# Probability and Statistics for Computer Science 

## "Correlation is not Causation" but Correlation is so beautiful!

Credit: wikipedia

Hongye Liu, Teaching Assistant Prof, CS361, UIUC, 9.1.2020

* Please use "t" sign in your chat to indicate a formal question or comment.
* Please mute your mic es heep the zoom sound quality.
* Please wreck ont the websites of Simulation $\alpha$ Code Notebak in the chat.

Last time
Location Parameters :
Mean ( $\mu$ ), Median, Mode Scale Parameters:
Standard $(\sigma)$, Interquartile deviation $\sigma^{2}$, range (iqr) variance ( $\sigma^{2}$ )
Standardizing Data: $\hat{x}_{i}=\frac{x_{i}-\mu}{\sigma}$

## Objectives

类 Median，Interquartile range，box plot and outlier，Mode \＆Skew
粦 Scatter plots，Correlation Coefficient粦 Visualizing \＆Summarizing relationships Heatmap，3D bar，Time series plots，

## Median

粦 To organize the data we first sort it
絭 Then if the number of items N is odd median $=$ middle item's value
if the number of items N is even
median $=$ mean of middle 2 items'
values

## Properties of Median

类 Scaling data scales the median
$\operatorname{median}\left(\left\{k \cdot x_{i}\right\}\right)=k \cdot \operatorname{median}\left(\left\{x_{i}\right\}\right)$
median $=\underset{\mu}{\operatorname{argmin}}\left(\sum_{i=1}^{\infty}\left|x_{i}-\mu\right|\right)$
䊩 Translating data translates the median

$$
\operatorname{median}\left(\left\{x_{i}+c\right\}\right)=\operatorname{median}\left(\left\{x_{i}\right\}\right)+c
$$

## Percentile

粦 $\mathrm{k}^{\text {th }}$ percentile is the value relative to which $\mathrm{k} \%$ of the data items have smaller or equal numbers

粦 Median is roughly the $50^{\text {th }}$ percentile
$\{1,2,3,4,5,6,7,12\}$

$$
75 \text { th percentile }=? 6 \neq 75 \%
$$

## Interquartile range

iq $=$ (75th percentile) - (25th percentile) +

$$
30
$$

Scaling data scales the interquartile range

$$
\operatorname{iqr}\left(\left\{k \cdot x_{i}\right\}\right)=\underset{\uparrow \uparrow}{|k|} \cdot \operatorname{iqr}\left(\left\{x_{i}\right\}\right)
$$

粦 Translating data does NOT change the interquartile range

$$
\operatorname{iqr}\left(\left\{x_{i}+c\right\}\right)=\operatorname{iqr}\left(\left\{x_{i}\right\}\right)
$$

## Box plots

## Boxplots

粦 Simpler than
histogram
粦 Good for outliers
䊩 Easier to use
for comparison

Data from https：／／www2．stetson．edu／ ～jrasp／data．htm

## Vehicle death by region

## Boxplots details, outliers

How to define outliers?
(the default)


## Q. TRUE or FALSE

mean is more sensitive to outliers than median


## Q. TRUE or FALSE

interquartile range is more sensitive to outliers than std.

> A True
> B False

## Sensitivity of summary statistics to outliers

粦 mean and standard deviation are very sensitive to outliers
median and interquartile range are not sensitive to outliers

## Modes

粦 Modes are peaks in a histogram
粦 If there are more than 1 mode, we should be curious as to why

## Multiple modes

粦 We have seen
the "iris" data which looks to
have several peaks


## Example Bi-modes distribution

## Modes may indicate multiple populations

red blood ull
Data: Erythrocyte cells in healthy humans


Piagnerelli, JCP 2007

## Tails and Skews

Symmetric Histogram


Left Skew



Credit: Prof.Forsyth

med:an mean

## Q. How is this skewed?

(A)Left B Right


Median $=47$

## Looking at relationships in data

䊩 Finding relationships between features in a data set or many data sets is one of the most important tasks in data analysis

## Relationship between data features

Example: does the weight of people relate to their height?

| IDNO | BODYFAT | DENSITY | AGE | WEIGHT | HEIGHT |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 12.6 | 1.0708 | 23 | 154.25 | 67.75 |
| 2 | 6.9 | 1.0853 | 22 | 173.25 | 72.25 |
| 3 | 24.6 | 1.0414 | 22 | 154.00 | 66.25 |
| 4 | 10.9 | 1.0751 | 26 | 184.75 | 72.25 |
| 5 | 27.8 | 1.0340 | 24 | 184.25 | 71.25 |
| 6 | 20.6 | 1.0502 | 24 | 210.25 | 74.75 |
| 7 | 19.0 | 1.0549 | 26 | 181.00 | 69.75 |
| 8 | 12.8 | 1.0704 | 25 | 176.00 | 72.50 |
| 9 | 5.1 | 1.0900 | 25 | 191.00 | 74.00 |
| 10 | 12.0 | 1.0722 | 23 | 198.25 | 73.50 |

米 $x$ : HIGHT, $y$ : WEIGHT

## Scatter plot

業 Body Fat data set


## Scatter plot

## 粦 Scatter plot with density



## Scatter plot

粦 Removed of outliers \& standardized


Correlation


## Correlation seen from scatter plots

## Zero <br> Correlation <br> $\downarrow$



Normalized body temperature

## Positive <br> correlation



## Negative correlation



Negative Correlation



Credit:
Prof.Forsyth

## What kind of Correlation?

Line of code in a database and number of bugs
Frequency of hand washing and number of germs on your hands

GPA and hours spent playing video games
粦 earnings and happiness

## Correlation doesn't mean causation

粦 Shoe size is correlated to reading skills, but it doesn't mean making feet grow will make one person read faster.

## Correlation Coefficient

## Given a data set $\left\{\left(x_{i}, y_{i}\right)\right\}$ consisting of

 items $\left(x_{1}, y_{1}\right) \ldots\left(x_{N}, y_{N}\right)$,粦 Standardize the coordinates of each feature:

$$
\widehat{x_{i}}=\frac{x_{i}-\operatorname{mean}\left(\left\{x_{i}\right\}\right)}{\operatorname{std}\left(\left\{x_{i}\right\}\right)} \quad \widehat{y_{i}}=\frac{y_{i}-\operatorname{mean}\left(\left\{y_{i}\right\}\right)}{\operatorname{std}\left(\left\{y_{i}\right\}\right)}
$$

粦 Define the correlation coefficient as:

$$
\operatorname{corr}\left(\left\{\left(x_{i}, y_{i}\right)\right\}\right)=\frac{1}{N} \sum_{i=1}^{N} \widehat{x}_{i} \widehat{y}_{i}
$$

## Correlation Coefficient

$$
\begin{aligned}
\widehat{x}_{i}=\frac{x_{i}-\operatorname{mean}\left(\left\{x_{i}\right\}\right)}{\operatorname{std}\left(\left\{x_{i}\right\}\right)} & \widehat{y}_{i}=\frac{y_{i}-\operatorname{mean}\left(\left\{y_{i}\right\}\right)}{\operatorname{std}\left(\left\{y_{i}\right\}\right)} \\
\operatorname{corr}\left(\left\{\left(x_{i}, y_{i}\right)\right\}\right)= & \frac{1}{N} \sum_{i=1}^{N} \widehat{x_{i}} \widehat{y}_{i} \\
& =\operatorname{mean}\left(\left\{\widehat{x_{i}} \widehat{y}_{i}\right\}\right)
\end{aligned}
$$

## Q: Correlation Coefficient

类 Which of the following describe(s) correlation coefficient correctly?
A. It's unitless
B. It's defined in standard coordinates
C. Both A \& B

$$
\operatorname{corr}\left(\left\{\left(x_{i}, y_{i}\right)\right\}\right)=\frac{1}{N} \sum_{i=1}^{N} \widehat{x_{i}} \widehat{y}_{i}
$$

# A visualization of correlation coefficient 

https://rpsychologist.com/d3/correlation/
In a data set $\left\{\left(x_{i}, y_{i}\right)\right\}$ consisting of items
$\left(x_{1}, y_{1}\right) \ldots\left(x_{N}, y_{N}\right)$,
$\operatorname{corr}\left(\left\{\left(x_{i}, y_{i}\right)\right\}\right)>0$ shows positive correlation
$\operatorname{corr}\left(\left\{\left(x_{i}, y_{i}\right)\right\}\right)<0$ shows negative correlation
$\operatorname{corr}\left(\left\{\left(x_{i}, y_{i}\right)\right\}\right)=0$ shows no correlation

## The Properties of Correlation Coefficient

类 The correlation coefficient is symmetric

$$
\operatorname{corr}\left(\left\{\left(x_{i}, y_{i}\right)\right\}\right)=\operatorname{corr}\left(\left\{\left(y_{i}, x_{i}\right)\right\}\right)
$$

㐘 Translating the data does NOT change the correlation coefficient

## The Properties of Correlation Coefficient

粦 Scaling the data may change the sign of the correlation coefficient

$$
\begin{aligned}
& \operatorname{corr}\left(\left\{\left(a x_{i}+b, c y_{i}+d\right)\right\}\right) \\
& \quad=\operatorname{sign}(a c) \operatorname{corr}\left(\left\{\left(x_{i}, y_{i}\right)\right\}\right)
\end{aligned}
$$

Correlation is one of the most widely used tools in statistics. The correlation coefficient summarizes the association between two variables. In this visualization I show a scatter plot of two variables with a given correlation. The variables are samples from the standard normal distribution, which are then transformed to have a given correlation by using Cholesky decomposition. By moving the slider you will see how the shape of the data changes as the association becomes stronger or weaker. You can also look at the Venn diagram to see the amount of shared variance between the variables. It is also possible drag the data points to see how the correlation is influenced by outliers.

## Slide me



Correlation is one of the most widely used tools in statistics. The correlation coefficient summarizes the association between two variables. In this visualization I show a scatter plot of two variables with a given correlation. The variables are samples from the standard normal distribution, which are then transformed to have a given correlation by using Cholesky decomposition. By moving the slider you will see how the shape of the data changes as the association becomes stronger or weaker. You can also look at the Venn diagram to see the amount of shared variance between the variables. It is also possible drag the data points to see how the correlation is influenced by outliers.

## Slide me



## The Properties of Correlation Coefficient

䊩 The correlation coefficient is bounded within $[-1,1]$
$\operatorname{corr}\left(\left\{\left(x_{i}, y_{i}\right)\right\}\right)=1$ if and only if $\widehat{x_{i}}=\widehat{y_{i}}$
$\operatorname{corr}\left(\left\{\left(x_{i}, y_{i}\right)\right\}\right)=-1$ if and only if $\widehat{x_{i}}=-\widehat{y_{i}}$

## Which of the following has correlation coefficient equal to 1?


A. Left and right B. Left
C. Middle


## Concept of Correlation Coefficient's bound

粦 The correlation coefficient can be written as

$$
\begin{aligned}
& \operatorname{corr}\left(\left\{\left(x_{i}, y_{i}\right)\right\}\right)=\frac{1}{N} \sum_{i=1}^{N} \widehat{x}_{i} \widehat{y}_{i} \\
& \operatorname{corr}\left(\left\{\left(x_{i}, y_{i}\right)\right\}\right)=\sum_{i=1}^{N} \frac{\widehat{x}_{i}}{\sqrt{N}} \frac{\widehat{y}_{i}}{\sqrt{N}}
\end{aligned}
$$

粦 It's the inner product of two vectors

$$
\left.\begin{array}{llll}
\left\langle\frac{\widehat{x_{1}}}{\sqrt{N}}\right. & \ldots & \frac{\widehat{x_{N}}}{\sqrt{N}}
\end{array}\right\rangle \text { and }\left\langle\begin{array}{lll}
\frac{\widehat{y_{1}}}{\sqrt{N}} & \ldots & \frac{\widehat{y_{N}}}{\sqrt{N}}
\end{array}\right\rangle
$$

## Inner product

業 Inner product's geometric meaning:


粦 Lengths of both vectors

are 1

## Bound of correlation coefficient

$\left|\operatorname{corr}\left(\left\{\left(x_{i}, y_{i}\right)\right\}\right)\right|=|\cos (\theta)| \leq 1$

$\left.\mathbf{v}_{1}=\begin{array}{lll}\frac{\widehat{x_{1}}}{\sqrt{N}}, & \ldots & \frac{\widehat{x_{N}}}{\sqrt{N}}\end{array}\right\rangle \quad \mathbf{v}_{2}=\left\langle\begin{array}{llll}\frac{\widehat{y_{1}}}{\sqrt{N}}, & \ldots & \frac{\widehat{y_{N}}}{\sqrt{N}}\end{array}\right\rangle$

# The Properties of Correlation Coefficient 

粦 Symmetric
粦 Translating invariant
粦 Scaling only may change sign
䊩 bounded within［－1，1］

## Using correlation to predict

## 粦 Caution! Correlation is NOT Causation

## Math doctorates awarded <br> correlates with

Uranium stored at US nuclear power plants
-


Credit: Tyler Vigen

## How do we go about the prediction?

粦 Removed of outliers \& standardized


## Using correlation to predict

Given a correlated data set $\left\{\left(x_{i}, y_{i}\right)\right\}$
we can predict a value $y_{0}{ }^{p}$ that goes with a value $x_{0}$

粦 In standard coordinates $\left\{\left(\widehat{x_{i}}, \widehat{y_{i}}\right)\right\}$
we can predict a value ${\widehat{y_{0}}}^{p}$ that goes with a value $\widehat{x_{0}}$

Which coordinates will you use for the predictor using correlation?
A. Standard coordinates
B. Original coordinates
C. Either

## Linear predictor and its error

We will assume that our predictor is linear

$$
\widehat{y}^{p}=a \widehat{x}+b
$$

We denote the prediction at each $\widehat{x_{i}}$ in the data set as $\widehat{y}_{i}{ }^{p}$

$$
\widehat{y}_{i}^{p}=a \widehat{x}_{i}+b
$$

The error in the prediction is denoted $u_{i}$

$$
u_{i}=\widehat{y}_{i}-\widehat{y}_{i}^{p}=\widehat{y_{i}}-a \widehat{x}_{i}-b
$$

## Require the mean of error to be zero

We would try to make the mean of error equal to zero so that it is also centered around 0 as the standardized data:
cuman $(\{u ;\})=$ mean $\left(\left\{\hat{y}-\hat{j}_{\}}^{p}\right)\right.$

$$
\begin{aligned}
& =\operatorname{mean}(\{\hat{y}-a \hat{x}-b\}) \\
& =\operatorname{meanc}(\{\hat{y}\})^{0}-a \cdot \operatorname{mean}(5 \hat{x} j)-b
\end{aligned}
$$

$$
=-b=0
$$

$$
\Rightarrow \quad b=0
$$

$$
\uparrow
$$

Require the variance of error is minimal

$$
\begin{aligned}
& =\operatorname{meman}\left(\{u:\}^{2}\right) \\
& \left.=\operatorname{mancm}\left(\{c \hat{j}-\hat{y} p)^{2}\right\}\right) \\
& \left.=\operatorname{monon}\left(p(\hat{y}-a \hat{x}-\alpha j)^{n}\right\}\right) \\
& =\operatorname{mencm}\left(\left\{\hat{y}^{2}-2 a \tilde{x}_{y}+a^{2} \tilde{x}^{2}\right\}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { mean }\left(\frac{1}{} \hat{y}^{\sim} 3\right) \\
& =\operatorname{man}\left(\left\{(\hat{y}-0)^{2}\right\}\right)=1-2 a r+a \\
& =\operatorname{arar}(\hat{y})=1 \\
& \frac{d\left(1-2 a r+a^{2}\right)}{l a}=0 \\
& -2 r+2 a=0
\end{aligned}
$$

# Require the variance of error is minimal 



## Here is the linear predictor!



Correlation coefficient

## Prediction Formula

## 粦 In standard coordinates

${\widehat{y_{0}}}^{p}=r \widehat{x_{0}}$ where $r=\operatorname{corr}\left(\left\{\left(x_{i}, y_{i}\right)\right\}\right)$粦 In original coordinates

$$
\frac{y_{0}^{p}-\operatorname{mean}\left(\left\{y_{i}\right\}\right)}{\operatorname{std}\left(\left\{y_{i}\right\}\right)}=r \frac{x_{0}-\operatorname{mean}\left(\left\{x_{i}\right\}\right)}{\operatorname{std}\left(\left\{x_{i}\right\}\right)}
$$

## Root-mean-square (RMS) prediction error

粦

$$
\begin{array}{lc}
\text { Given } & \operatorname{var}\left(\left\{u_{i}\right\}\right)=1-2 a r+a^{2} \\
\& & a=r
\end{array}
$$

$$
\operatorname{var}\left(\left\{u_{i}\right\}\right)=1-r^{2} \quad \text { if } r=1 \quad \operatorname{var}\left(\left\{u_{i}\right\}\right)=0
$$

$$
\begin{aligned}
R M S \text { error } & =\sqrt{\operatorname{mean}\left(\left\{u_{i}^{2}\right\}\right)} \\
& =\sqrt{\operatorname{var}\left(\left\{u_{i}\right\}\right)} \\
& =\sqrt{1-r^{2}}
\end{aligned}
$$

## See the error through simulation

https://rpsychologist.com/d3/correlation/

## Example: Body Fat data



## Example: remove 2 more outliers



## Heatmap

## Display matrix of data via gradient of color(s)



Figure 2-4. Monthly normal mean temperatures for four locations in the US. Data source: NOAA.

## Summarization of 4 locations' annual mean temperature by month

## 3D bar chart

粦 Transparent
3D bar chart is good for small \# of samples across categories

## Relationship between data feature and time

## Example: How does Amazon's stock change

 over 1 years?take out the pair of
features
x: Day
$y: A M Z N$

| Day | AMZN | DUK | KO |
| ---: | ---: | ---: | ---: |
| 1 | 38.700001 | 34.971017 | 17.874906 |
| 2 | 38.900002 | 35.044103 | 17.882263 |
| 3 | 38.369999 | 34.240172 | 17.757161 |
| 6 | 37.5 | 34.294985 | 17.871225 |
| 7 | 37.779999 | 34.130544 | 17.885944 |
| 8 | 37.150002 | 33.984374 | 17.9117 |
| 9 | 37.400002 | 34.075731 | 17.933777 |
| 10 | 38.200001 | 33.91129 | 17.863866 |
| 14 | 38.66 | 34.020917 | 17.845469 |
| 15 | 37.880001 | 33.966104 | 17.882263 |
| 16 | 36.98 | 34.130544 | 17.790276 |
| 17 | 37.02 | 34.240172 | 17.757161 |
| 20 | 36.950001 | 34.057458 | 17.672533 |
| 21 | 36.43 | 34.112272 | 17.705649 |
| 22 | 37.259998 | 34.258442 | 17.709329 |
| 23 | 37.080002 | 34.569051 | 17.639418 |
| 24 | 36.849998 | 34.861392 | 17.598945 |
|  |  |  |  |

## Time Series Plot: Stock of Amazon



## Scatter plot

粦 Coupled with heatmap to show a $3^{\text {rd }}$ feature


## Assignments

Finish reading Chapter 2 of the textbook

Next time: Probability a first look

## Additional References

Charles M. Grinstead and J. Laurie Snell "Introduction to Probability"

Morris H. Degroot and Mark J. Schervish "Probability and Statistics"

## See you next time

See You!


