

"The statement that "The average US family has 2.6 children" invites mockery" – Prof. Forsyth reminds us about critical thinking

Credit: wikipedia

Last lecture

- ** Welcome/Orientation
- ****** Big picture of the contents
- ** Lecture 1 Data Visualization & Summary (I)
- Some feedbacks

Warm up question:

- ** What kind of data is a letter grade?
- ** What do you ask for usually about the stats of an exam with numerical scores?

Objectives

- **# Grasp Summary Statistics**
- ** Learn more Data Visualization for Relationships

Summarizing 1D continuous data

For a data set $\{x\}$ or annotated as $\{x_i\}$, we summarize with:

****** Location Parameters

Mean (M) Median, Mode

** Scale parameters

Standard (5) deviation variance (5²) Interquartile range (igr)

Summarizing 1D continuous data

$$mean(x_i) = \frac{1}{N} \sum_{i=1}^{N} x_i$$

It's the centroid of the data geometrically, by identifying the data set at that point, you find the center of balance.

$$\{x_i\}$$
 if $\{i, 8\}$

$$\{x_i\}=1, 2, 3, 4, 5, 6, 7, 12$$

Properties of the mean

** Scaling data scales the mean

$$mean(a(xi)) = mean(\{xi\}) + c$$

$$mean(\{k \cdot x_i\}) = k \cdot mean(\{x_i\})$$

** Translating the data translates the mean

$$mean(\{x_i + c\}) = mean(\{x_i\}) + c$$

Less obvious properties of the mean

** The signed distances from the mean

sum to 0

$$\sum_{i=1}^{N} (x_i - mean(\{x_i\})) = 0$$

** The mean minimizes the sum of the squared distance from any real value

$$\sum_{\mu} (x_i - \mu)^2 = mean(\{x_i\})$$

Prove
$$\sum_{i=1}^{N} (x_i - mean(\{x_i\})) = 0$$

LMS: $\sum_{i=1}^{N} (x_i) - \sum_{i=1}^{N} mean(\{x_i\})$

man($\{x_i\}) = \frac{\sum_{i=1}^{N} x_i}{N}$

man($\{x_i\}) = \frac{\sum_{i=1}^{N} x_i}{N}$

LMS: $\sum_{i=1}^{N} (x_i) - N$. $\sum_{i=1}^{N} x_i = 0$

Prove argmin
$$\Sigma(X_i - u)^2 = mean(\{x_i\})$$

$$\frac{d(\Sigma f)}{d\mu} = \sum_{i=1}^{N} \frac{df}{d\mu}$$
$$= \sum_{i=1}^{N} \frac{df}{d\mu}$$

$$\frac{df}{dg} = \frac{2g}{du}$$

$$\frac{2}{2}(x_{i}) - \frac{2}{2}M = 0$$

$$\frac{2}{2}(x_{i}) - \frac{2}{2}M =$$

g: = xi -M

で タニー

Q1:

* What is the answer for

 $mean(mean({x_i}))$?

A. $mean(\{x_i\})$ B. unsure C. 0

Standard Deviation (σ)

****** The standard deviation

$$f = (x - u)^2$$
brymin $\Sigma f = mem$

$$std(\{x_i\}) = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (x_i - mean(\{x_i\}))^2}$$

$$= \sqrt{mean(\{(x_i - mean(\{x_i\}))^2\})}$$

Q2. Can a standard deviation of a dataset be -1?

A. YES

B. NO

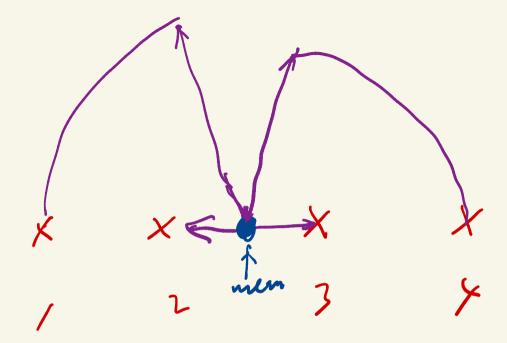
Properties of the standard deviation

Scaling data scales the standard deviation

$$std(\{k \cdot x_i\}) = |k| \cdot std(\{x_i\})$$

** Translating the data does NOT change the standard deviation

$$std(\{x_i + c\}) = std(\{x_i\})$$



Standard deviation: Chebyshev's inequality (1st look)

- ** At most $\frac{N}{k^2}$ items are k standard deviations (σ) away from the mean
- ** Rough justification: Assume mean =0

$$\begin{array}{c|c}
N - \frac{N}{k^2} & 0.5N \\
\hline
-k\sigma & k\sigma
\end{array}$$

$$std = \sqrt{\frac{1}{N}}[(N - \frac{N}{k})0^2 + \frac{N}{k^2}(k\sigma)^2] = \sigma$$

Variance (σ^2)

** Variance = (standard deviation)²

$$var(\{x_i\}) = \frac{1}{N} \sum_{i=1}^{N} (x_i - mean(\{x_i\}))^2$$

Scaling and translating similar to standard

deviation
$$var(\{k \cdot x_i\}) = \boxed{k^2} var(\{x_i\})$$

 $var(\{x_i + c\}) = var(\{x_i\})$

Q3: Standard deviation

** What is the value of $std(mean(\{x_i\}))$?

A. 0 B. 1 C. unsure

Standard Coordinates/normalized data

** The mean tells where the data set is and the standard deviation tells how spread out it is. If we are interested only in comparing the shape, we could

define:

$$\widehat{x_i} = \frac{x_i - mean(\{x_i\})}{std(\{x_i\})}$$

** We say $\{x_i\}$ is in standard coordinates

Q4: Mean of standard coordinates

$$\widehat{x_i} = \frac{x_i - mean(\{x_i\})}{std(\{x_i\})}$$

Q5: Standard deviation (σ) of standard coordinates

$$\#(\sigma)$$
 of $\{\widehat{x_i}\}$ is:
$$\int A. 1 B. 0 C. unsure$$

$$\widehat{x_i} = \frac{x_i - mean(\{x_i\})}{std(\{x_i\})}$$

Q6: Variance of standard coordinates

* Variance of $\{\widehat{x_i}\}$ is:

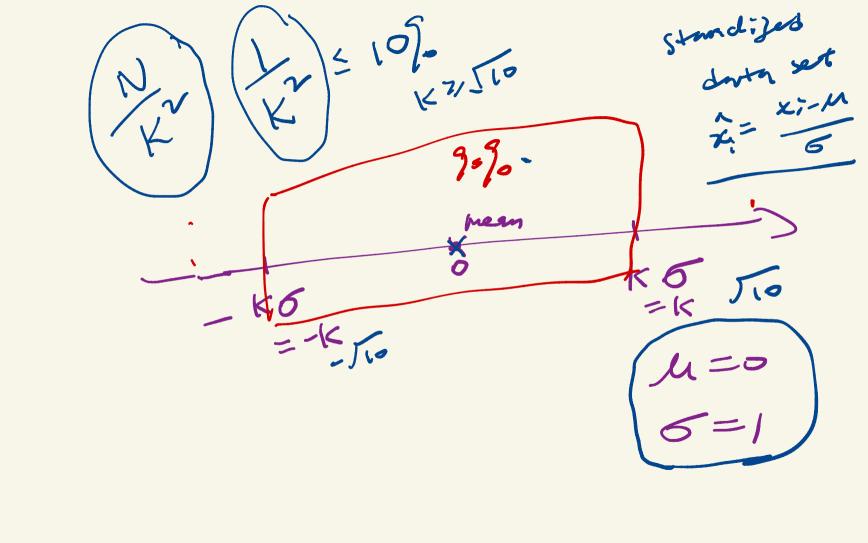
A. 1 B. 0 C. unsure

$$\widehat{x_i} = \frac{x_i - mean(\{x_i\})}{std(\{x_i\})}$$

Q7: Estimate the range of data in standard coordinates

Estimate as close as possible, 90% data is within:

$$\widehat{x}_i = \frac{x_i - mean(\{x_i\})}{std(\{x_i\})}$$



Summary stats of standard Coordinates/normalized data

Standard Coordinates/normalized data to μ =0, σ =1, σ ²=1

Data in standard coordinates always has

```
mean = 0; standard deviation =1;
variance = 1.
```

- Such data is unit-less, plots based on this sometimes are more comparable
- ** We see such normalization very often in statistics

Additional References

- ** Charles M. Grinstead and J. Laurie Snell "Introduction to Probability"
- Morris H. Degroot and Mark J. Schervish "Probability and Statistics"

See you next time

See You!

