Probability and Statistics for Computer Science

"Correlation is not Causation" but <u>Correlation</u> is so beautiful!

Credit: wikipedia

Hongye Liu, Teaching Assistant Prof, CS361, UIUC, 9.1.2020

* Please use "#" sign in your chat to indicate a formel question or comment. I place mute your mic es heep the trom sound quality. * plase neve me the websites of Simulaion & Code Notebook in the chat.

Last time

Location Parameters:

Mean (M), Median, Mode Scale Parameters: Standard (5) Interquartile deviation range (igr) variance (5²)

Standardizing Data: $\hat{x} = \frac{x_i - u}{\kappa}$

Objectives

- Median, Interquartile range, box
 plot and outlier, Mode & Skew
- Scatter plots, Correlation Coefficient

Heatmap, 3D bar, Time series plots,

Median

* To organize the data we first sort it ** Then if the number of items N is odd median = middle item's value *if* the number of items N is even median = mean of middle 2 items' values

Properties of Median

Scaling data scales the median

$$median(\{k \cdot x_i\}) = k \cdot median(\{x_i\})$$

$$median = \operatorname{argmin}(\sum_{i=1}^{n} |x_i - M|)$$

* Translating data translates the median

$$median(\{x_i + c\}) = median(\{x_i\}) + c$$

Percentile

- * kth percentile is the value relative to which k% of the data items have smaller or equal numbers
- * Median is roughly the 50th percentile 1, 2, 3, 4, 5, 6, 7, 1275 = 16 percentile = 76 + 75

Interquartile range

% iqr = (75th percentile) - (25th percentile) - > o % Scaling data scales the interquartile range

$$iqr(\{k \cdot x_i\}) = |k| \cdot iqr(\{x_i\})$$

* Translating data does NOT change the interquartile range

$$iqr(\{x_i + c\}) = iqr(\{x_i\})$$

Box plots

- # Boxplots
 - Simpler than histogram
 - **# Good for outliers**
 - # Easier to use
 - for comparison

Data from https://www2.stetson.edu/ ~jrasp/data.htm

Vehicle death by region

Boxplots details, outliers

Q. TRUE or FALSE

mean is more sensitive to outliers than median

Q. TRUE or FALSE

interquartile range is more sensitive to outliers than std.

A True B Indre R

Sensitivity of summary statistics to outliers

mean and standard deviation are very sensitive to outliers

median and interquartile range are not sensitive to outliers

Modes

Modes are peaks in a histogram If there are more than 1 mode, we should be curious as to why

Multiple modes

We have seen the "iris" data which looks to have several peaks

Data: "iris" in R

Example Bi-modes distribution

Tails and Skews

Credit: Prof.Forsyth

Q. How is this skewed?

Median = 47

Looking at relationships in data

Finding relationships between features in a data set or many data sets is one of the most important tasks in data analysis

Relationship between data features

Example: does the weight of people relate to their height?

IDNO	BODYFAT	DENSITY	AGE	WEIGHT	HEIGHT
1	12.6	1.0708	23	154.25	67.75
2	6.9	1.0853	22	173.25	72.25
3	24.6	1.0414	22	154.00	66.25
4	10.9	1.0751	26	184.75	72.25
5	27.8	1.0340	24	184.25	71.25
6	20.6	1.0502	24	210.25	74.75
7	19.0	1.0549	26	181.00	69.75
8	12.8	1.0704	25	176.00	72.50
9	5.1	1.0900	25	191.00	74.00
10	12.0	1.0722	23	198.25	73.50

x : HIGHT, y: WEIGHT ▓

Scatter plot

Scatter plot

Scatter plot with density

Scatter plot

Removed of outliers & standardized

Correlation ch. 4 T

Correlation seen from scatter plots

What kind of Correlation?

- * Line of code in a database and number of bugs
- Frequency of hand washing and number of germs on your hands
- # GPA and hours spent playing video games
- * earnings and happiness

Correlation doesn't mean causation

Shoe size is correlated to reading skills, but it doesn't mean making feet grow will make one person read faster.

Correlation Coefficient

- # Given a data set{ (x_i, y_i) } consisting of items $(x_1, y_1) \dots (x_N, y_N)$,
 - $\widehat{x_i} = \frac{x_i mean(\{x_i\})}{std(\{x_i\})} \qquad \widehat{y_i} = \frac{y_i mean(\{y_i\})}{std(\{y_i\})}$
 - * Define the correlation coefficient as:

$$corr(\{(x_i, y_i)\}) = \frac{1}{N} \sum_{i=1}^N \widehat{x_i} \widehat{y_i}$$

Correlation Coefficient

$$\widehat{x_i} = \frac{x_i - mean(\{x_i\})}{std(\{x_i\})} \qquad \widehat{y_i} = \frac{y_i - mean(\{y_i\})}{std(\{y_i\})}$$

$$corr(\{(x_i, y_i)\}) = \frac{1}{N} \sum_{i=1}^N \widehat{x_i} \widehat{y_i}$$

$$= mean(\{\widehat{x}_i \widehat{y}_i\})$$

Q: Correlation Coefficient

- Which of the following describe(s) correlation coefficient correctly?
 - A. It's unitless
 - B. It's defined in standard coordinates C. Both A & B $corr(\{(x_i, y_i)\}) = \frac{1}{N} \sum_{i=1}^{N} \widehat{x_i} \widehat{y_i}$

A visualization of correlation coefficient

https://rpsychologist.com/d3/correlation/ In a data set $\{(x_i, y_i)\}$ consisting of items $(x_1, y_1) \dots (x_N, y_N),$

 $corr(\{(x_i, y_i)\}) > 0$ shows positive correlation $corr(\{(x_i, y_i)\}) < 0$ shows negative correlation $corr(\{(x_i, y_i)\}) = 0$ shows no correlation

The Properties of Correlation Coefficient

* The correlation coefficient is symmetric

$$corr(\{(x_i, y_i)\}) = corr(\{(y_i, x_i)\})$$

* Translating the data does NOT change the correlation coefficient

The Properties of Correlation Coefficient

Scaling the data may change the sign of the correlation coefficient

$$corr(\{(a \ x_i + b, \ c \ y_i + d)\})$$

= $sign(a \ c)corr(\{(x_i, y_i)\})$

rpsychologist.com

• • • • • • • •

Correlation is one of the most widely used tools in statistics. The correlation coefficient summarizes the association between two variables. In this visualization I show a scatter plot of two variables with a given correlation. The variables are samples from the standard normal distribution, which are then transformed to have a given correlation by using Cholesky decomposition. By moving the slider you will see how the shape of the data changes as the association becomes stronger or weaker. You can also look at the Venn diagram to see the amount of shared variance between the variables. It is also possible drag the data points to see how the correlation is influenced by outliers.

Slide me

Correlation: 1

Sample size 100

New sample

Shared variance: 100%

POSTETS

Correlation is one of the most widely used tools in statistics. The correlation coefficient summarizes the association between two variables. In this visualization I show a scatter plot of two variables with a given correlation. The variables are samples from the standard normal distribution, which are then transformed to have a given correlation by using Cholesky decomposition. By moving the slider you will see how the shape of the data changes as the association becomes stronger or weaker. You can also look at the Venn diagram to see the amount of shared variance between the variables. It is also possible drag the data points to see how the correlation is influenced by outliers.

Slide me

The Properties of Correlation Coefficient

* The correlation coefficient is bounded within [-1, 1]

$$corr(\{(x_i, y_i)\}) = 1$$
 if and only if $\widehat{x_i} = \widehat{y_i}$

 $corr(\{(x_i, y_i)\}) = -1$ if and only if $\widehat{x}_i = -\widehat{y}_i$

Which of the following has correlation coefficient equal to 1?

A. Left and right B. Left C. Middle

Concept of Correlation Coefficient's bound

* The correlation coefficient can be written as $corr(\{(x_i, y_i)\}) = \frac{1}{N} \sum_{i=1}^{N} \widehat{x_i} \widehat{y_i}$ \vdots $corr(\{(x_i, y_i)\}) = \sum_{i=1}^{N} \frac{\widehat{x_i}}{\sqrt{N}} \frac{\widehat{y_i}}{\sqrt{N}}$

It's the inner product of two vectors

$$\left\langle \frac{\widehat{x_1}}{\sqrt{N}}, \dots, \frac{\widehat{x_N}}{\sqrt{N}} \right\rangle$$
 and $\left\langle \frac{\widehat{y_1}}{\sqrt{N}}, \dots, \frac{\widehat{y_N}}{\sqrt{N}} \right\rangle$

Inner product

Inner product's geometric meaning:

Lengths of both vectors

$$\mathbf{1} = \left\langle \frac{\widehat{x_1}}{\sqrt{N}}, \dots, \frac{\widehat{x_N}}{\sqrt{N}} \right\rangle \quad \mathbf{V_2} = \left\langle \frac{\widehat{y_1}}{\sqrt{N}}, \dots \right\rangle$$

are 1

Bound of correlation coefficient

 $|corr(\{(x_i, y_i)\})| = |cos(\theta)| \le 1$ \mathbf{V}_{2} $\mathbf{v_1} = \left\langle \frac{\widehat{x_1}}{\sqrt{N}}, \dots, \frac{\widehat{x_N}}{\sqrt{N}} \right\rangle \quad \mathbf{v_2} = \left\langle \frac{\widehat{y_1}}{\sqrt{N}}, \dots, \frac{\widehat{y_N}}{\sqrt{N}} \right\rangle$

The Properties of Correlation Coefficient

Symmetric

- * Translating invariant
- Scaling only may change sign
- ** bounded within [-1, 1]

Using correlation to predict

Caution! Correlation is **NOT** Causation

Credit: Tyler Vigen

How do we go about the prediction?

Removed of outliers & standardized

Using correlation to predict

- Given a correlated data set $\{(x_i, y_i)\}$ we can predict a value y_0^p that goes with a value x_0
- In standard coordinates $\{(\hat{x}_i, \hat{y}_i)\}$ we can predict a value \hat{y}_0^p that goes with a value \hat{x}_0

Which coordinates will you use for the predictor using correlation?

- B. Original coordinates
- C. Either

Linear predictor and its error

We will assume that our predictor is linear

$$\widehat{y}^p = a \ \widehat{x} + b$$

$$\widehat{y_i}^p = a \ \widehat{x_i} + b$$

 \ast The error in the prediction is denoted u_i

$$u_i = \widehat{y_i} - \widehat{y_i}^p = \widehat{y_i} - a \ \widehat{x_i} - b$$

Require the mean of error to be zero

We would try to make the mean of error equal to zero so that it is also centered around 0 as

the standardized data: $men(\{u;i\}) = men(\{\hat{y} - \hat{y}_i\})$ $= men(\{\hat{y} - a\hat{x} - b\})$ $= men(\{\hat{y}\}) - a \cdot men(\{\hat{x}\}) - b$ = -b = 0 $\Rightarrow b = 0$

Require the variance of error is minimal

5 = mean ((1 U;-mean (\$4.3))))) minimize = mem ({u:3~) $= mem(\{(\hat{g} - \hat{g} - \hat{g})^{-}\})$ = nam ({ (g-ax-1)~3) = mem (3 - 29, xy+ a x 3) = mean ({3 }) - za men((xy}) + a manlex men (29~3) 1-227+2 $= mean(\xi(\hat{g} - 0)^{2}))$ $= var(\hat{g}) = 1$ d (1-rarta) =0 La -28+29=0

Require the variance of error is minimal

Here is the linear predictor!

Correlation coefficient

Prediction Formula

In standard coordinates

$$\widehat{y_0}^p = r \; \widehat{x_0}$$
 where $r = corr(\{(x_i, y_i)\})$

In original coordinates

$$\frac{y_0^p - mean(\{y_i\})}{std(\{y_i\})} = r \frac{x_0 - mean(\{x_i\})}{std(\{x_i\})}$$

Root-mean-square (RMS) prediction error

$$\begin{array}{ll}Given & var(\{u_i\}) = 1 - 2ar + a^2\\\& & a = r\end{array}$$

*

$$var(\{u_i\}) = 1 - r^2 \quad \text{if r=1} \quad var(\{u_i\}) = 0$$

$$RMS \quad error = \sqrt{mean(\{u_i\})}$$

$$= \sqrt{var(\{u_i\})}$$

$$= \sqrt{1 - r^2}$$

See the error through simulation

https://rpsychologist.com/d3/correlation/

Example: Body Fat data

Example: remove 2 more outliers

Heatmap

Display matrix of data via gradient of color(s)

Figure 2-4. Monthly normal mean temperatures for four locations in the US. Data source: NOAA.

Summarization of 4 locations' annual mean temperature by month

3D bar chart

Transparent 3D bar chart is good for small # of samples across categories

Relationship between data feature and time

- ※ Example: How does Amazon's stock change over 1 years?

 Day
 AMZN
 DUK
 KO
 - take out the pair of

features

x: Day

y: AMZN

Day	AMZN	DUK	КО
1	38.700001	34.971017	17.874906
2	38.900002	35.044103	17.882263
3	38.369999	34.240172	17.757161
6	37.5	34.294985	17.871225
7	37.779999	34.130544	17.885944
8	37.150002	33.984374	17.9117
9	37.400002	34.075731	17.933777
10	38.200001	33.91129	17.863866
14	38.66	34.020917	17.845469
15	37.880001	33.966104	17.882263
16	36.98	34.130544	17.790276
17	37.02	34.240172	17.757161
20	36.950001	34.057458	17.672533
21	36.43	34.112272	17.705649
22	37.259998	34.258442	17.709329
23	37.080002	34.569051	17.639418
24	36.849998	34.861392	17.598945

Time Series Plot: Stock of Amazon

Scatter plot

Coupled with heatmap to show a 3rd feature arcsinh original value

Assignments

Finish reading Chapter 2 of the textbook

* Next time: Probability a first look

Additional References

- * Charles M. Grinstead and J. Laurie Snell "Introduction to Probability"
- Morris H. Degroot and Mark J. Schervish "Probability and Statistics"

See you next time

See You!

