# Probability and Statistics for Computer Science 

## Conditional probability comes back in matrix!

Credit: wikipedia

Last Time

* Application of clustering Cluster center Histogram
* Markov chain (1) conditional prob. coming bake is Matrix

Objectives
Markov Chain (II)
Recap
Transition Matrix Stationary Markov chain
Application of Stationary Markov chain LPageRank alga.

# An example of dependent events in a sequence 

I had a glass of wine with my grilled

## An example of dependent events in a sequence

## Google Books Ngram Viewer



# An example of dependent events in a sequence 

## Google Books Ngram Viewer

Graph these comma-separated phrases:
fried chicken,grilled chicken,grilled steak,grilled salmon,grilled chees
case-insensitive
between 1800 and 2000 from the corpus English
$\uparrow$ with smoothing of 3 .
Search lots of books


## Markov chain

粦 Markov chain is a process in which outcome of any trial in a sequence is $X_{n}-X_{n+1}$ conditioned by the outcome of the trial immediately preceding, but not by earlier ones.

粦 Such dependence is called chain dependence $P(A \mid B)=\frac{\text { And Pe y markov (1856-1922) }}{}$

$$
p\left(X_{n+1} \mid X_{n}\right)=f(n)=p\left(X_{n+1} \mid X_{a} X_{1}\right)
$$

## Markov chain in terms of probability

粦 Let $X_{0}, X_{1}, \ldots$ be a sequence of discrete finite－valued random variables

粦 The sequence is a Markov chain if the probability distribution $X_{t}$ only depends on the distribution of the immediately preceding random variable $X_{t-1}$

$$
P\left(X_{t} \mid X_{0} \ldots, X_{t-1}\right)=P\left(X_{t} \mid X_{t-1}\right)
$$

粦 If the conditional probabilities（transition probabilities） do NOT change with time，it＇s called constant Markov chain．

$$
P\left(X_{t} \mid X_{t-1}\right)=P\left(X_{t-1} \mid X_{t-2}\right)=\ldots=P\left(X_{1} \mid X_{0}\right)
$$

Coin example
Toss a fair coin until you see two heads in a row and then stop, what is the probability of stopping after exactly $\mathbf{n}$ flips?

$$
\begin{gathered}
\downarrow \\
\text { Rambirible } \\
P\left(n=n_{0}\right)=?
\end{gathered}
$$

$$
\underbrace{* * * H z}_{n}
$$

1 -> Start or just had tail/restart
$2->$ had one head after start/restart
3 -> heads in a row/Stop
directed graph
Xn
Geometric
$\tau \tau \tau \ldots H$
allele state
$N=\omega$ (1) (3) (4) © (5)
Trials TTHTH H

$$
\begin{array}{lllllll}
x_{N} & =x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & x_{6} \\
\text { state } & 1 & 1 & 2 & 1 & 2 & 3
\end{array}
$$

Markov property:
Given the current state the past doesn't matter

$$
\begin{aligned}
P_{i j}^{\prime} & =P\left(x_{n+1}=j \mid x_{n}=i\right) \\
& =P\left(x_{n+1}=\dot{j} \mid x_{n}=i, x_{n-1}=? \ldots x_{0}=?\right) \text { ibis part can be any!! be and }
\end{aligned}
$$

## The model helps form recurrence formula

Let $p_{n}$ be the probability of stopping after $\mathbf{n}$ flips

$$
\begin{aligned}
& P\left(n=n_{0}\right)= \\
& n \uparrow
\end{aligned}
$$



## The model helps form recurrence formula

类 Let $p_{n}$ be the probability of stopping after $\mathbf{n}$ flips

$$
p_{1}=0 p_{2}=1 / 4 k_{3}=1 / 8 \quad p_{4}=1 / 8
$$

粦
If $n>2$ ，there are two ways the sequence starts
粦 Toss T and finish in $\mathrm{n}-1$ tosses
粦 Or toss HT and finish in $\mathrm{n}-2$ tosses


So we can derive a recurrence relation

Transition probability btw states


## Transition probability matrix: weather model

粦 Let's model daily weather as one of the three states (Sunny, Rainy, and Snowy) with Markov chain that has the transition probabilities as shown here.


## Transition probability matrix: weather model

粦 Let's model daily weather as one of the three states (Sunny, Rainy, and Snowy) with Markov chain that has the transition probabilities as shown here.
0.7


The transition probability matrix

Is this true?
For a constant Markov chain, at any step $t$, che probability distribution among eke states remain one same.
$p\left(X_{t}\right)$
A. True
B. False

$$
\begin{aligned}
& B\left(A(B)=\frac{P(A \cap B)}{P(B)} .\right. \\
& Q(A \cap B)=P(B) P(B A B)-
\end{aligned}
$$ $P(A C B)=P(B) P(A B C) \quad$ sun $R \quad$ Shang

## Q: The transition probabilities for a node sum to 1

A. Yes.
B. No.

## Transition probability matrix properties

粦 The transition probability matrix $\boldsymbol{P}$ is a square matrix with entries $p_{i j}$

粦 Since $p_{i j}=P\left(X_{t}=j \mid X_{t-1}=i\right)$

> Stochastic

$$
\begin{aligned}
& p_{i j} \geq 0 \quad \text { and } \quad \sum_{j} p_{i j}=1 \quad \text { Sunny } \text { Rainy Snowy } \\
& \begin{array}{c}
X_{1} \quad X_{2} \cdots X_{n} \\
\boldsymbol{P}\left(X_{n}=i\right) \quad \boldsymbol{P}=\left[\begin{array}{lll}
\text { Sunny } & \text { Rainy } & \text { Snowy } \\
0.7 & 0.2 & 0.1 \\
0.2 & 0.6 & 0.2 \\
0.4 & 0.1 & 0.5
\end{array}\right] \text { Sunny } \text { Snowy } \\
\text { Rainy }
\end{array}
\end{aligned}
$$

The transition probability matrix

## Probability distributions over states

粦 Let $\boldsymbol{\pi}$ be a row vector containing the probability distribution over all the finite discrete states at $\mathrm{t}=0$

$$
\pi_{i}=P\left(X_{0}=i\right)
$$

3 states
Sunny Raring snowy
For example: if it is rainy today, and today is $t=0$, then

$$
\boldsymbol{\pi}=\left[\begin{array}{lll}
0 & 1 & 0
\end{array}\right] \quad \text { prior }
$$

粦 Let $\mathbf{P}^{(t)}$ be a row vector containing the probability distribution over states at time point $\mathrm{t}_{0}$

$$
\mathrm{p}_{i}^{(t)}=P\left(X_{t}=i\right)[? ? ?
$$

## Propagating the probability distribution

Propagating from $t=0$ to $t=1$,

$$
\begin{aligned}
P_{j}^{(1)} & =P\left(X_{1}=j\right. \\
& =\sum_{i} P\left(X_{1}=j, X_{0}=i\right) \\
& =\sum_{i} P\left(X_{1}=j \mid X_{0}=i\right) P\left(X_{0}=i\right)
\end{aligned}
$$

$$
=\overline{\sum_{i}^{i}} p_{i j} \pi_{i}
$$

粦 In matrix notation,

$$
\boldsymbol{p}^{(1)}=\boldsymbol{\pi} P \quad p^{(t)}=p^{\text {tran }} P
$$

## Probability distributions:

Suppose that it is rainy, we have the initial probability distribution. $\boldsymbol{\pi}=\left[\begin{array}{lll}0 & 1 & 0\end{array}\right]$

What are the probability distributions for tomorrow and the day after tomorrow?
$\boldsymbol{p}^{(1)}=\boldsymbol{\pi} P$
$\boldsymbol{p}^{(2)}=\boldsymbol{p}^{(1)} P$

## Propagating to $t=\infty$

来 We have just seen that

$$
\boldsymbol{p}^{(2)}=\boldsymbol{p}^{(1)} P=(\boldsymbol{\pi} P) P=\boldsymbol{\pi} P^{2}
$$

So in general

$$
\boldsymbol{p}^{(t)}=\boldsymbol{\pi} P^{t}
$$



If one state can be reached from any other state in the graph, the Markov chain is called irreducible (single chain).

粦 Furthermore, if it satisfies:

$$
p \rightarrow S
$$

$$
\lim _{t \rightarrow \infty} \boldsymbol{\pi} P^{t}=\boldsymbol{S}
$$

then the Markov chain is stationary and $\mathbf{S}$ is the stationary distribution.

## Stationary distribution

The stationary distribution $\boldsymbol{S}$ has the following property: $\boldsymbol{s}_{\boldsymbol{s}} P=\boldsymbol{s}$
$\boldsymbol{S}$ is a row eigenvector of $\mathbf{P}$ with eigenvalue 1

粦 In the example of the weather model, regardless of the initial distribution,

$$
\boldsymbol{S}=\lim _{t \rightarrow \infty} \boldsymbol{\pi}\left[\begin{array}{lll}
0.7 & 0.2 & 0.7 \\
0.2 & 0.6 & 0.2 \\
0.4 & 0.1 & 0.5
\end{array}\right]^{\mathbf{t}}=\left[\begin{array}{lll}
\frac{18}{37} & \frac{11}{37} & \frac{8}{37}
\end{array}\right]
$$

$$
>0
$$

Chance of being up-co-date

In a class, students are either up-to-date or behind regarding progress. If a student is up-to-date, the student has 0.8 probability remaining up-to-date, if a student is behind, the student has 0.6 probability becoming up-to-date. Suppose the course is so long that it runs life long, what is the probability any student eventually gets up-to-date?

$$
\begin{array}{ll}
\text { A) } 25 \% & \text { C) } 25 \% \\
\text { B) } 50 \% & \text { D) } 95 \%
\end{array}
$$

The Markov model

## Example: Up-to-date or behind model

State 1: Up-to-date State 2: Behind


What's the transition matrix?
If I start with $\boldsymbol{\pi}=[0,1]$, what is my probability of being up-to-
 date eventually? (3/4)


Solving the stationary Markov

$$
\begin{aligned}
& S P=S \\
& (S P)^{\top}=s^{\top} \Rightarrow P^{\top} s^{\top}=s^{\top} \\
& A x=x \quad \lambda=1 \\
& S^{\top}=u \quad A=p^{\top} \\
& {\left[\begin{array}{ll}
0.8 & 0.2 \\
0.6 & 0.6
\end{array}\right]^{\top} u=u} \\
& {[A-1) u=0} \\
& {\left[\begin{array}{cc}
-0.2 & 0.6 \\
0.2 & -0.6
\end{array}\right] u=0} \\
& u_{1}+u_{2}=1 \\
& n=\left[\begin{array}{l}
u_{1} \\
n_{2}
\end{array}\right] \\
& \text { 25\% } \\
& u_{1}=\frac{3}{4} \\
& \text { up to } \\
& u_{2}=\frac{1}{4}
\end{aligned}
$$

## Examples of non-stationary Markov chains

Periodic


Not irreducible


Absorbing

$$
S P=S
$$

## PageRank Example

粦 How to rate web pages objectively？
粦 The PageRank algorithm by Page et al．made Google successful

米
The method utilized Markov chain model and applied it to the large list of webpages．

粦 To illustrate the point，we use a small－size example and assume a simple stationary model．

$$
\lim _{t \rightarrow \infty} \pi p^{t}
$$

# Suppose we are randomly surfing a network of webpages 

$$
\frac{1}{8}
$$



## Initialize the distribution uniformly



## Update the distribution iteratively

$$
\lim _{t \rightarrow \infty} \pi P^{t}=?
$$

$$
\pi p^{t}
$$

## Until the stationary distribution



## If the surfer get trapped

Allow "teleport" with small probability from any page to another

䊩 Or allow "teleport" with user input of URL


## Diverse applications of Markov Model

## 粦 Communication network

Queue modeling
DNA sequence modeling
Natural language processing Single－cell large data analysis

粦 Financial／Economic model


粦 Music

## Final Exam

粦 Time：1：30pm－4：30pm 12／11 Fri．Central Time
粦 Conflicts need to be requested 2 days ahead．
米 Duration：3hrs
粦 Content coverage：Ch1－14，except 8，details are on Compass
粦 Open book and lecture notes
粦 Format： 50 multiple choices

## Additional References

䊩 Robert V. Hogg, Elliot A. Tanis and Dale L. Zimmerman. "Probability and Statistical Inference"

粦 Kelvin Murphy, "Machine learning, A Probabilistic perspective"

## Acknowledgement

## Thank You!



