

"The statement that "The average US family has 2.6 children" invites mockery" – Prof. Forsyth reminds us about critical thinking

Credit: wikipedia

Last lecture

- ** Welcome/Orientation
- ****** Big picture of the contents
- ** Lecture 1 Data Visualization & Summary (I)
- **** Some feedbacks**

Warm up question:

- ** What kind of data is a letter grade?
- ** What do you ask for usually about the stats of an exam with numerical scores?

Objectives

- **# Grasp Summary Statistics**
- ** Learn more Data Visualization for Relationships

Summarizing 1D continuous data

For a data set $\{x\}$ or annotated as $\{x_i\}$, we summarize with:

****** Location Parameters

** Scale parameters

Summarizing 1D continuous data

$$mean(x_i) = \frac{1}{N} \sum_{i=1}^{N} x_i$$

It's the centroid of the data geometrically, by identifying the data set at that point, you find the center of balance.

Properties of the mean

Scaling data scales the mean

$$mean(\{k \cdot x_i\}) = k \cdot mean(\{x_i\})$$

** Translating the data translates the mean

$$mean(\{x_i + c\}) = mean(\{x_i\}) + c$$

Less obvious properties of the mean

** The signed distances from the mean

sum to 0
$$\sum_{i=1}^{N} (x_i - mean(\{x_i\})) = 0$$

** The mean minimizes the sum of the squared distance from any real value

$$argmin_{\mu} \sum_{i=1}^{N} (x_i - \mu)^2 = mean(\{x_i\})$$

Q1:

* What is the answer for

 $mean(mean({x_i}))$?

A. $mean(\{x_i\})$ B. unsure C. 0

Standard Deviation (σ)

* The standard deviation

$$std(\{x_i\}) = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (x_i - mean(\{x_i\}))^2}$$

$$= \sqrt{mean(\{x_i - mean(\{x_i\}))^2\})}$$

Q2. Can a standard deviation of a dataset be -1?

A. YES

B. NO

Properties of the standard deviation

Scaling data scales the standard deviation

$$std(\{k \cdot x_i\}) = |k| \cdot std(\{x_i\})$$

** Translating the data does NOT change the standard deviation

$$std(\{x_i + c\}) = std(\{x_i\})$$

Standard deviation: Chebyshev's inequality (1st look)

- ** At most $\frac{N}{k^2}$ items are k standard deviations (σ) away from the mean
- ** Rough justification: Assume mean =0

$$rac{0.5N}{K^2}$$
 $N-rac{N}{K^2}$ $rac{0.5N}{K^2}$ $rac{0.5N}{K^2}$ $-k\sigma$

$$std = \sqrt{\frac{1}{N}}[(N - \frac{N}{k})0^2 + \frac{N}{k^2}(k\sigma)^2] = \sigma$$

Variance (σ^2)

** Variance = (standard deviation)²

$$var(\{x_i\}) = \frac{1}{N} \sum_{i=1}^{N} (x_i - mean(\{x_i\}))^2$$

Scaling and translating similar to standard

deviation
$$var(\{k \cdot x_i\}) = k^2 \cdot var(\{x_i\})$$

 $var(\{x_i + c\}) = var(\{x_i\})$

Q3: Standard deviation

** What is the value of $std(mean(\{x_i\}))$?

A. 0 B. 1 C. unsure

Standard Coordinates/normalized data

** The mean tells where the data set is and the standard deviation tells how spread out it is. If we are interested only in comparing the shape, we could

define:
$$\widehat{x_i} = \frac{x_i - mean(\{x_i\})}{std(\{x_i\})}$$

** We say $\{\widehat{x_i}\}$ is in standard coordinates

Q4: Mean of standard coordinates

μ of $\{\widehat{x_i}\}$ is:

A. 1 B. 0 C. unsure

$$\widehat{x_i} = \frac{x_i - mean(\{x_i\})}{std(\{x_i\})}$$

Q5: Standard deviation (σ) of standard coordinates

 $\# \sigma \text{ of } \{\widehat{x_i}\} \text{ is: }$

A. 1 B. 0 C. unsure

$$\widehat{x}_i = \frac{x_i - mean(\{x_i\})}{std(\{x_i\})}$$

Q6: Variance of standard coordinates

* Variance of $\{\widehat{x_i}\}$ is:

A. 1 B. 0 C. unsure

$$\widehat{x_i} = \frac{x_i - mean(\{x_i\})}{std(\{x_i\})}$$

Q7: Estimate the range of data in standard coordinates

Estimate as close as possible, 90% data is within:

$$\widehat{x}_i = \frac{x_i - mean(\{x_i\})}{std(\{x_i\})}$$

Summary stats of standard Coordinates/normalized data

Standard Coordinates/normalized data to μ =0, σ =1, σ ²=1

- ** Data in standard coordinates always has mean = 0; standard deviation =1; variance = 1.
- Such data is unit-less, plots based on this sometimes are more comparable
- ** We see such normalization very often in statistics

Median

- ** To organize the data we first sort it
- ** Then *if* the number of items N is odd

median = middle item's value

if the number of items N is even

median = mean of middle 2 items' values

Properties of Median

Scaling data scales the median

$$median(\{k \cdot x_i\}) = k \cdot median(\{x_i\})$$

** Translating data translates the median

$$median(\{x_i + c\}) = median(\{x_i\}) + c$$

Percentile

- ** kth percentile is the value relative to which k% of the data items have smaller or equal numbers
- * Median is roughly the 50th percentile

Q8: Scaling effect on percentiles

Scaling data scales the percentileA. TrueB. False

09: Translating effect on percentiles

** Translating data does NOT change the percentile

A. True B. False

Interquartile range

- # iqr = (75th percentile) (25th percentile)
- * Scaling data scales the interquartile range

$$iqr(\{k \cdot x_i\}) = |k| \cdot iqr(\{x_i\})$$

** Translating data does **NOT** change the interquartile range

$$iqr(\{x_i + c\}) = iqr(\{x_i\})$$

Box plots

- ****** Boxplots
 - ** Simpler than histogram
 - ****** Good for outliers
 - ** Easier to use for comparison

Vehicle death by region

Data from https://www2.stetson.edu/~jrasp/data.htm

Boxplots details, outliers

How to Outlier define > 1.5 iqr Whisker outliers? (the default) Box Interquartile Range (iqr) Mediar < 1.5 iqr

Discussion

** Pick a group to debate

Sensitivity of summary statistics to outliers

- ** mean and standard deviation are very sensitive to outliers
- ** median and interquartile range are not sensitive to outliers

Modes

- * Modes are peaks in a histogram
- # If there are more than 1 mode, we should be curious as to why

Multiple modes

** We have seen the "iris" data which looks to have several peaks

Data: "iris" in R

Example Bi-modes distribution

** Modes may indicate multiple populations

Piagnerelli, JCP 2007

Tails and Skews

Symmetric Histogram

Credit: Prof.Forsyth

Looking at relationships in data

Finding relationships between features in a data set or many data sets is one of the most important tasks in data science

Heatmap

Display matrix of data via gradient of color(s)

Figure 2-4. Monthly normal mean temperatures for four locations in the US. Data source: NOAA.

Summarization of 4 locations' annual mean temperature by month

3D bar chart

* Transparent 3D bar chart is good for small # of samples across categories

Relationship between data feature and time

Example: How does Amazon's stock change

over 1 years?

take out the pair of

features

x: Day

y: AMZN

	AMZN	DUK	КО		
1	38.700001	34.971017	17.874906		
2	38.900002	35.044103	17.882263		
3	38.369999	34.240172	17.757161		
6	37.5	34.294985	17.871225		
7	37.779999	34.130544	17.885944		
8	37.150002	33.984374	17.9117		
9	37.400002	34.075731	17.933777		
10	38.200001	33.91129	17.863866		
14	38.66	34.020917	17.845469		
15	37.880001	33.966104	17.882263		
16	36.98	34.130544	17.790276		
17	37.02	34.240172	17.757161		
20	36.950001	34.057458	17.672533		
21	36.43	34.112272	17.705649		
22	37.259998	34.258442	17.709329		
23	37.080002	34.569051	17.639418		
24	36.849998	34.861392	17.598945		
֡	2 3 6 7 8 9 10 14 15 16 17 20 21 22 23	1 38.700001 2 38.900002 3 38.369999 6 37.5 7 37.779999 8 37.150002 9 37.400002 10 38.200001 14 38.66 15 37.880001 16 36.98 17 37.02 20 36.950001 21 36.43 22 37.259998 23 37.080002	1 38.700001 34.971017 2 38.900002 35.044103 3 38.369999 34.240172 6 37.5 34.294985 7 37.779999 34.130544 8 37.150002 33.984374 9 37.400002 34.075731 10 38.200001 33.91129 14 38.66 34.020917 15 37.880001 33.966104 16 36.98 34.130544 17 37.02 34.240172 20 36.950001 34.057458 21 36.43 34.112272 22 37.259998 34.258442 23 37.080002 34.569051		

Relationship between data features

Example: does the weight of people relate to their height?

IDNO	BODYFAT	DENSITY	AGE	WEIGHT	HEIGHT
1	12.6	1.0708	23	154.25	67.75
2	6.9	1.0853	22	173.25	72.25
3	24.6	1.0414	22	154.00	66.25
4	10.9	1.0751	26	184.75	72.25
5	27.8	1.0340	24	184.25	71.25
6	20.6	1.0502	24	210.25	74.75
7	19.0	1.0549	26	181.00	69.75
8	12.8	1.0704	25	176.00	72.50
9	5.1	1.0900	25	191.00	74.00
10	12.0	1.0722	23	198.25	73.50

★ x: HIGHT, y: WEIGHT

The visual way for continuous features

- * Time series plot
- Scatter plot

Time Series Plot: Stock of Amazon

** A most effective tool for geographic data and 2D data in general. It should be your first step with a new 2D dataset.

** Body Fat data set

Scatter plot with density

** Removed of outliers & standardized

** Coupled with heatmap to show a 3rd feature

Correlation seen from scatter plots

What kind of Correlation?

** line of code in a database and number of bugs

GPA and hours spent playing video games

earnings and happiness

Credit: Prof. David Varodayan

Correlation doesn't mean causation

** Shoe size is correlated to reading skills, but it doesn't mean making feet grow will make one person read faster.

Assignments

- **# HW1** due Thurs. Sept. 3.
- **# Quiz 1 (open 4:30pm today until Sat.)**
- ** Reading upto Chapter 2.1
- ** Next time: the quantitative part of correlation coefficient

Additional References

- ** Charles M. Grinstead and J. Laurie Snell "Introduction to Probability"
- Morris H. Degroot and Mark J. Schervish "Probability and Statistics"

See you next time

See You!

