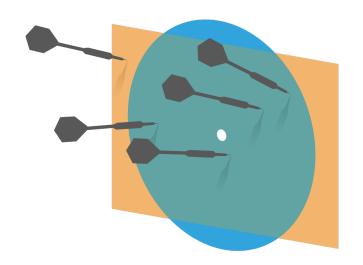
Probability and Statistics for Computer Science



"All models are wrong, but some models are useful"--- George Box

Credit: wikipedia

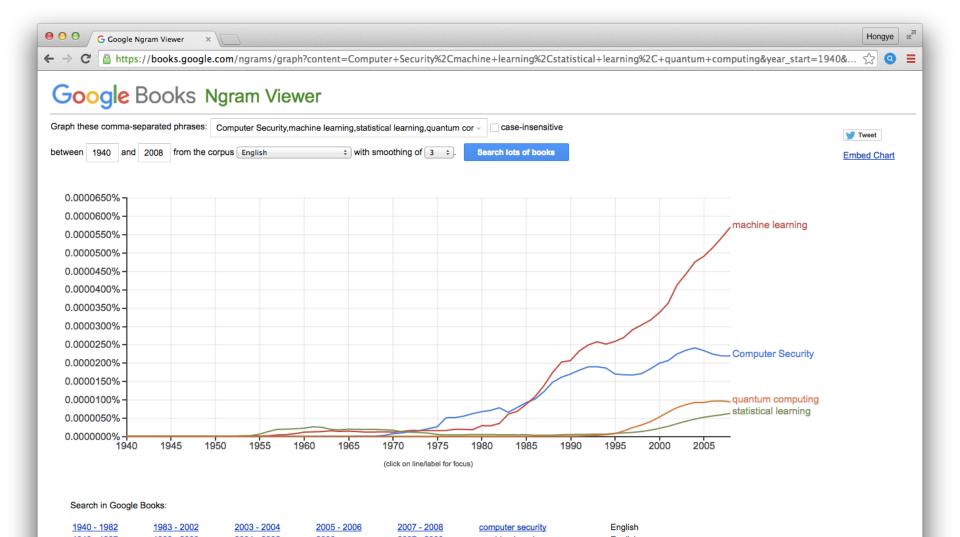
Last time

- * Stochastic Gradient Descent
- ** Naïve Bayesian Classifier

Objectives

- * Linear regression
 - * The problem
 - * The least square solution
 - * The training and prediction
 - ** The R-squared for the evaluation of the fit.

Some popular topics in Ngram



Regression models are Machine learning methods

- ** Regression models have been around for a while
- ** Dr. Kelvin Murphy's Machine Learning book has 3+ chapters on regression

Wait, have we seen the linear regression before?

It's about *Relationship* between data features

Example: does the Height of people relate to people's weight?

IDNO	BODYFAT	DENSITY	AGE	WEIGHT	HEIGHT
1	12.6	1.0708	23	154.25	67.75
2	6.9	1.0853	22	173.25	72.25
3	24.6	1.0414	22	154.00	66.25
4	10.9	1.0751	26	184.75	72.25
5	27.8	1.0340	24	184.25	71.25
6	20.6	1.0502	24	210.25	74.75
7	19.0	1.0549	26	181.00	69.75
8	12.8	1.0704	25	176.00	72.50
9	5.1	1.0900	25	191.00	74.00
10	12.0	1.0722	23	198.25	73.50

x: HIGHT, y: WEIGHT

Chicago social economic census

- * The census included 77 communities in Chicago
- * The census evaluated the average hardship index of the residents
- * The census evaluated the following parameters for each community:
 - **PERCENT_OF_HOUSING_CROWDED**
 - ****** PERCENT_**HOUSEHOLD_BELOW_POVERTY**
 - **PERCENT_AGED_16p_UNEMPLOYED**
 - ****** PERCENT_AGED_25p_WITHOUT_HIGH_SCHOOL_DIPLOMA
 - **PERCENT_AGED_UNDER_18_OR_OVER_64**
 - ***** PER_CAPITA_**INCOME**

Given a new community and its parameters, can you predict its average hardship index with all these parameters?

The regression problem

- Given a set of feature vectors x_i where each has a numerical label y_i, we want to train a model that can map unlabeled vectors to numerical values
- ** We can think of regression as fitting a line (or curve or hyperplane, etc.) to data
- Regression is like classification except that the prediction target is a number, not a class label. (Predicting class label can be considered a special case of regression)

Some terminology

- ** Suppose the dataset $\{(\mathbf{x}, y)\}$ consists of N labeled items (\mathbf{x}_i, y_i)
- If we represent the dataset as a table
 - * The d columns representing $\{x\}$ are called explanatory variables $\mathbf{x}^{(j)}$
 - ** The numerical column y is called the dependent variable

$\mathbf{x}^{(1)}$	$\mathbf{x}^{(2)}$	y
1	3	0
2	3	2
3	6	5

Variables of the Chicago census

```
[1] "PERCENT_OF_HOUSING_CROWDED"
[2] "PERCENT_HOUSEHOLDS_BELOW_POVERTY"
[3] "PERCENT_AGED_16p_UNEMPLOYED"
[4] "PERCENT_AGED_25p_WITHOUT_HIGH_SCHOOL_DIPLOMA"
[5] "PERCENT_AGED_UNDER_18_OR_OVER_64"
[6] "PER_CAPITA_INCOME"
[7] "HardshipIndex"
```

Which is the dependent variable in the census example?

- A. "PERCENT OF HOUSING CROWDED"
- B. "PERCENT_AGED_25p_WITHOUT_HIGH_SCHOOL_DIPLOMA"
- C. "HardshipIndex"
- D. "PERCENT_AGED_UNDER_18_OR_OVER_64"

Linear model

** We begin by modeling y as a linear function of $\mathbf{x}^{(j)}$ plus randomness

$$y = \mathbf{x}^{(1)} \beta_1 + \mathbf{x}^{(2)} \beta_2 + \dots + \mathbf{x}^{(d)} \beta_d + \xi$$

Where ξ is a zero-mean random variable that represents model error

In vector notation:

$$y = \mathbf{x}^T \boldsymbol{\beta} + \boldsymbol{\xi}$$

Where β is the d-dimensional vector of coefficients that we train

$\mathbf{x}^{(1)}$	$\mathbf{x}^{(2)}$	y
1	3	0
2	3	2
3	6	5

Each data item gives an equation

** The model: $y = \mathbf{x}^T \boldsymbol{\beta} + \xi = \mathbf{x}^{(1)} \beta_1 + \mathbf{x}^{(2)} \beta_2 + \xi$

Training data

$\mathbf{x}^{(1)}$	$\mathbf{x}^{(2)}$	y
1	3	0
2	3	2
3	6	5

Which together form a matrix equation

The model $y = \mathbf{x}^T \boldsymbol{\beta} + \xi = \mathbf{x}^{(1)} \beta_1 + \mathbf{x}^{(2)} \beta_2 + \xi$

$\mathbf{x}^{(1)}$	$\mathbf{x}^{(2)}$	y
1	3	0
2	3	2
3	6	5

Training data
$$\begin{bmatrix}0\\2\\5\end{bmatrix} = \begin{bmatrix}1&3\\2&3\\3&6\end{bmatrix} \begin{bmatrix}\beta_1\\\beta_2\end{bmatrix} + \begin{bmatrix}\xi_1\\\xi_2\\\xi_3\end{bmatrix}$$

Which together form a matrix equation

** The model $y = \mathbf{x}^T \boldsymbol{\beta} + \xi = \mathbf{x}^{(1)} \beta_1 + \mathbf{x}^{(2)} \beta_2 + \xi$

Training data

$\mathbf{x}^{(1)}$	$\mathbf{x}^{(2)}$	y
1	3	0
2	3	2
3	6	5

$$\begin{bmatrix} 0 \\ 2 \\ 5 \end{bmatrix} = \begin{bmatrix} 1 & 3 \\ 2 & 3 \\ 3 & 6 \end{bmatrix} \begin{bmatrix} \beta_1 \\ \beta_2 \end{bmatrix} + \begin{bmatrix} \xi_1 \\ \xi_2 \\ \xi_3 \end{bmatrix}$$

$$\mathbf{y} = X \cdot \boldsymbol{\beta} + \mathbf{e}$$

Q. What's the dimension of matrix X?

 $A. N \times d$

 $B. d \times N$

 $C. N \times N$

 $D.d \times d$

Training the model is to choose β

** Given a training dataset $\{(\mathbf{x},y)\}$, we want to fit a model $y=\mathbf{x}^T\boldsymbol{\beta}+\xi$

$$**$$
 Define $\mathbf{y}=egin{bmatrix} y_1 \ dots \ y_N \end{bmatrix}$ and $X=egin{bmatrix} \mathbf{x}_1^T \ dots \ \mathbf{x}_N^T \end{bmatrix}$ and $\mathbf{e}=egin{bmatrix} \xi_1 \ dots \ \xi_N \end{bmatrix}$

** To train the model, we need to choose $m{\beta}$ that makes ${f e}$ small in the matrix equation ${f y} = X \cdot {m{\beta}} + {f e}$

Training using least squares

st In the least squares method, we aim to $\mathsf{minimize} \left\| \mathbf{e}
ight\|^2$

$$\|\mathbf{e}\|^2 = \|\mathbf{y} - X\boldsymbol{\beta}\|^2 = (\mathbf{y} - X\boldsymbol{\beta})^T (\mathbf{y} - X\boldsymbol{\beta})$$

** Differentiating with respect to $oldsymbol{eta}$ and setting to zero

$$X^T X \boldsymbol{\beta} - X^T \mathbf{y} = 0$$

** If X^TX is invertible, the least squares estimate of the coefficient is:

$$\widehat{\boldsymbol{\beta}} = (X^T X)^{-1} X^T \mathbf{y}$$

Derivation of least square solution

$$||e||^{2} = (y - x\beta)^{T}(y - x\beta)$$

$$= y^{T}y - \beta^{T}x^{T}y - y^{T}x\beta + \beta^{T}x^{T}x\beta \qquad (1)$$
Useful derivatives involving vector/matrix
$$\frac{\partial (a^{T}Aa)}{\partial a} = (A + A^{T})a \qquad A \text{ is matrix}$$

$$\frac{\partial (b^{T}a)}{\partial a} = b$$
Since $b^{T}a$ is scalar
$$\frac{\partial (b^{T}a)}{\partial a} = \frac{\partial (b^{T}a)^{T}}{\partial a} = \frac{\partial (a^{T}b)}{\partial a} = b$$
Note $||e||^{2}$ is scalar, all items in (1) are scalar.
$$\frac{\partial ||e||^{2}}{\partial \beta} = o - x^{T}y - x^{T}y + 2x^{T}x\beta = o$$

$$\Rightarrow x^{T}x\beta = x^{T}y$$

$$\Rightarrow \beta = (x^{T}x)^{-1}x^{T}y$$

Convex set and convex function

If a set is convex, any line connecting two points in the set is completely included in the set

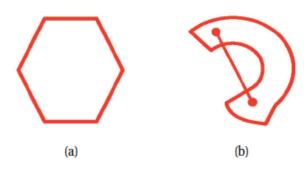
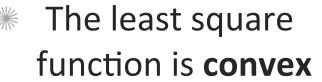
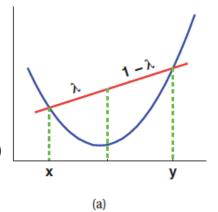
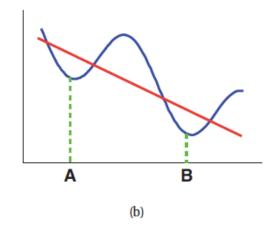


Figure 7.4 (a) Illustration of a convex set. (b) Illustration of a nonconvex set.

** A convex function: the area above the curve is convex $f(\lambda x + (1 - \lambda)y) < \lambda f(x) + (1 - \lambda)f(y)$







Credit: Dr. Kelvin Murphy

What's the dimension of matrix X^TX?

 $A. N \times d$

 $B. d \times N$

 $C. N \times N$

 $D.d \times d$

Is this statement true?

If the matrix **X**^T**X** does NOT have zero valued eigenvalues, it is invertible.

A. TRUE

B. FALSE

Training using least squares example

* Model:
$$y = \mathbf{x}^T \boldsymbol{\beta} + \xi = \mathbf{x}^{(1)} \beta_1 + \mathbf{x}^{(2)} \beta_2 + \xi$$

Training data

$\mathbf{x}^{(1)}$	$\mathbf{x}^{(2)}$	y
1	3	0
2	3	2
3	6	5

$$\widehat{\boldsymbol{\beta}} = (X^T X)^{-1} X^T \mathbf{y} = \begin{bmatrix} 2 \\ -\frac{1}{3} \end{bmatrix}$$

$$\widehat{\boldsymbol{\beta}}_1 = 2$$

$$\widehat{\boldsymbol{\beta}}_2 = -\frac{1}{3}$$

Prediction

** If we train the model coefficients $\widehat{m{eta}}$, we can predict y_0^p from \mathbf{x}_0

$$y_0^p = \mathbf{x}_0^T \widehat{\boldsymbol{\beta}}$$

** In the model $y=\mathbf{x}^{(1)}eta_1+\mathbf{x}^{(2)}eta_2+\xi$ with $\widehat{m{eta}}=egin{bmatrix}2\\-rac{1}{3}\end{bmatrix}$

$$st$$
 The prediction for $\mathbf{x}_0 = egin{bmatrix} 2 \ 1 \end{bmatrix}$ is y_0^p

** The prediction for $\mathbf{x}_0 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ is y_0^p

A linear model with constant offset

** The problem with the model $y=\mathbf{x}^{(1)}\beta_1+\mathbf{x}^{(2)}\beta_2+\xi$ is:it always predicts y_0^p = 0 if the input vector $\mathbf{x}_0=\begin{bmatrix}0\\0\end{bmatrix}$

** Let's add a constant offset eta_0 to the model

$$y = \beta_0 + \mathbf{x}^{(1)}\beta_1 + \mathbf{x}^{(2)}\beta_2 + \xi$$

Training and prediction with constant offset

* The model
$$y = \beta_0 + \mathbf{x}^{(1)}\beta_1 + \mathbf{x}^{(2)}\beta_2 + \xi = \mathbf{x}^T \boldsymbol{\beta} + \xi$$

* Training data:

1	$\mathbf{x}^{(1)}$	$\mathbf{x}^{(2)}$	y
1	1	3	0
1	2	3	2
1	3	6	5

$$\begin{bmatrix} 1 & x^{(1)} & x^{(2)} \end{bmatrix}$$

$$\widehat{\boldsymbol{\beta}} = (X^T X)^{-1} X^T \mathbf{y} = \begin{bmatrix} -3\\2\\\frac{1}{3} \end{bmatrix}$$

$$*$$
 For $\mathbf{x}_0 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

$$y_0^p = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{vmatrix} -3 \\ 2 \\ \frac{1}{2} \end{vmatrix} = -3$$

* The least squares estimate satisfies this property

$$var(\{y_i\}) = var(\{\mathbf{x}_i^T \widehat{\boldsymbol{\beta}}\}) + var(\{\xi_i\})$$

The random error is uncorrelated to the least square solution of linear combination of explanatory variables.

* The least squares estimate satisfies this property

$$var(\{y_i\}) = var(\{\mathbf{x}_i^T \widehat{\boldsymbol{\beta}}\}) + var(\{\xi_i\})$$

Proof:
$$y = \mathbf{X} \cdot \hat{\boldsymbol{\beta}} + \mathbf{e}$$

$$var[y] = (1/N)(y - \overline{y})^T(y - \overline{y})$$

$$var[y] = (1/N)([X\hat{\beta} - \overline{X\hat{\beta}}] + [\mathbf{e} - \overline{\mathbf{e}}])^T([X\hat{\beta} - \overline{X\hat{\beta}}] + [\mathbf{e} - \overline{\mathbf{e}}])$$

* The least squares estimate satisfies this property

$$var(\{y_i\}) = var(\{\mathbf{x}_i^T \widehat{\boldsymbol{\beta}}\}) + var(\{\xi_i\})$$

$$var[y] = (1/N)([X\hat{\beta} - \overline{X\hat{\beta}}] + [\mathbf{e} - \overline{\mathbf{e}}])^T([X\hat{\beta} - \overline{X\hat{\beta}}] + [\mathbf{e} - \overline{\mathbf{e}}])$$

* The least squares estimate satisfies this property

$$var(\{y_i\}) = var(\{\mathbf{x}_i^T \widehat{\boldsymbol{\beta}}\}) + var(\{\xi_i\})$$

$$var[y] = (1/N)([X\hat{\beta} - \overline{X\hat{\beta}}] + [\mathbf{e} - \overline{\mathbf{e}}])^T([X\hat{\beta} - \overline{X\hat{\beta}}] + [\mathbf{e} - \overline{\mathbf{e}}])$$

$$var[y] = (1/N)([X\hat{\beta} - \overline{X}\hat{\beta}]^T[X\hat{\beta} - \overline{X}\hat{\beta}] + 2[\mathbf{e} - \overline{\mathbf{e}}]^T[X\hat{\beta} - \overline{X}\hat{\beta}] + [\mathbf{e} - \overline{\mathbf{e}}]^T[\mathbf{e} - \overline{\mathbf{e}}])$$

* The least squares estimate satisfies this property

$$var(\{y_i\}) = var(\{\mathbf{x}_i^T \widehat{\boldsymbol{\beta}}\}) + var(\{\xi_i\})$$

$$var[y] = (1/N)([X\hat{\beta} - X\hat{\beta}] + [\mathbf{e} - \overline{\mathbf{e}}])^T([X\hat{\beta} - X\hat{\beta}] + [\mathbf{e} - \overline{\mathbf{e}}])$$

$$var[y] = (1/N)([X\hat{\beta} - \overline{X}\hat{\beta}]^T[X\hat{\beta} - \overline{X}\hat{\beta}] + 2[\mathbf{e} - \overline{\mathbf{e}}]^T[X\hat{\beta} - \overline{X}\hat{\beta}] + [\mathbf{e} - \overline{\mathbf{e}}]^T[\mathbf{e} - \overline{\mathbf{e}}])$$
Because $\overline{\mathbf{e}} = 0$; $\mathbf{e}^T X\hat{\beta} = 0$; $\mathbf{e}^T \mathbf{1} = 0$

* The least squares estimate satisfies this property

$$var(\{y_i\}) = var(\{\mathbf{x}_i^T \widehat{\boldsymbol{\beta}}\}) + var(\{\xi_i\})$$

$$var[y] = (1/N)([X\hat{\beta} - X\hat{\beta}] + [\mathbf{e} - \overline{\mathbf{e}}])^T([X\hat{\beta} - X\hat{\beta}] + [\mathbf{e} - \overline{\mathbf{e}}])$$

$$var[y] = (1/N)([X\hat{\beta} - \overline{X}\hat{\beta}]^T[X\hat{\beta} - \overline{X}\hat{\beta}] + 2[\mathbf{e} - \overline{\mathbf{e}}]^T[X\hat{\beta} - \overline{X}\hat{\beta}] + [\mathbf{e} - \overline{\mathbf{e}}]^T[\mathbf{e} - \overline{\mathbf{e}}])$$
Because $\overline{\mathbf{e}} = 0$; $\mathbf{e}^T X \hat{\boldsymbol{\beta}} = 0$ and $\mathbf{e}^T \mathbf{1} = 0$ Due to Least square minimized

$$var[y] = (1/N)([X\hat{\beta} - \overline{X}\hat{\beta}]^T[X\hat{\beta} - \overline{X}\hat{\beta}] + [\mathbf{e} - \overline{\mathbf{e}}]^T[\mathbf{e} - \overline{\mathbf{e}}])$$

* The least squares estimate satisfies this property

$$var(\{y_i\}) = var(\{\mathbf{x}_i^T \widehat{\boldsymbol{\beta}}\}) + var(\{\xi_i\})$$

Proof:

$$var[y] = (1/N)([X\hat{\beta} - X\hat{\beta}] + [\mathbf{e} - \overline{\mathbf{e}}])^T([X\hat{\beta} - X\hat{\beta}] + [\mathbf{e} - \overline{\mathbf{e}}])$$

$$var[y] = (1/N)([X\hat{\beta} - \overline{X}\hat{\beta}]^T [X\hat{\beta} - \overline{X}\hat{\beta}] + 2[\mathbf{e} - \overline{\mathbf{e}}]^T [X\hat{\beta} - \overline{X}\hat{\beta}] + [\mathbf{e} - \overline{\mathbf{e}}]^T [\mathbf{e} - \overline{\mathbf{e}}])$$

Because $\overline{\mathbf{e}}=0$; $\mathbf{e}^T X \widehat{\boldsymbol{\beta}}=0$ and $\mathbf{e}^T \mathbf{1}=0$ $\stackrel{\longleftarrow}{}$ Due to Least square minimized

$$var[y] = (1/N)([X\hat{\beta} - \overline{X}\hat{\beta}]^T[X\hat{\beta} - \overline{X}\hat{\beta}] + [\mathbf{e} - \overline{\mathbf{e}}]^T[\mathbf{e} - \overline{\mathbf{e}}])$$
$$var[y] = var[X\hat{\beta}] + var[\mathbf{e}]$$

Evaluating models using R-squared

* The least squares estimate satisfies this property

$$var(\{y_i\}) = var(\{\mathbf{x}_i^T \widehat{\boldsymbol{\beta}}\}) + var(\{\xi_i\})$$

** This property gives us an evaluation metric called R-squared

$$R^{2} = \frac{var(\{\mathbf{x}_{i}^{T}\widehat{\boldsymbol{\beta}}\})}{var(\{y_{i}\})}$$

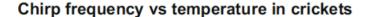
** We have $0 \le R^2 \le 1$ with a larger value meaning a better fit.

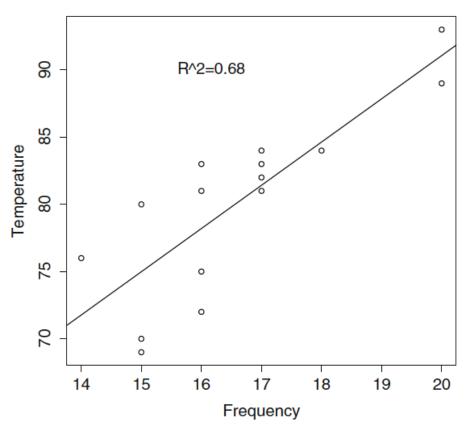
Q: What is R-squared if there is only one explanatory variable in the model?

Q: What is R-squared if there is only one explanatory variable in the model?

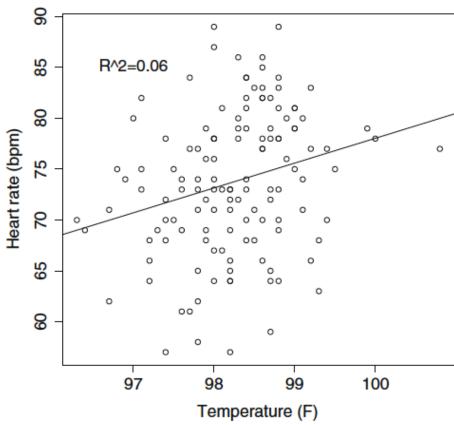
R-squared would be **the correlation coefficient squared** (textbook pgs 43-44)

R-squared examples





Heart rate vs temperature in humans



Comparing our example models

$$y = \mathbf{x}^{(1)}\beta_1 + \mathbf{x}^{(2)}\beta_2 + \xi$$

$$y = \beta_0 + \mathbf{x}^{(1)}\beta_1 + \mathbf{x}^{(2)}\beta_2 + \xi$$

$$\widehat{\boldsymbol{\beta}} = \begin{bmatrix} 2 \\ -\frac{1}{3} \end{bmatrix}$$

$\mathbf{x}^{(1)}$	$\mathbf{x}^{(2)}$	y	$\mathbf{x}^T \widehat{\boldsymbol{eta}}$
1	3	0	1
2	3	2	3
3	6	5	4

$$\widehat{\boldsymbol{\beta}} = \begin{bmatrix} -3 \\ 2 \\ \frac{1}{3} \end{bmatrix}$$

1	$\mathbf{x}^{(1)}$	$\mathbf{x}^{(2)}$	y	$\mathbf{x}^T \widehat{\boldsymbol{\beta}}$
1	1	3	0	0
1	2	3	2	2
1	3	6	5	5

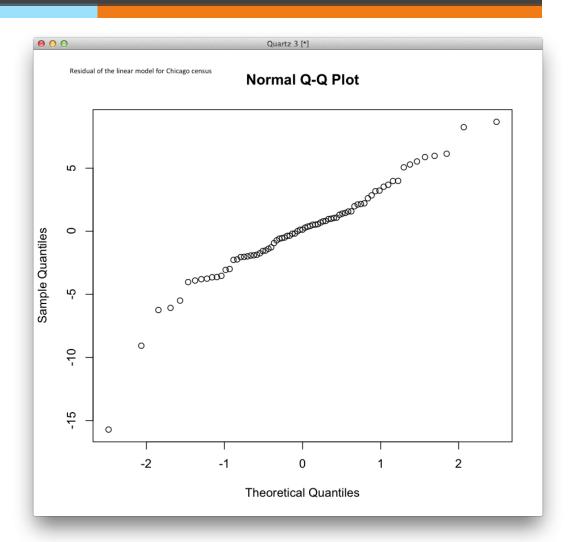
Linear regression model for the Chicago census data

```
Call:
lm(formula = HardshipIndex ~ ., data = dat)
Residuals:
             10 Median
    Min
                             30
                                     Max
-15.7157 -1.9230 0.1301 1.9810
                                  8.6719
Coefficients:
                                        Estimate Std. Error t value Pr(>|t|)
                                        105.1394
                                                   37.3622 2.814 0.006346 **
(Intercept)
                                          0.7189 0.2753 2.612 0.011014 *
PERCENT_OF_HOUSING_CROWDED
PERCENT_HOUSEHOLDS_BELOW_POVERTY
                                          0.6665 0.0781 8.534 1.90e-12 ***
PERCENT_AGED_16p_UNEMPLOYED
                                          0.8023 0.1350 5.941 9.93e-08 ***
PERCENT_AGED_25p_WITHOUT_HIGH_SCHOOL_DIPLOMA
                                          0.7751 0.1063 7.293 3.64e-10 ***
                                          PERCENT_AGED_UNDER_18_OR_OVER_64
PER_CAPITA_INCOME
                                        -11.8819
                                                    3.1888 -3.726 0.000391 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Residual standard error: 3.9 on 70 degrees of freedom
Multiple R-squared: 0.983, Adjusted R-squared: 0.9815
```

F-statistic: 673.9 on 6 and 70 DF, p-value: < 2.2e-16

Residual is normally distributed?

The Q-Q plot of the residuals is roughly normal



Prediction for another community

```
[1] "PERCENT_OF_HOUSING_CROWDED"
[2] "PERCENT_HOUSEHOLDS_BELOW_POVERTY
"
[3] "PERCENT_AGED_16p_UNEMPLOYED"
[4] "PERCENT_AGED_25p_WITHOUT_HIGH_SC
HOOL_DIPLOMA"
[5]
"PERCENT_AGED_UNDER_18_OR_OVER_64"
[6] "PER_CAPITA_INCOME"
```

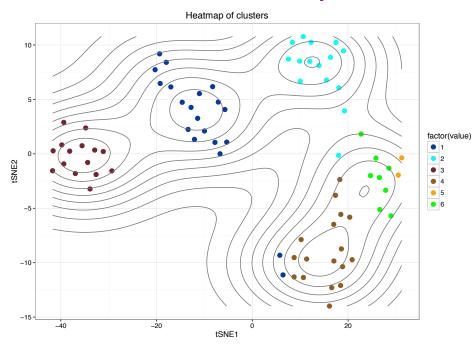
4.7	
19.7	
12.9	
19.5	
33.5	
Log(28202)	

Predicted hardship index: 41.46038

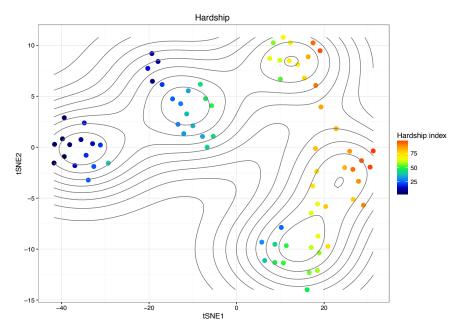
Note: maximum of hardship index in the training data is 98, minimum is 1

The clusters of the Chicago communities: clusters and hardship

Clusters of community



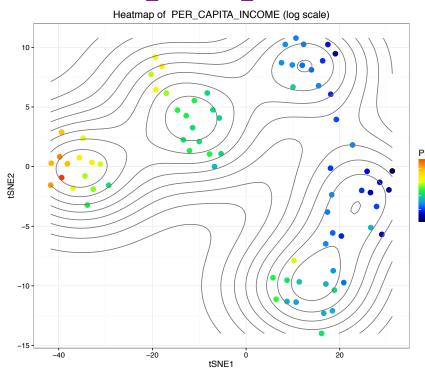
Hardship index of communities



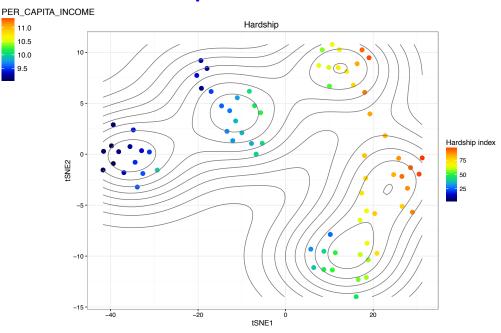
The clusters of the Chicago communities: per capital income and hardship

11.0

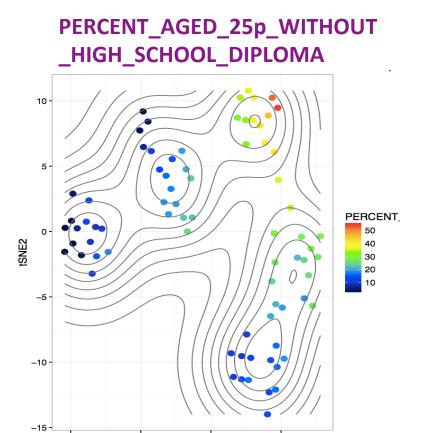
PER CAPITAL INCOME



Hardship index of communities

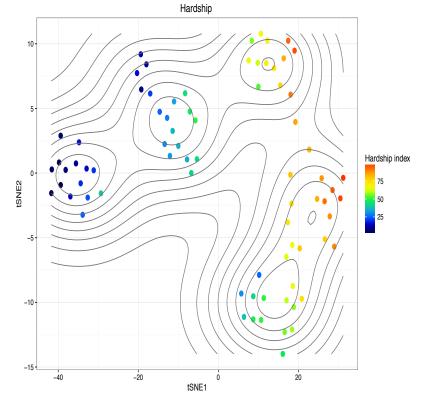


The clusters of the Chicago communities: without diploma and hardship



tSNE1

Hardship index of communities



Assignments

- ** Read Chapter 13 of the textbook
- ** Next time: More on linear regression

Additional References

- ** Robert V. Hogg, Elliot A. Tanis and Dale L. Zimmerman. "Probability and Statistical Inference"
- ** Kelvin Murphy, "Machine learning, A Probabilistic perspective"

See you next time

See You!

