\hat{\beta}}]^T [X\hat{\beta} - \overline{X\hat{\beta}}] + 2[\mathbf{e} - \overline{\mathbf{e}}]^T [X\hat{\beta} - \overline{X\hat{\beta}}] + [\mathbf{e} - \overline{\mathbf{e}}]^T [\mathbf{e} - \overline{\mathbf{e}}])$

Because $\overline{\mathbf{e}} = 0$; $\mathbf{e}^T X \widehat{\boldsymbol{\beta}} = 0$ and $\mathbf{e}^T \mathbf{1} = 0$ due to Least square minimized

$$var[y] = (1/N)([X\hat{\beta} - \overline{X\hat{\beta}}]^T [X\hat{\beta} - \overline{X\hat{\beta}}] + [\mathbf{e} - \overline{\mathbf{e}}]^T [\mathbf{e} - \overline{\mathbf{e}}])$$
$$var[y] = var[X\hat{\beta}] + var[\mathbf{e}]$$

Evaluating models using R-squared

* The least squares estimate satisfies this property

$$var(\{y_i\}) = var(\{\mathbf{x}_i^T \widehat{\boldsymbol{\beta}}\}) + var(\{\xi_i\})$$

* This property gives us an evaluation metric called Rsquared

$$R^{2} = \frac{var(\{\mathbf{x}_{i}^{T}\widehat{\boldsymbol{\beta}}\})}{var(\{y_{i}\})}$$

We have $0 \le R^2 \le 1$ with a larger value meaning a better fit.

Q: What is R-squared if there is only one explanatory variable in the model?

 $if X = N \times I$ d = I $R^{2} \rightarrow r^{2}$ r is corr.

Q: What is R-squared if there is only one explanatory variable in the model?

$$\hat{y} = r \hat{x} + \varepsilon$$

$$var(\hat{y}) = r^{2} var(\hat{x}) + var(\varepsilon)$$

$$r^{2} = \frac{r^{2} var(\hat{x})}{var(\hat{y})} \quad var(\hat{x}) = 1$$

$$r^{2} = \frac{r^{2}}{var(\hat{y})} \quad var(\hat{y}) = 1$$

$$r^{2} = r^{2}$$

Q: What is R-squared if there is only one explanatory variable in the model?

R-squared would be **the correlation coefficient squared** (textbook pgs 43-44)

R-squared examples

Linear regression model for the Chicago census data

Call: lm(formula = HardshipIndex ~ ., data = dat)

Residuals:

Min	1Q	Median	3Q	Max
-15.7157	-1.9230	0.1301	1.9810	8.6719

Coefficients:

Estimate	Std. Error	t value	Pr(>ltl)	
105.1394	37.3622	2.814	0.006346	**
0.7189	0.2753	2.612	0.011014	*
0.6665	0.0781	8.534	1.90e-12	***
0.8023	0.1350	5.941	9.93e-08	***
0.7751	0.1063	7.293	3.64e-10	***
0.4807	0.1202	3.998	0.000156	***
-11.8819	3.1888	-3.726	0.000391	***
	105.1394 0.7189 0.6665 0.8023 0.7751 0.4807	105.139437.36220.71890.27530.66650.07810.80230.13500.77510.10630.48070.1202	105.139437.36222.8140.71890.27532.6120.66650.07818.5340.80230.13505.9410.77510.10637.2930.48070.12023.998	0.71890.27532.6120.0110140.66650.07818.5341.90e-120.80230.13505.9419.93e-080.77510.10637.2933.64e-100.48070.12023.9980.000156

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 3.9 on 70 degrees of freedom Multiple R-squared: 0.983, Adjusted R-squared: 0.9815 F-statistic: 673.9 on 6 and 70 DF, p-value: < 2.2e-16

Residual is normally distributed?

Ci

The Q-Q plot of the residuals is roughly normal

y = x. s+

Prediction for another community

[1] "PERCENT_OF_HOUSING_CROWDED" [2]"PERCENT HOUSEHOLDS BELOW POVERTY	4.7
	19.7
[3] "PERCENT_AGED_16p_UNEMPLOYED" [4]"PERCENT AGED 25p WITHOUT HIGH SC	12.9
HOOL_DIPLOMA"	19.5
[5] "PERCENT_AGED_UNDER_18_OR_OVER_64"	33.5
[6]"PER_CAPITA_INCOME"	Log(28202)

Predicted hardship index: 41.46038

Note: maximum of hardship index in the training data is 98, minimum is 1

The clusters of the Chicago communities: clusters and hardship

Clusters of community

-15

-40

-20

0 tSNE1 Hardship index

50

25

20

The clusters of the Chicago communities: per capital income and hardship

11.0

10.5 10.0 9.5

PER CAPITAL INCOME

Hardship index of communities

The clusters of the Chicago communities: without diploma and hardship

PERCENT_AGED_25p_WITHOUT _HIGH_SCHOOL_DIPLOMA

Assignments

Read Chapter 13 of the textbook

* Next time: More on linear regression

Additional References

- Robert V. Hogg, Elliot A. Tanis and Dale L. Zimmerman. "Probability and Statistical Inference"
- * Kelvin Murphy, "Machine learning, A Probabilistic perspective"

See you next time

See You!

