Probability and Statistics for Computer Science

"Unsupervised learning is arguably more typical of human and animal learning..."--- Kelvin Murphy, former professor at UBC

Credit: wikipedia

Last time

粦 Curse of dimensions

絭 Unsupervised learning
粦 Clustering

Objectives

Q. Is k-means clustering deterministic?

A. Yes
B. No

K－means clustering example：Portugal consumers

The dataset consists of the annual grocery spending of 440 customers

粦 Each customer＇s spending is recorded in 6 features：
粦 fresh food，milk，grocery，frozen，detergents／paper， delicatessen

粦 Each customer is labeled by： 6 labels in total
粦 Channel（Channel 1 \＆2）（Horeca 298，Retail 142）
粦 Region（Region 1， 2 \＆3）（Lisbon 77，Oporto 47，Other 316）

Lisbon, Portugal

Oporto, Portugal

Visualization of the data

粦 Visualize the data with scatter plots We do see that some features are correlated.

But overall we do not see significant structure or groups in the data.

Scatter Plot Matrix

Do kmeans and choose k through the cost function

It's good to pick a \mathbf{k} around the knee:
I choose 6 for it matches the number of labels

Visualization of the data (PCA)

PCA does show some separation.
 Colors are the clusters

Data points show large range of dynamics!

PCA_sells

Do log transform of the data

Log transform the data

粦 Do scatter plot matrix after the log transform

粦 Do the kmeans and color the clusters identified by kmeans

PCA after log transformation: Clusters

PCA_sells
Colors show the clusters
identified by kmeans

PCA after log transformation

PCA_sells
Colors show the Channel-region labels

What does this tell us?

PCA after log transformation

PCA_sells
Colors show the Channel-region labels

Channels differ a lot

Cluster center histogram of the Portugal grocery spending data

For each channel/ region, we make a histogram of customers that map to each of the 6 cluster centers.

What do you see?
Channel1: Horeca Channel2: Retail
Region1: Lisbon
Region2: Oporto Region3: Other

Clusters

Cluster center histogram of the Portugal grocery spending data

For each channel/ region, we make a histogram of customers that map to each of the 6 cluster centers.

Channels are significantly different!

Region 3 is special
Is it enough to plot the percentage?

Cluster center histogram of the Portugal grocery spending data

粦 For each channel/ region, we make a histogram of customers that map to each of the 6 cluster centers.

Channels are significantly different!

Region 3 is special
Count matters depending on the purpose

Clusters

Q. What can we do with cluster center histograms?

A. investigate the feature patterns of data groups
B. Classify new data with the cluster center histograms.
C. Both A and B.

Markov Chain

粦 Motivation
粦 Definition of Markov model
粦 Graph representation－Markov chain
粦 Transition probability matrix
粦 The stationary Markov chain
粦 The pageRank algorithm

Motivation

粦 So far，the processes we learned such as Bernoulli and Poisson process are sequences of independent trials．

粦 There are a lot of real world situations where sequences of events are Not independent In comparison．

米 Markov chain is one type of characterization of a series of dependent trials．

An example of dependent events in a sequence

I had a glass of wine with my grilled

An example of dependent events in a sequence

Google Books Ngram Viewer

An example of dependent events in a sequence

Google Books Ngram Viewer

Graph these comma-separated phrases:
fried chicken,grilled chicken,grilled steak,grilled salmon,grilled chees
case-insensitive
between 1800 and 2000 from the corpus English
\uparrow with smoothing of 3 .
Search lots of books

Markov chain

粦 Markov chain is a process in which outcome of any trial in a sequence is conditioned by the outcome of the trial immediately preceding, but not by earlier ones.

粦 Such dependence is called chain dependence

Markov chain in terms of probability

粦 Let X_{0}, X_{1}, \ldots be a sequence of discrete finite－valued random variables

粦 The sequence is a Markov chain if the probability distribution X_{t} only depends on the distribution of the immediately preceding random variable X_{t-1}

$$
P\left(X_{t} \mid X_{0} \ldots, X_{t-1}\right)=P\left(X_{t} \mid X_{t-1}\right)
$$

粦 If the conditional probabilities（transition probabilities） do NOT change with time，it＇s called constant Markov chain．

$$
P\left(X_{t} \mid X_{t-1}\right)=P\left(X_{t-1} \mid X_{t-2}\right)=\ldots=P\left(X_{1} \mid X_{0}\right)
$$

Coin example

粦 Toss a fair coin until you see two heads in a row and then stop, what is the probability of stopping after exactly \mathbf{n} flips?

粦 Use a state diagram, which is a directed graph. Circles are the states of likely outcomes. Arrow directions show the direction of transitions. Numbers over the arrows show transition probabilities.

1 -> Start or just had tail/restart
2 -> had one head after start/restart
3 -> 2heads in a row/Stop

Is this a Markov chain? And why?

Is this a Markov chain? And why?

Yes. Because for each trial, the probability distribution of the outcomes is only conditioned on the previous trial.

The model helps form recurrence formula

Let p_{n} be the probability of stopping after \mathbf{n} flips

$$
p_{1}=0 \quad p_{2}=1 / 4 \quad p_{3}=1 / 8 \quad p_{4}=1 / 8 \quad \ldots
$$

The model helps form recurrence formula

Let p_{n} be the probability of stopping after \mathbf{n} flips

$$
p_{1}=0 \quad p_{2}=1 / 4 \quad p_{3}=1 / 8 \quad p_{4}=1 / 8
$$

粦 If $n>2$ ，there are two ways the sequence starts
粦 Toss T and finish in $\mathrm{n}-1$ tosses
粦 Or toss HT and finish in $\mathrm{n}-2$ tosses
粦 So we can derive a recurrence relation

$$
p_{n}=\frac{1}{2} p_{n-1}+\frac{1}{4} p_{\mathrm{P}(\mathrm{~T})}^{p_{n-2}} \underset{\mathrm{P}(\mathrm{HT})}{ }
$$

Transition probability btw states

Transition probability matrix: weather model

粦 Let's model daily weather as one of the three states (Sunny, Rainy, and Snowy) with Markov chain that has the transition probabilities as shown here.

Transition probability matrix: weather model

粦 Let's model daily weather as one of the three states (Sunny, Rainy, and Snowy) with Markov chain that has the transition probabilities as shown here.

The transition probability matrix

Q: The transition probabilities for a node sum to 1

A. Yes.

B. No.

Only the row sum is 1 , that is: the probabilities associated with outgoing arrows sum to 1 .

Additional References

䊩 Robert V. Hogg, Elliot A. Tanis and Dale L. Zimmerman. "Probability and Statistical Inference"

粦 Kelvin Murphy, "Machine learning, A Probabilistic perspective"

See you next time

See You!

