Probability and Statistics for Computer Science

"Unsupervised learning is arguably more typical of human and animal learning..."--- Kelvin Murphy, former professor at UBC

Credit: wikipedia

Last time

粦 Linear Regression (II)
粦 Nearest Neighbor Regression

Objectives

粦 The curse of dimensionality

粦 Multivariate normal distribution

粦 Concept of unsupervised learning
粪 Clustering（I）

First let's take a look at a 3D object

Is there more fruit than peel?

Credit: Prof. David Varodayan

First take a look at a 3D object

Is there more fruit or more peel?

Total Volume: 2^{3}
Vol. of fruit: $(2-2 \varepsilon)^{3}$
Vol. of peel: $2^{3}-(2-2 \varepsilon)^{3}$
Fraction of peel: 1-(1-ع) ${ }^{3}$

If $\varepsilon=0.05$ fraction of peel ≈ 0.143

What if we have a d-dimensional orange?

Is there always more fruit?
A. YES
B. NO

In arbitrary d－dimension

粦 Total amount of orange

米 Amount of fruity part

粦 Fraction of orange that is peel

The curse of dimensions

If a dataset is uniformly distributed in a highdimensional cube (or other shape), majority of data is far from the origin.

The above can be roughly proved by calculating the expected distance from the origin

The Expected distance from the origin in d-dimensional cube

$$
\begin{aligned}
& E\left[\boldsymbol{x}^{T} \boldsymbol{x}\right]=E\left[\sum_{i=1}^{d} x_{i}^{2}\right]=\sum_{i=1}^{d} E\left[x_{i}^{2}\right] \\
& =\sum_{i=1}^{d} \int_{\text {cube }} x_{i}^{2} P(\boldsymbol{x}) d \boldsymbol{x}
\end{aligned}
$$

The Expected distance from the origin in d-dimensional cube

$$
\begin{aligned}
& E\left[\boldsymbol{x}^{T} \boldsymbol{x}\right]=E\left[\sum_{i=1}^{d} x_{i}^{2}\right]=\sum_{i=1}^{d} E\left[x_{i}^{2}\right] \\
& =\sum_{i=1}^{d} \int_{\text {cube }} x_{i}^{2} P(\boldsymbol{x}) d \boldsymbol{x} \\
& P(\boldsymbol{x})=P\left(x_{1}\right) P\left(x_{2}\right) \ldots P\left(x_{d}\right)
\end{aligned}
$$

The Expected distance from the origin in d-dimensional cube

$$
\begin{aligned}
& E\left[\boldsymbol{x}^{T} \boldsymbol{x}\right]=E\left[\sum_{i=1}^{d} x_{i}^{2}\right]=\sum_{i=1}^{d} E\left[x_{i}^{2}\right] \\
& =\sum_{i=1}^{d} \int_{\text {cube }} x_{i}^{2} P(\boldsymbol{x}) d \boldsymbol{x} \quad \text { Assuming the independence of each } \mathrm{x}_{\mathrm{i}} \\
& P(\boldsymbol{x})=P\left(x_{1}\right) P\left(x_{2}\right) \ldots P\left(x_{d}\right) \\
& \int_{-\infty}^{+\infty} P\left(x_{i}\right) d x_{i}=1 \quad \text { The general law of continuous probability density }
\end{aligned}
$$

The Expected distance from the origin in d-dimensional cube

$$
\begin{aligned}
& E\left[\boldsymbol{x}^{T} \boldsymbol{x}\right]=E\left[\sum_{i=1}^{d} x_{i}^{2}\right]=\sum_{i=1}^{d} E\left[x_{i}^{2}\right] \\
& =\sum_{i=1}^{d} \int_{\text {cube }} x_{i}^{2} P(\boldsymbol{x}) d \boldsymbol{x} \\
& P(\boldsymbol{x})=P\left(x_{1}\right) P\left(x_{2}\right) \ldots P\left(x_{d}\right) \\
& \int_{-\infty}^{+\infty} P\left(x_{i}\right) d x_{i}=1 \quad \text { Assuming the general law } \\
\Rightarrow & E\left[\boldsymbol{x}^{T} \boldsymbol{x}\right]=\sum_{i=1}^{d} \int_{-1}^{1} x_{i}^{2} P\left(x_{i}\right) d x_{i}
\end{aligned}
$$

A lot of data is far from the origin.

On average, data points are d/3 away from the origin (using square of distance)

$$
\begin{aligned}
E\left[\boldsymbol{x}^{T} \boldsymbol{x}\right] & =\sum_{i=1}^{d} \int_{-1}^{1} x_{i}^{2} P\left(x_{i}\right) d x_{i} \\
& =\sum_{i=1}^{d} \frac{1}{2} \int_{-1}^{1} x_{i}^{2} d x_{i} \\
& =\frac{d}{3}
\end{aligned}
$$

What do high-dimensional cubes look like?

What do high-dimensional cubes look like?

Petrie polygon Orthographic projections

Credit:

What does a convex object K in high dimensions look like?

The spikes are outliers in high dimension

Credit: G. Pfander editor, "Sampling theory, a Renaissance"

A general convex set
With this scaling, most of the volume of K is located around the Euclidean sphere of radius \sqrt{n}. Indeed, taking traces on both sides of the second equation in (1.2), we obtain

$$
\mathbb{E}\|X\|_{2}^{2}=n
$$

Therefore, by Markov's inequality, at least 90% of the volume of K is contained in a Euclidean ball of size $O(\sqrt{n})$. Much more powerful concentration results are known-the bulk of K lies very near the sphere of radius \sqrt{n} and the outliers have exponentially small volume. This is the content of the two major results in highdimensional convex geometry, which we summarize in the following theorem.

Distance between points grows with increasing dimensions

$$
\begin{aligned}
& E\left[d(\boldsymbol{u}, \boldsymbol{v})^{2}\right]=E\left[(\boldsymbol{u}-\boldsymbol{v})^{T}(\boldsymbol{u}-\boldsymbol{v})\right] \\
& =E\left[\boldsymbol{u}^{T} \boldsymbol{u}\right]+E\left[\boldsymbol{v}^{T} \boldsymbol{v}\right]-2 E\left[\boldsymbol{u}^{T} \boldsymbol{v}\right]
\end{aligned}
$$

High dimensional histogram of a data set is unhelpful

粦 Most bins will be empty
粦 Some bins will have single data
Very few will have more than one data point

Dealing with high dimensional data

Collect as much data as possible
Cluster data into blobs/cluster
Fit each blob with simple probability model

Multivariate normal distribution

粦 Extension of the normal distribution to multiple dimensions

粦 Bivariate normal distribution looks like this:
$f(x, y)=\frac{1}{2 \pi \sigma_{X} \sigma_{Y} \sqrt{1-\rho^{2}}} e^{-\frac{1}{2\left(1-\rho^{2}\right)}\left[\left(\frac{x-\mu_{X}}{\sigma_{X}}\right)^{2}-2 \rho\left(\frac{x-\mu_{X}}{\sigma_{X}}\right)\left(\frac{y-\mu_{Y}}{\sigma_{Y}}\right)+\left(\frac{y-\mu_{Y}}{\sigma_{Y}}\right)^{2}\right]}$
$-1<\rho<1$

Multivariate normal probability densitiy

A multivariate normal random vector \mathbf{X} of dimension d has this pdf:

$$
P(\boldsymbol{x})=\frac{1}{\sqrt{(2 \pi)^{d}|\Sigma|}} \exp \left(-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu})^{T} \Sigma^{-1}(\boldsymbol{x}-\boldsymbol{\mu})\right)
$$

where

$$
\boldsymbol{\mu}=E[\boldsymbol{x}] \text { is d-dimensional mean vector }
$$

$$
\Sigma=E\left[(\boldsymbol{x}-\boldsymbol{\mu})(\boldsymbol{x}-\boldsymbol{\mu})^{T}\right] \text { is the } d \times d \text { positive }
$$ definite covariance matrix

Multivariate MLE

Given a d-dimensional data set (\{x\}) we can fit a multivariate normal distribution using MLE

$$
P(\boldsymbol{x})=\frac{1}{\sqrt{(2 \pi)^{d}|\Sigma|}} \exp \left(-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu})^{T} \Sigma^{-1}(\boldsymbol{x}-\boldsymbol{\mu})\right)
$$

Unsupervised learning

Unsupervised learning means knowledge discovery from the feature vectors without labels．

Unsupervised learning may include：
粦 Discovering latent factors
粦 Discovering clusters
粦 Discovering graph structure
粦 Matrix completion

Q. Is this true?

Principal Component Analysis is an unsupervised learning method.
A. TRUE
B. FALSE

Dimension Reduction is unsupervised learning

粦 For example in Principal Component Analysis, no labels are assumed about the data.

PCA discovers the latent factors--- the important eigenvectors of the covariance matrix

The family of unsupervised learning

Dimension reduction

t-SNE

Clustering

K-means

Graph structure

Gaussian Graph model

Clustering as an unsupervised learning method

粦 Clustering identifies specific structure called clusters．
类 In clustering data is not labeled．By identifying clusters，the method assigns cluster membership labels to data．

粦 A cluster is formed so that
粦 Items within a cluster are＂close＂to each other Items in different clusters are＂far＂from each other

粦 Distance metric is important in clustering

Types of clustering method

By input type：
粦 Similarity based clustering：input is $\mathrm{N} \times \mathrm{N}$ similarity／ distance matrix

类 Feature based clustering：input is $\mathrm{N} \times \mathrm{D}$ feature matrix
By output type：
粦 Hierarchical clustering
粦 Top－down（divisive）
粦 Bottom－up（agglomerative）
粦 Flat clustering：
粦 Mixture models，K－means clustering，Spectral clustering．．．

Hierarchical Clustering (I)

Divisive clustering

粦 Treat the whole dataset as a single cluster
粦 Then split the data set recursively until you get a satisfactory clustering

Hierarchical Clustering（II）

Agglomerative clustering

粦 Treat each data item as its own cluster
粦 Then merge clusters until you get a satisfactory clustering
粦 A＂dendrogram＂is created

Hierarchical Clustering example

Agglomerative clustering of matrix of gene-tissue pairs of human samples.

粦 Columns are

 tissues; rows are genesClustering is done for both directions

K－means clustering

米
 Pick a value \mathbf{k} as the

 number of clusters粦 Select krandom cluster centers

粦 Iterate until
 convergence：

粦 Assign each data to the nearest center
Update the center within the cluster

（3）Source：wikipedia（4）

Q. What are the values of c1 and c2?

Given a dataset $\{0,2,4,6,24,26\}$, initialize the k means clustering algorithm with 2 cluster centers $c 1=3$ and c2 $=4$. What are the values of c1 and c2 after one iteration of k-means?

Q. What are the values of c1 and c2?

Given a dataset $\{0,2,4,6,24,26\}$, initialize the k means clustering algorithm with 2 cluster centers c1 $=3$ and c2 $=4$. What are the values of c1 and c2 after two iterations of k-means?

What does k-means do mathematically?

It's an minimization of a cost function

$$
\begin{aligned}
\boldsymbol{\phi}(\delta, \boldsymbol{c}) & =\sum_{i, j} \delta_{i, j}\left[\left(\boldsymbol{x}_{i}-\boldsymbol{c}_{j}\right)^{T}\left(\boldsymbol{x}_{i}-\boldsymbol{c}_{j}\right)\right] \\
& =\sum_{i}^{N} \sum_{j}^{k} \delta_{i, j}\left\|\boldsymbol{x}_{i}-\boldsymbol{c}_{j}\right\|^{2} \quad \delta_{i, j}=\left\{\begin{array}{cc}
1 & \text { if } \boldsymbol{x}_{i} \in \text { cluster } j \\
0 & \text { otherwise }
\end{array}\right.
\end{aligned}
$$

Cost is defined by the sum of squared distances of each data point from its cluster center

K-means clustering example: Iris

True labels

			-2	2.5
		$\begin{array}{\|ccccc} -7 & & 1 & 1 \\ -6 & & 4 & 5 & 6 \\ -5 & & & \\ -4 & \text { Petal } & \\ \hline & & \text { Length } & 4 \\ 3 \\ 1 & 2 & 3 & 4 & \\ 1 & 1 & 1 & 1 & 1 \\ \hline \end{array}$		$\begin{aligned} & \text {-吅 } \\ & \text { 蹅 } \end{aligned}$

2 clusters

	$\left.\begin{array}{rrrrr}-3 & & 1 & 2 & 3 \\ -2 & & & & \\ -1 & \text { Sepal } & \\ & \text { Width } & 0 \\ & & & -1\end{array}\right]$		
-2 0 1 2 -1 Sepal -0 Length 0 -2 -1 0 -1 -1 1 $-2-1$ $-$			

K-means clustering example: Iris

True labels

3 clusters

	-3 1 1 1 -2 1 2 3 -1 Sepal Width 0 -1 -2 -1 0 -2 1 1 1 		
1 1 1 -2 0 1 2 -1 Sepal -0 Length 0 -1 -2 -1 0			

K-means clustering example: Iris

True labels

			-2	2.5
		$\begin{array}{\|ccccc} -7 & & 1 & 1 \\ -6 & & 4 & 5 & 6 \\ -5 & & & \\ -4 & \text { Petal } & \\ \hline & & \text { Length } & 4 \\ 3 \\ 1 & 2 & 3 & 4 & \\ 1 & 1 & 1 & 1 & 1 \\ \hline \end{array}$		$\begin{aligned} & \text {-吅 } \\ & \text { 蹅 } \end{aligned}$

4 clusters

			-1.5 0.00 .5 1.0 1.5 -1.0 -0.5 Petal -0.0 Width $0.0-0.5-$ $-1.0-$ -1.5 -0.5 $-1.5-$
	-3 1 1 -2 2 3 -1 Sepal Width 0 -1 -2 -1 0 -2$-$		
$\left.\begin{array}{\|cccc}\hline-2 & 0 & 1 & 2 \\ -1 & \text { Sepal } & \\ -0 & \text { Length } & 0 \\ & & & -1 \\ -2 & -1 & 0 & \\ 1 & 1 & 1 & -2\end{array}\right]$			

How to choose the value of k?

Sometimes we have the knowledge from the data set.
Sometimes we have some other natural way to choose k .
Otherwise given the cost function, we may perform clustering for many k values and choose k from the knee of the cost function empirically.

Choose k from the cost function curve

Which is best?
Still depends on the application

Usually we want fewer clusters.

Some variants of k-means clustering

Soft assignment allows some data items to belong to multiple clusters with weights associated with each cluster

Hierarchical k-means speeds up clustering for very large datasets

K-medioids allows clustering of data that cannot be averaged

Q. What is different between a hierarchical clustering (hc) and k-means?

A. HC produces dendrogram while k-means results in only flat clusters.
B. HC doesn't need to choose number of clusters while k-means needs that step.
C. HC has higher order time complexity than k-means
D. All the above.

K－means clustering example：Portugal consumers

The dataset consists of the annual grocery spending of 440 customers

粦 Each customer＇s spending is recorded in 6 features：
粦 fresh food，milk，grocery，frozen，detergents／paper， delicatessen

粦 Each customer is labeled by： 6 labels in total
粦 Channel（Channel 1 \＆2）（Horeca 298，Retail 142）
粦 Region（Region 1， 2 \＆3）（Lisbon 77，Oporto 47，Other 316）

Lisbon, Portugal

Oporto, Portugal

Visualization of the data

粦 Visualize the data with scatter plots We do see that some features are correlated.

But overall we do not see significant structure or groups in the data.

Scatter Plot Matrix

Do kmeans and choose k through the cost function

It's good to pick a \mathbf{k} around the knee:
I choose 6 for it matches the number of labels

Visualization of the data (PCA)

PCA does show some separation.
 Colors are the clusters

Data points show large range of dynamics!

PCA_sells

Do log transform of the data

Log transform the data

粦 Do scatter plot matrix after the log transform

粦 Do the kmeans and color the clusters identified by kmeans

PCA after log transformation: Clusters

PCA_sells
Colors show the clusters
identified by kmeans

PCA after log transformation

PCA_sells
Colors show the Channel-region labels

What does this tell us?

PCA after log transformation

PCA_sells
Colors show the Channel-region labels

Channels differ a lot

Assignments

Read Chapter 11 of the textbook

Next time: Clustering (II) \& intro. Of Markov Chain

Additional References

䊩 Robert V. Hogg, Elliot A. Tanis and Dale L. Zimmerman. "Probability and Statistical Inference"

粦 Kelvin Murphy, "Machine learning, A Probabilistic perspective"

See you next time

See You!

