# Probability and Statistics for Computer Science



"Probabilistic analysis is mathematical, but intuition dominates and guides the math" – Prof. Dimitri Bertsekas

Credit: wikipedia

Hongye Liu, Teaching Assistant Prof, CS361, UIUC, 9.3.2020

### Homework (I)

#### # Due 9/3 today at 11:59pm

\* There is one optional problem with extra 5 points. (Won't be in exams)

### Last time

# Median, Interquartile range, box plot and outlier, Mode & Skew

Scatter plots, Correlation Coefficient



Objectives

Probability: a first look

Definitions Random Experiment. Ourcome, Sample Space, Event probability-three axioms Properties of probability Calculating probability

game of chance

http://www.randomservices.org/random/apps/ RouletteExperiment.html

Q. Will I win?

#### A. Yes B. No

Def. »f Random experiment

Random

Repentable

rrangements re? rang re A r

Arrange & respie to sit ٩ rou 8 8 Radund.

How much is the chance?

You & your hest friend are randomly) a ssigned sit together (Seats 2×6! mobility = 2×6!

### Outcome

#### \* An outcome A is a possible result of a random repeatable experiment

Random: uncertain, Nondeterministic, ...



### Sample space

# \* The Sample Space, Ω, is the set of all possible outcomes associated with the random experiment

#### # Discrete or Continuous

#### Sample Space example (1)

- \* Experiment: we roll a tetrahedral die
  twice
- **Discrete** Sample space:





#### Sample Space example (2)

- **Continuous** Sample space:  $\Omega = \{(x,y) \mid 0 \le x, y \le 1\}$



# Sample Space depends on experiment (3)

# Different coin tosses Toss a fair coin

# Sample Space depends on experiment (4)

\* Drawing 2 socks one at a time from a bag containing 1 blue sock, 1 orange sock and 1 white sock with replacement?

\* Drawing 2 socks one at a time from a bag containing 1 blue sock, 1 orange sock and 1 white sock without replacement? \* Drawing 2 socks one at a time from a bag containing 1 blue sock, 1 orange sock and 1 white sock with replacement? What is the size of the sample space?

A. 5 B. 7 C. 9

3×3 = 9 t t Drawing 2 socks one at a time from a bag containing 1 blue sock, 1 orange sock and 1 white sock without replacement? What is the size of the sample space?

3xz = 6 $\uparrow$   $\uparrow$ 

#### Sample Space in real life

- \* Possible outages of a power network
- \* Possible mutations in a gene
- \* A bus' arriving time

cont:

#### Event

- \* An event E is a subset of the sample space Ω
  \* So an event is a set of outcomes that is a subset of Ω, ie.
  - # Zero outcome  $\phi$ : { }
  - % One outcome
  - Several outcomes
  - # All outcomes

{ A, } { A, Av, A3}

### The same experiment may have different events

- When two coins are tossed
  - # Both coins come up the same?
  - # At least one head comes up?

#### Some experiment may never end

 Experiment: Tossing a coin until a head appears

\* E: Coin is tossed at least 3 times
This event includes infinite # of outcomes

### Venn Diagrams of events as sets



 $H_{2}$ 

#### Combining events

### Say we roll a six-sided die. Let $(E_1) = \{1, 2, 5\} and (E_2) = \{2, 4, 6\}$ # What is $E_1 \cap E_2$ $\{ 2 \}$ \* What is $E_1 - E_2$ $\langle \cdot, 5 \rangle$ \* What is $\widetilde{E}_1^c = \Omega - E_1$ $\mathcal{I} = \langle \cdot, \cdot, \cdot, \cdot, \cdot, \cdot \rangle$ E= 3,4,63

#### Frequency Interpretation of Probability

Given an experiment with an outcome A, we can calculate the probability of A by repeating the experiment over and over



#### Axiomatic Definition of Probability

- A probability function is any function P that maps sets to real number and satisfies the following three axioms:
  - 1) Probability of any event E is non-negative

(E)

2) Every experiment has an outcome

#### Axiomatic Definition of Probability

3) The probability of disjoint events is additive  $P(E_1 \cup E_2 \cup \ldots \cup E_N) = \sum P(E_i)$ if  $E_i \cap E_j = \emptyset$  for all  $i \neq j$ 



#### \* Toss a coin 3 times

# The event "exactly 2 heads appears" and "exactly 2 tails appears" are <u>disjoint</u>.

 A. True
 3

 2 = 8

 B. False

 THH HIT

HTT TTH

### Venn Diagrams of events as sets





### Properties of probability

\* The complement

 $P(E^c) = 1 - P(E)$ 

#### \* The difference



(-P(E))

 $P(E_1 - E_2) =$  $P(E_1) - P(E_1 \cap E_2)$ PLEI)- P(EINEN)

### Properties of probability

#### \* The union





P(G, UE-)=P(1)+P(-)+P(3)

#### The Calculation of Probability

- # Discrete countable finite event
- # Continuous event

# Counting to determine probability of countable finite event

\* From the last axiom, the probability of event **E** is the sum of probabilities of the disjoint outcomes  $P(E) = \sum P(A_i)$ 

 $A_i \in E$ 

\* If the outcomes are atomic and have equal probability,  $P(E) = \frac{number \ of \ outcomes \ in \ E}{total \ number \ of \ outcomes \ in \ \Omega}$ 

#### Probability using counting: (1)

#### \* Tossing a fair coin twice:

\* Prob. that it appears the same?  $E = \left\{ \mu_{H}, \tau_{T} \right\}$   $\mathcal{I} = \left\{ \mu_{H}, \mu_{I}, \tau_{H}, \tau_{I} \right\}$ \* Prob. that at least one head appears?

#### Probability using counting: (2)

4 rolls of a 5-sided die:



#### Probability using counting: (2)

- What about N-1 rolls of a N-sided die?
  - E: they all give different numbers
  - \* Number of outcomes that make the event happen:

N. (N-1) --- ×2

\* Number of outcomes in the sample space
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N

# Probability by reasoning with the complement property

### 

### $P(E) = 1 - P(E^c)$

# Probability by reasoning with the complement property

A person is taking a test with N true or false questions, and the chance he/she answers any question right is 50%, what's probability the person answers at least one question right?

TE: none is right

1 × 1 × · · ·  $P(E) = (-P(E^{-})) = (-(+))$ 

Probability by reasoning with the union property

 $P(E) = P(E_1 \cup E_2) =$ 

 $P(E_1) + P(E_2) - P(E_1 \cap E_2)$ 

# Probability by reasoning with the properties (2)

\* A person may ride a bike on any day of the year equally. What's the probability that he/she rides on a Sunday or on 15<sup>th</sup> of a month? P(E) = P(GIVEN) Er: 15+1 ニア ( ビリキア(ビッ) = 52

#### Counting may not work

### \* This is one important reason to use the method of reasoning with properties

# What if the event has outcomes

Fair \* Tossing a coin until head appears \* Coin is tossed at least 3 times This event includes infinite # of outcomes. And the outcomes don't have equal probability. (2)5 TTH, TTTH, TTTTH....

#### Additional References

- \* Charles M. Grinstead and J. Laurie Snell "Introduction to Probability"
- Morris H. Degroot and Mark J. Schervish "Probability and Statistics"

#### See you next time

See You!



