Probability and Statistics for Computer Science

> "The statement that "The average US family has 2.6 children" invites mockery" Prof. Forsyth reminds us about critical thinking

Credit: wikipedia

Last lecture

䊩 Welcome／Orientation

粦 Big picture of the contents
粦 Lecture 1 －Data Visualization \＆ Summary（I）

粪 Some feedbacks

Warm up question:

粦 What kind of data is a letter grade?
粦 What do you ask for usually about the stats of an exam with numerical scores?

Objectives

Grasp Summary Statistics

Learn more Data Visualization for Relationships

Summarizing 1D continuous data

For a data set $\{x\}$ or annotated as $\left\{x_{i}\right\}$, we summarize with:

米 Location Parameters

粦 Scale parameters

Summarizing 1D continuous data

Mean

$$
\operatorname{mean}\left(x_{i}\right)=\frac{1}{N} \sum_{i=1}^{N} x_{i}
$$

It's the centroid of the data geometrically, by identifying the data set at that point, you find the center of balance.

Properties of the mean

Scaling data scales the mean

$$
\operatorname{mean}\left(\left\{k \cdot x_{i}\right\}\right)=k \cdot \operatorname{mean}\left(\left\{x_{i}\right\}\right)
$$

粦 Translating the data translates the mean

$$
\operatorname{mean}\left(\left\{x_{i}+c\right\}\right)=\operatorname{mean}\left(\left\{x_{i}\right\}\right)+c
$$

Less obvious properties of the mean

The signed distances from the mean sum to 0

$$
\sum_{i=1}^{N}\left(x_{i}-\operatorname{mean}\left(\left\{x_{i}\right\}\right)\right)=0
$$

The mean minimizes the sum of the squared distance from any real value

$$
\underset{\mu}{\operatorname{argmin}} \sum_{i=1}^{N}\left(x_{i}-\mu\right)^{2}=\operatorname{mean}\left(\left\{x_{i}\right\}\right)
$$

Q1:

粦 What is the answer for mean(mean $\left.\left(\left\{\mathrm{x}_{\mathrm{i}}\right\}\right)\right)$?
A. mean $\left(\left\{x_{i}\right\}\right) \quad$ B. unsure C. 0

Standard Deviation (σ)

䊩 The standard deviation

$$
\operatorname{std}\left(\left\{x_{i}\right\}\right)=\sqrt{\frac{1}{N} \sum_{i=1}^{N}\left(x_{i}-\operatorname{mean}\left(\left\{x_{i}\right\}\right)\right)^{2}}
$$

$$
=\sqrt{\left.\operatorname{mean}\left(\left\{x_{i}-\operatorname{mean}\left(\left\{x_{i}\right\}\right)\right)^{2}\right\}\right)}
$$

Q2. Can a standard deviation of a dataset

 be -1?A. YES
B. NO

Properties of the standard deviation

Scaling data scales the standard deviation

$$
\operatorname{std}\left(\left\{k \cdot x_{i}\right\}\right)=|k| \cdot \operatorname{std}\left(\left\{x_{i}\right\}\right)
$$

䊩 Translating the data does NOT change the standard deviation

$$
\operatorname{std}\left(\left\{x_{i}+c\right\}\right)=\operatorname{std}\left(\left\{x_{i}\right\}\right)
$$

Standard deviation: Chebyshev's inequality (1 $1^{\text {st }}$ look)

䊩 At most $\frac{N}{k^{2}}$ items are k standard deviations (σ) away from the mean

粦 Rough justification: Assume mean $=0$

Variance (σ^{2})

粦 Variance $=(\text { standard deviation })^{2}$

$$
\operatorname{var}\left(\left\{x_{i}\right\}\right)=\frac{1}{N} \sum_{i=1}^{N}\left(x_{i}-\operatorname{mean}\left(\left\{x_{i}\right\}\right)\right)^{2}
$$

粦 Scaling and translating similar to standard
deviation $\operatorname{var}\left(\left\{k \cdot x_{i}\right\}\right)=k^{2} \cdot \operatorname{var}\left(\left\{x_{i}\right\}\right)$

$$
\operatorname{var}\left(\left\{x_{i}+c\right\}\right)=\operatorname{var}\left(\left\{x_{i}\right\}\right)
$$

O3: Standard deviation

类 What is the value of std $\left(\right.$ mean $\left(\left\{\mathrm{x}_{\mathrm{i}}\right\}\right)$?
$\begin{array}{lll}\text { A. } 0 & \text { B. } 1 & \text { C. unsure }\end{array}$

Standard Coordinates/normalized data

The mean tells where the data set is and the standard deviation tells how spread out it is. If we are interested only in comparing the shape, we could
define:

$$
\widehat{x_{i}}=\frac{x_{i}-\operatorname{mean}\left(\left\{x_{i}\right\}\right)}{\operatorname{std}\left(\left\{x_{i}\right)\right\}}
$$

We say $\left\{\widehat{x_{i}}\right\}$ is in standard coordinates

Q4: Mean of standard coordinates

μ of $\{\widehat{x}\}$ is:
A. 1 B. 0 C. unsure

$$
\widehat{x}_{i}=\frac{x_{i}-\operatorname{mean}\left(\left\{x_{i}\right\}\right)}{\operatorname{std}\left(\left\{x_{i}\right)\right\}}
$$

Q5: Standard deviation (σ) of standard coordinates

粦 σ of $\left\{\widehat{x_{i}}\right\}$ is:
A. 1 B. 0 C. unsure

$$
\widehat{x}_{i}=\frac{x_{i}-\operatorname{mean}\left(\left\{x_{i}\right\}\right)}{\operatorname{std}\left(\left\{x_{i}\right)\right\}}
$$

Q6: Variance of standard coordinates

粦 Variance of $\left\{\widehat{x}_{i}\right\}$ is:
A. 1 B. 0 C. unsure

$$
\widehat{x}_{i}=\frac{x_{i}-\operatorname{mean}\left(\left\{x_{i}\right\}\right)}{\operatorname{std}\left(\left\{x_{i}\right)\right\}}
$$

Q7: Estimate the range of data in standard coordinates

Estimate as close as possible, 90% data is within:
A. $[-10,10]$
B. $[-100,100]$
C. $[-1,1]$
D. $[-4,4]$

$$
\widehat{x_{i}}=\frac{x_{i}-\operatorname{mean}\left(\left\{x_{i}\right\}\right)}{\operatorname{std}\left(\left\{x_{i}\right)\right\}}
$$

E. others

Summary stats of standard Coordinates/normalized data

Standard Coordinates/normalized data to $\mu=0, \sigma=1, \sigma^{2}=1$

Data in standard coordinates always has mean $=0 ;$ standard deviation $=1$;
variance $=1$.
粦 Such data is unit-less, plots based on this sometimes are more comparable

We see such normalization very often in statistics

Median

类 To organize the data we first sort it
絭 Then if the number of items N is odd median $=$ middle item's value
if the number of items N is even median $=$ mean of middle 2 items' values

Properties of Median

Scaling data scales the median
$\operatorname{median}\left(\left\{k \cdot x_{i}\right\}\right)=k \cdot \operatorname{median}\left(\left\{x_{i}\right\}\right)$

Translating data translates the median
$\operatorname{median}\left(\left\{x_{i}+c\right\}\right)=\operatorname{median}\left(\left\{x_{i}\right\}\right)+c$

Percentile

粦 $\mathrm{k}^{\text {th }}$ percentile is the value relative to which $\mathrm{k} \%$ of the data items have smaller or equal numbers

粦 Median is roughly the $50^{\text {th }}$ percentile

Q8: Scaling effect on percentiles

絭 Scaling data scales the percentile A. True B. False

Q9: Translating effect on percentiles

Translating data does NOT change the percentile
A. True B. False

Interquartile range

iqr $=$ (75th percentile) - (25th percentile)
Scaling data scales the interquartile range

$$
\operatorname{iqr}\left(\left\{k \cdot x_{i}\right\}\right)=|k| \cdot \operatorname{iqr}\left(\left\{x_{i}\right\}\right)
$$

粦 Translating data does NOT change the interquartile range

$$
\operatorname{iqr}\left(\left\{x_{i}+c\right\}\right)=\operatorname{iqr}\left(\left\{x_{i}\right\}\right)
$$

Box plots

Boxplots

粦 Simpler than
histogram
粦 Good for outliers
䊩 Easier to use
for comparison

Data from https：／／www2．stetson．edu／ ～jrasp／data．htm

Vehicle death by region

Boxplots details, outliers

How to define outliers?
(the default)

Discussion

粦 Pick a group to debate

Sensitivity of summary statistics to outliers

粦 mean and standard deviation are very sensitive to outliers median and interquartile range are not sensitive to outliers

Modes

粦 Modes are peaks in a histogram
粦 If there are more than 1 mode, we should be curious as to why

Multiple modes

粦 We have seen
the "iris" data which looks to
have several peaks

Example Bi-modes distribution

Modes may indicate multiple populations

Data: Erythrocyte cells in healthy humans

Piagnerelli, JCP 2007

Tails and Skews

Symmetric Histogram

Credit: Prof.Forsyth

Looking at relationships in data

䊩 Finding relationships between features in a data set or many data sets is one of the most important tasks in data science

Heatmap

Display matrix of data via gradient of color(s)

Figure 2-4. Monthly normal mean temperatures for four locations in the US. Data source: NOAA.

Summarization of 4 locations' annual mean temperature by month

3D bar chart

粦 Transparent
3D bar chart is good for small \# of samples across categories

Relationship between data feature and time

Example: How does Amazon's stock change

 over 1 years?take out the pair of
features
x: Day
$y: A M Z N$

Day	AMZN	DUK	KO
1	38.700001	34.971017	17.874906
2	38.900002	35.044103	17.882263
3	38.369999	34.240172	17.757161
6	37.5	34.294985	17.871225
7	37.779999	34.130544	17.885944
8	37.150002	33.984374	17.9117
9	37.400002	34.075731	17.933777
10	38.200001	33.91129	17.863866
14	38.66	34.020917	17.845469
15	37.880001	33.966104	17.882263
16	36.98	34.130544	17.790276
17	37.02	34.240172	17.757161
20	36.950001	34.057458	17.672533
21	36.43	34.112272	17.705649
22	37.259998	34.258442	17.709329
23	37.080002	34.569051	17.639418
24	36.849998	34.861392	17.598945

Relationship between data features

Example: does the weight of people relate to their height?

IDNO	BODYFAT	DENSITY	AGE	WEIGHT	HEIGHT
1	12.6	1.0708	23	154.25	67.75
2	6.9	1.0853	22	173.25	72.25
3	24.6	1.0414	22	154.00	66.25
4	10.9	1.0751	26	184.75	72.25
5	27.8	1.0340	24	184.25	71.25
6	20.6	1.0502	24	210.25	74.75
7	19.0	1.0549	26	181.00	69.75
8	12.8	1.0704	25	176.00	72.50
9	5.1	1.0900	25	191.00	74.00
10	12.0	1.0722	23	198.25	73.50

米 x : HIGHT, y : WEIGHT

The visual way for continuous features

粦 Time series plot

粦 Scatter plot
Time Series Plot: Stock of Amazon

Scatter plot

粦 A most effective tool for geographic data and 2D data in general. It should be your first step with a new 2D dataset.

Scatter plot

業 Body Fat data set

Scatter plot

粦 Scatter plot with density

Scatter plot

粦 Removed of outliers \& standardized

Scatter plot

粦 Coupled with heatmap to show a $3^{\text {rd }}$ feature

Correlation seen from scatter plots

Zero
 Correlation
 \downarrow

Normalized body temperature

Positive
 correlation

Negative correlation

Negative Correlation

Credit:
Prof.Forsyth

What kind of Correlation?

line of code in a database and number of bugs

GPA and hours spent playing video games
earnings and happiness

Correlation doesn't mean causation

粦 Shoe size is correlated to reading skills, but it doesn't mean making feet grow will make one person read faster.

Assignments

粦 HW1 due Thurs. Sept. 3.
Quiz 1 (open 4:30pm today until Sat.)
Reading upto Chapter 2.1
Next time: the quantitative part of correlation coefficient

Additional References

Charles M. Grinstead and J. Laurie Snell "Introduction to Probability"

Morris H. Degroot and Mark J. Schervish "Probability and Statistics"

See you next time

See You!

