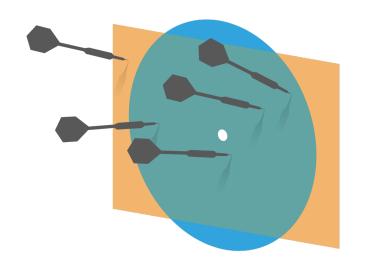
Probability and Statistics for Computer Science



"Unsupervised learning is arguably more typical of human and animal learning..."--- Kelvin Murphy, former professor at UBC

Credit: wikipedia

Last time

- ***** Curse of dimensions
- **# Unsupervised learning**
- * Clustering

Objectives

* Application of Clustering Christer center Histogram

* Markov chain (1)

cond: +:onal prob.

coming back is Marrix

Q. Is k-means clustering deterministic?

A. Yes

B. No

K-means clustering example: Portugal consumers

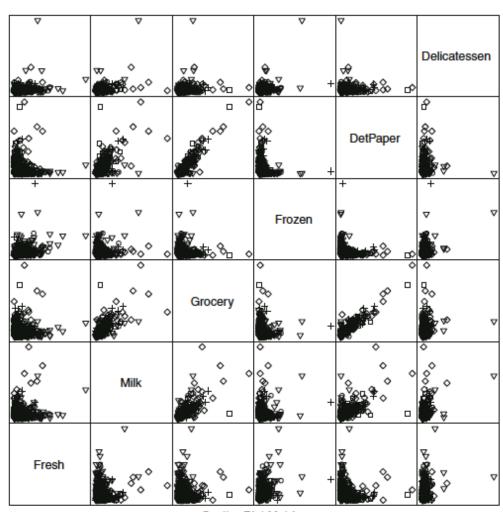
- * The dataset consists of the annual grocery spending of 440 customers
- Each customer's spending is recorded in 6 features:
 - # fresh food, milk, grocery, frozen, detergents/paper, delicatessen
- Each customer is labeled by: 6 labels in total
 - * Channel (Channel 1 & 2) (Horeca 298, Retail 142)
 - * Region (Region 1, 2 & 3) (Lisbon 77, Oporto 47, Other 316)

Lisbon, Portugal

Oporto, Portugal

Visualization of the data

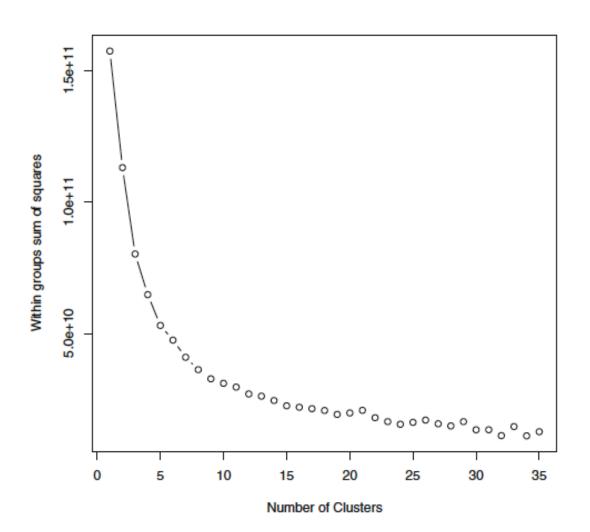
- Wisualize the data with scatter plots
- We do see that some features are correlated.
- But overall we do not see significant structure or groups in the data.



Scatter Plot Matrix

Do kmeans and choose k through the cost function

It's good to pick a **k** around the knee:
I choose 6 for it matches the number of labels

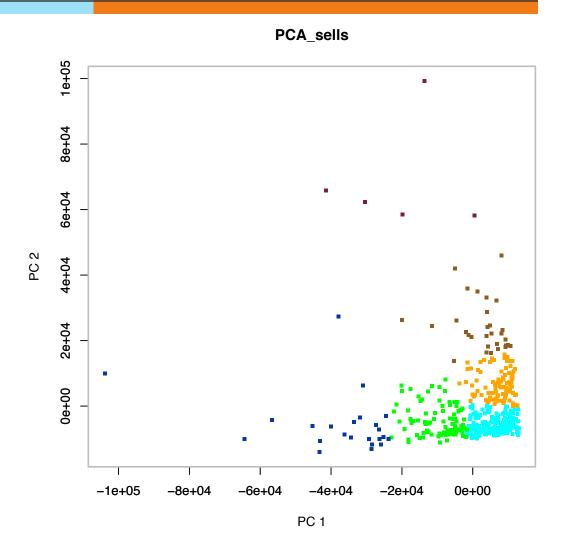


Visualization of the data (PCA)

PCA does show some separation.Colors are the clusters

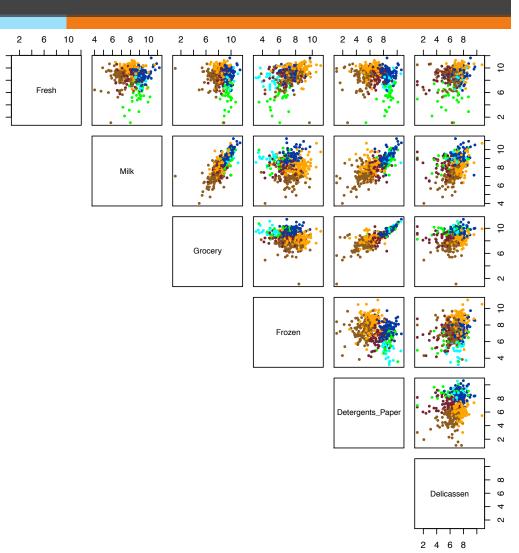
Data points show large range of dynamics!

each det is and



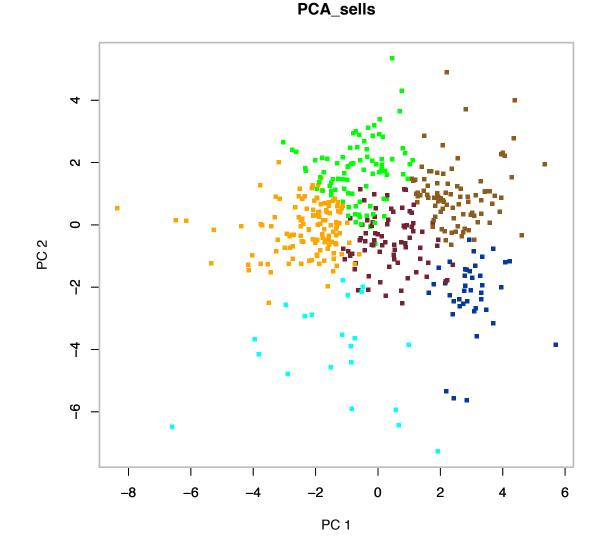
Do log transform of the data

- * Log transform the data
- Do scatter plot matrix after the log transform
- Do the kmeans and color the clusters identified by k-means



PCA after log transformation: Clusters

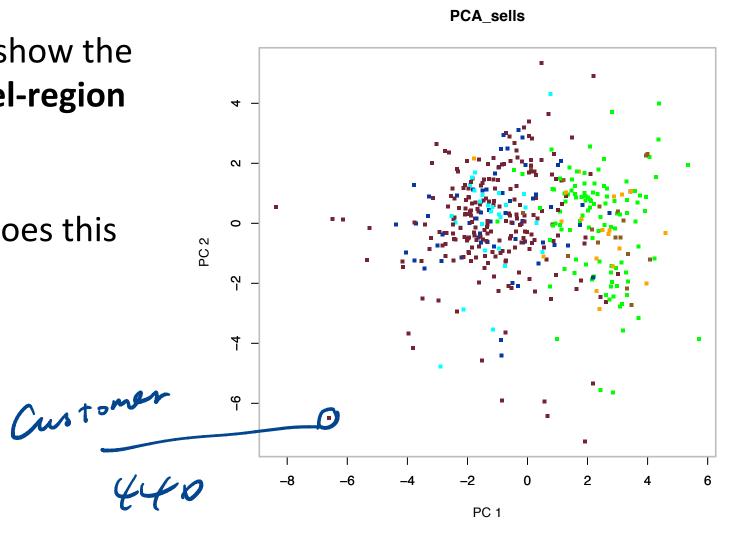
Colors show the clusters identified by k-means



PCA after log transformation

Colors show the **Channel-region** labels

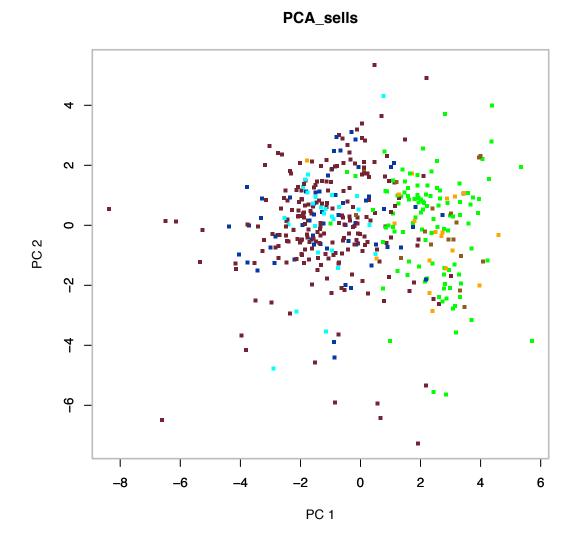
What does this tell us?



PCA after log transformation

Colors show the Channel-region labels

Channels differ a lot



Cluster center histogram of the Portugal grocery spending data

For each channel/ region, we make a histogram of customers that map to each of the 6 cluster centers.

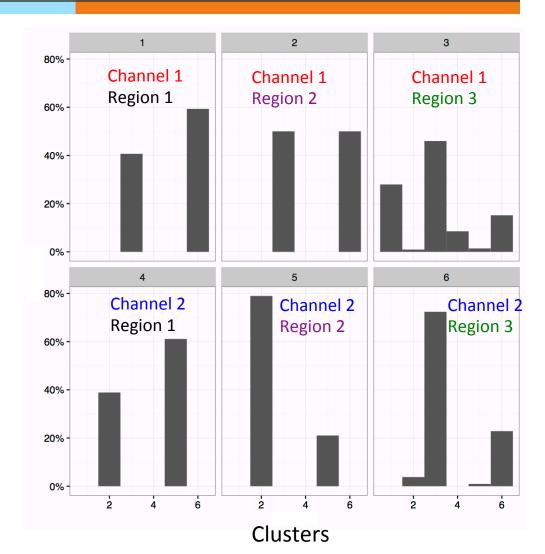
What do you see?

Channel1: Horeca Channel2: Retail

Region1: Lisbon Region2: Oporto Region3: Other

Cluster center histogram of the Portugal grocery spending data

- For each channel/ region, we make a histogram of customers that map to each of the 6 cluster centers.
- ** Channels are significantly different!
- * Region 3 is special
- # Is it enough to plot the percentage?



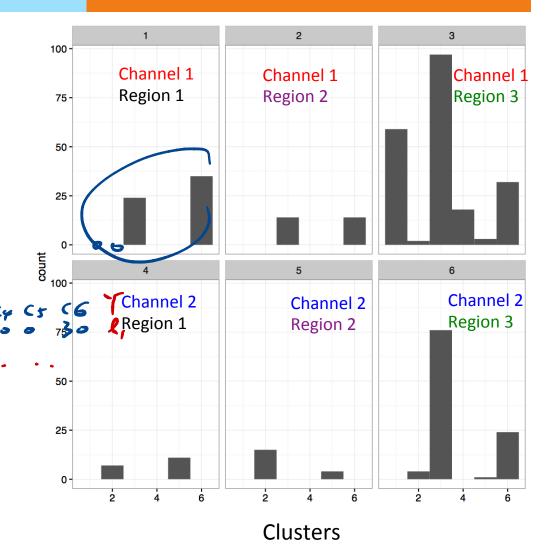
Cluster center histogram of the Portugal grocery spending data

For each channel/ region, we make a histogram of customers that map to each of the 6 cluster centers.

** Channels are significantly different!

Region 3 is special

Count matters depending on the purpose



Q. What can we do with cluster center histograms?

A. investigate the feature patterns of data groups

B. Classify new data with the cluster center histograms.

C. Both A and B.

Markou chain

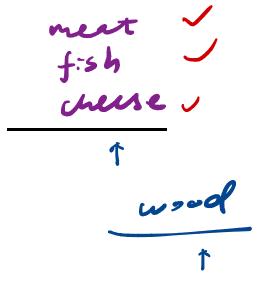
In a class, students are either up-to-date or behind regarding progress. If a student is up-to-date, the student has 0.8 probability remaining up-to-date, if a student is behind, the student has 0.6 probability becoming up-to-date. Suppose the course is so long that it runs life long, what is the probability any student eventually gets up-to-date?

Markov Chain

- * Motivation
- * Definition of Markov model
- Graph representation Markov chain
- ** Transition probability matrix
- * The stationary Markov chain
- * The pageRank algorithm

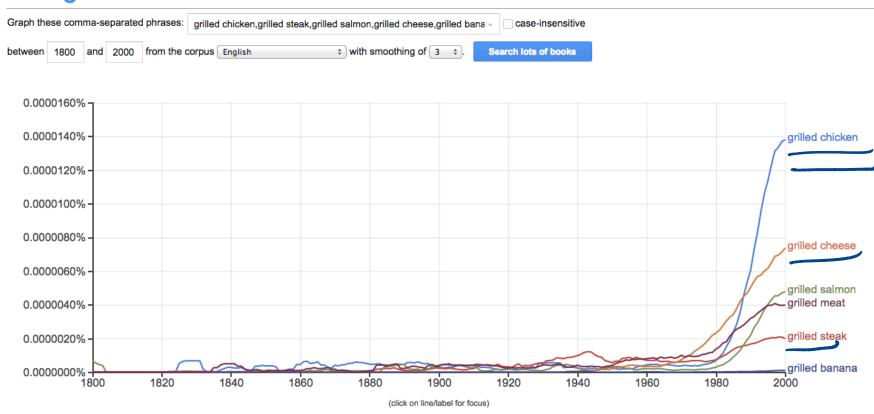
An example of dependent events in a sequence

I had a glass of wine with my grilled



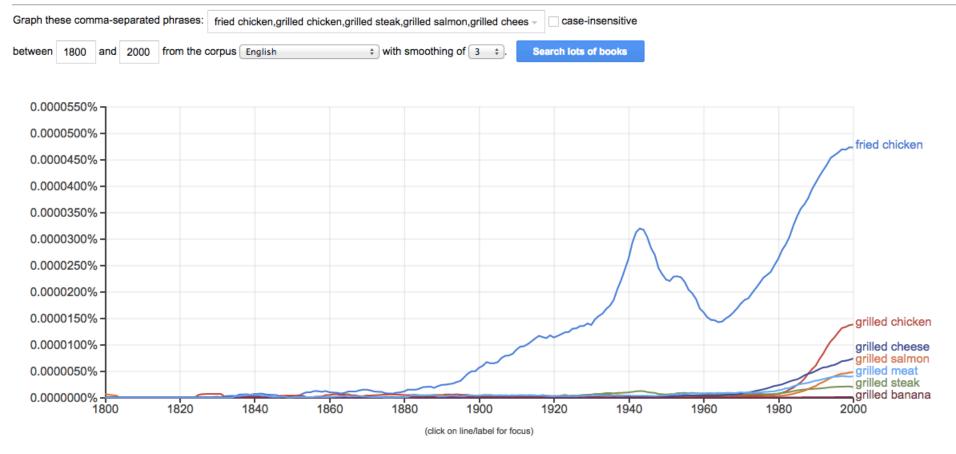
An example of dependent events in a sequence

Google Books Ngram Viewer



An example of dependent events in a sequence

Google Books Ngram Viewer



Markov chain

** Markov chain is a process in which outcome of any trial in a sequence is conditioned by the outcome of the trial immediately preceding, but not by earlier ones.

** Such dependence is called \downarrow chain dependence $P(x_n)$

Andrey Markov (1856-1922)

Markov chain in terms of probability

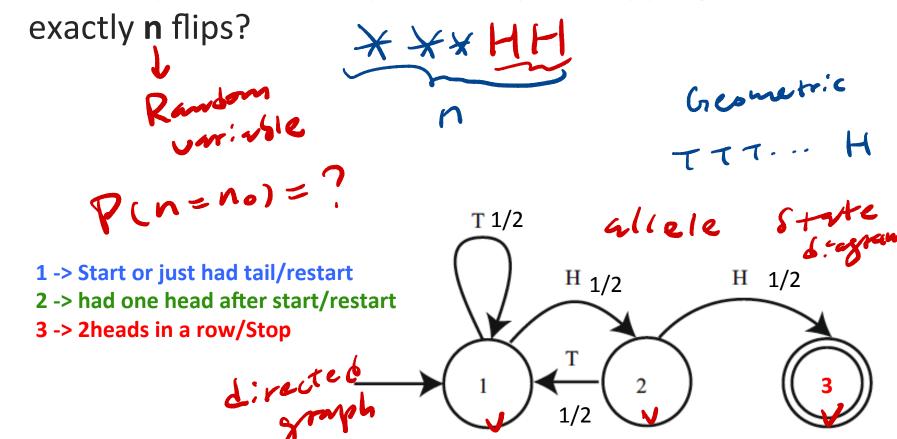
- ** Let X_0 , X_1 ,... be a sequence of discrete finite-valued random variables
- ** The sequence is a Markov chain if the probability distribution X_t only depends on the distribution of the immediately preceding random variable X_{t-1}

$$P(X_t|X_0...,X_{t-1}) = P(X_t|X_{t-1})$$

If the conditional probabilities (transition probabilities) do **NOT** change with time, it's called constant Markov chain. $P(X_t|X_{t-1}) = P(X_{t-1}|X_{t-2}) = \dots = P(X_1|X_0)$

Coin example

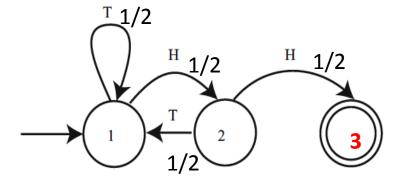
* Toss a fair coin until you see two heads in a row and then stop, what is the probability of stopping after



The model helps form recurrence formula

** Let \mathcal{P}_n be the probability of stopping after **n** flips

$$p_1=0$$
 $p_2=1/4$ $p_3=1/8$ $p_4=1/8$... $p_4=1/8$...

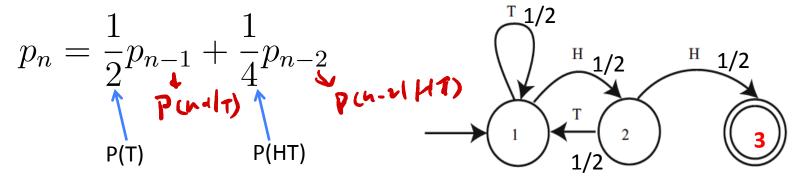


The model helps form recurrence formula

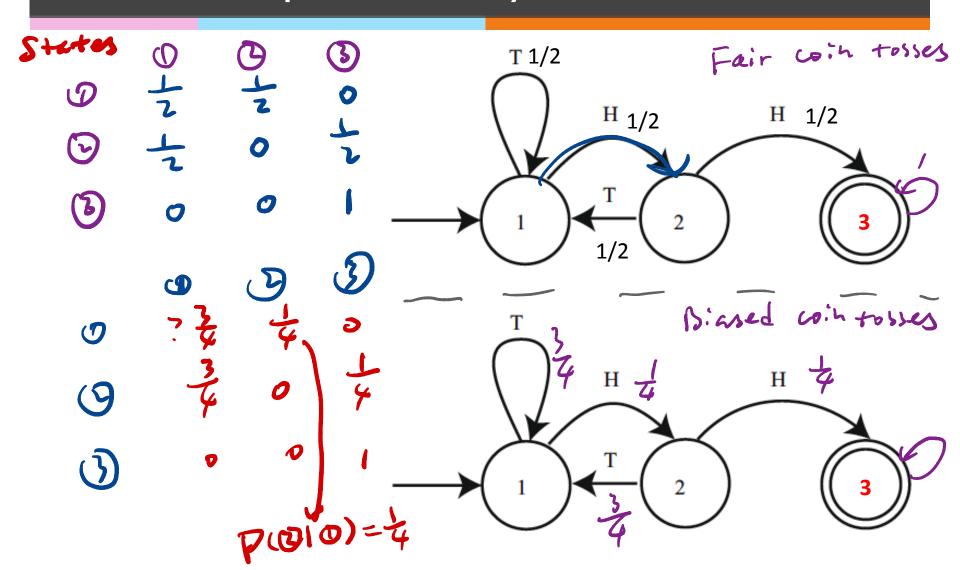
** Let \mathcal{P}_n be the probability of stopping after **n** flips

$$p_1 = 0$$
 $p_2 = 1/4$ $p_3 = 1/8$ $p_4 = 1/8$...

- ** If n > 2, there are two ways the sequence starts
 - * Toss T and finish in n-1 tosses
 - Or toss HT and finish in n-2 tosses
- **So we can derive a recurrence relation**

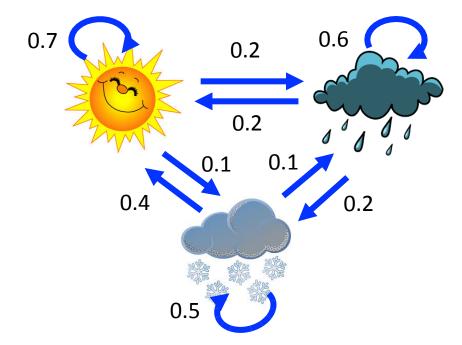


Transition probability btw states



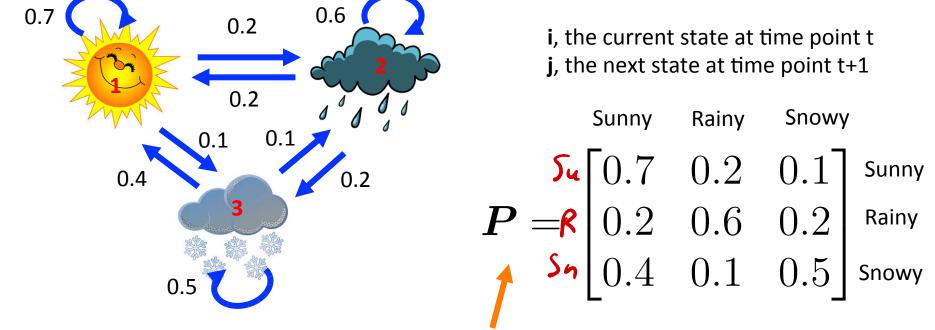
Transition probability matrix: weather model

* Let's model daily weather as one of the three states (Sunny, Rainy, and Snowy) with Markov chain that has the transition probabilities as shown here.



Transition probability matrix: weather model

* Let's model daily weather as one of the three states (Sunny, Rainy, and Snowy) with Markov chain that has the transition probabilities as shown here.



The transition probability matrix

Q: The transition probabilities for a node sum to 1

A. Yes.

B. No.

Only the row sum is 1, that is: the probabilities associated with outgoing arrows sum to 1.

P:3 as transition prob. matrix

$$\pi_0 = \begin{bmatrix} 0 & 1 & 0 \\ 0.7 & 0.2 & 0.1 \\ 0.2 & 0.6 & 0.2 \\ 0.4 & 0.1 & 0.5 \end{bmatrix}$$

$$P(Snowy) \text{ for next day? tell}$$

$$\pi_1 = \pi_0 P$$

$$= [0.7]$$

$$= [0.7]$$

$$= [0.7]$$

$$= [0.7]$$

$$= [0.7]$$

$$= [0.7]$$

$$= [0.7]$$

$$= [0.7]$$

$$= [0.7]$$

$$= [0.7]$$

$$= [0.7]$$

$$= [0.7]$$

$$= [0.7]$$

$$= [0.7]$$

$$= [0.7]$$

$$= [0.7]$$

$$= [0.7]$$

$$= [0.7]$$

$$= [0.7]$$

$$= [0.7]$$

$$= [0.7]$$

$$= [0.7]$$

$$= [0.7]$$

$$= [0.7]$$

$$= [0.7]$$

$$= [0.7]$$

$$= [0.7]$$

$$= [0.7]$$

Additional References

- ** Robert V. Hogg, Elliot A. Tanis and Dale L. Zimmerman. "Probability and Statistical Inference"
- ** Kelvin Murphy, "Machine learning, A Probabilistic perspective"

See you next time

See You!

