Probability and Statistics for Computer Science

"Probabilistic analysis is mathematical, but intuition dominates and guides the math" - Prof. Dimitri Bertsekas

Credit: wikipedia

Hongye Liu, Teaching Assistant Prof, CS361, UIUC, 9.3.2020

Homework (I)

* Due $9 / 3$ today at $11: 59$ pm

粦 There is one optional problem with extra 5 points. (Won't be in exams)

Last time

粦 Median, Interquartile range, box

 plot and outlier, Mode \& Skew粦 Scatter plots, Correlation Coefficient

Objectives
Probability: a first look
Definitions
Random Experiment.
Outcome, Sample Space, Event probalility-three axioms
properties of probability
${ }_{\Delta}^{\text {Calculating probability }}$

A game
of chance
http://www.randomservices.org/random/apps/ RouletteExperiment.html
Q. will 1 win?
A. Yes
B. No

Def. of Random experiment
Random

Repeatable

How many arrangements are there?
Arrange 8 people to sit by a round table.

$7!$

8 Rotund. $\frac{8!}{8}=7!$

How much is che chance?

You a your hest friend
sit together. (Seats are randomly)
 a bligned

$$
\underline{\underline{\text { mons: }:+7}=\frac{2 \times 6!}{7!}=\frac{2}{7}}
$$

Outcome

粦 An outcome \mathbf{A} is a possible result of a random repeatable experiment

Random: uncertain, Nondeterministic, ...

Sample space

类 The Sample Space, $\boldsymbol{\Omega}$, is the set of all possible outcomes associated with the random experiment

畨 Discrete or Continuous

Sample Space example (1)

* Experiment: we roll a tetrahedral die twice

16

$$
1234
$$

粦 Discrete Sample space:

Sample Space example (2)

㐘 Experiment: Romeo and Juliet's date

粦 Continuous Sample space:

$$
\Omega=\{(x, y) \mid 0 \leq x, y \leq 1\}
$$

Sample Space depends on experiment（3）

粪 Different coin tosses
䊩 Toss a fair coin HT

类 Toss a fair coin twice 4 HH

＊TR T_{T}^{H}
粦 Toss until a head appears

$H 1$
$H_{1} T$
T
T

Sample Space depends on experiment (4)

Drawing 2 socks one at a time from a bag containing 1 blue sock, 1 orange sock and 1 white sock with replacement?

米 Drawing 2 socks one at a time from a bag containing 1 blue sock, 1 orange sock and 1 white sock without replacement?

Drawing 2 socks one at a time from a bag containing 1 blue sock, 1 orange sock and 1 white sock with replacement? What is the size of the sample space?

$$
\text { A. } 5 \text { B. } 7 \text { C. } 9
$$

$$
\begin{aligned}
& 3 \times 3=9 \\
& t
\end{aligned}
$$

Drawing 2 socks one at a time from a bag containing 1 blue sock, 1 orange sock and 1 white sock without replacement? What is the size of the sample space?

$$
\begin{array}{ll}
\text { A. } 5 \text { B. } 6 \text { C. } 9 & 3 \times 2=6 \\
& \uparrow r
\end{array}
$$

Sample Space in real life

粦 Possible outages of a power network

粦 Possible mutations in a gene
粦 A bus＇arriving time

Event

An event E is a subset of the sample space Ω いるど So an event is a set of outcomes that is a subset of Ω ，ie．
粦 Zero outcome $\phi=\{ \}$
粦 One outcome
$\left\{A_{1}\right\}$
粦 Several outcomes
$\left\{A_{1}, A_{2}, A_{3}\right\}$
粦 All outcomes

The same experiment may have different events

䊩 When two coins are tossed粦 Both coins come up the same？粦 At least one head comes up？

Some experiment may never end

粦 Experiment: Tossing a coin until a head appears

畨 E : Coin is tossed at least 3 times
This event includes infinite \# of outcomes

Venn Diagrams of events as sets

E_{1}
$\Omega{ }^{2}$

E_{2}
\uparrow

$E_{1} \cup_{\uparrow} E_{2}$

$E_{1} \bigcap_{\uparrow} E_{2}$

$E_{1}{ }^{c}$

$E_{1}-E_{2}$

Combining events

粪 Say we roll a six－sided die．Let

$$
\underset{\sim}{E_{1}}=\left\{\underline{1,2,5\}} \text { and } \underline{E_{2}}=\{2,4,6\}\right.
$$

粦 What is $\underline{E_{1} \cup E_{2}}\{1,2,4,5,6\}$
粦 What is $E_{1} \cap E_{2}\{2\}$
粦 What is $\overline{E_{1}-E_{2}}\{1,5\}$
类 What is $E_{1}^{c}=\Omega-E_{1} \quad \Omega=\{, 2,3,4,5$

$$
E_{1}^{c}=\{3,4,6\}
$$

Frequency Interpretation of Probability

Given an experiment with an outcome A, we can calculate the probability of A by repeating the experiment over and over

$$
P(A)=\frac{\lim _{N-\infty} \frac{\text { number of time A occurs }}{N}}{N}
$$

Axiomatic Definition of Probability

A probability function is any function P that maps sets to real number and satisfies the following three axioms:

1) Probability of any event E is non-negative

$$
P(E) \geq 0
$$

2) Every experiment has an outcome

$$
E \rightarrow \text { number }
$$

Axiomatic Definition of Probability

Mentally Exclusive 3) The probability of disjoint events is additive

$$
\begin{aligned}
& P\left(E_{1} \cup E_{2} \cup \ldots \cup E_{N}\right)=\sum_{i=1}^{N} P\left(E_{i}\right) \\
& \text { if } E_{i} \cap E_{j}=\emptyset \text { for all } i \neq j
\end{aligned}
$$

o.

粪 Toss a coin 3 times

The event "exactly 2 heads appears" and "exactly 2 tails appears" are disjoint.
(A.) True

$$
2^{3}=8
$$

B. False

$$
\begin{array}{ll}
\text { THY BHT } \\
\text { HT TH }
\end{array}
$$

Venn Diagrams of events as sets

Ω

E_{1}

$E_{1} \cap E_{2}$

$E_{1}{ }^{c}$

$E_{1}-E_{2}$

Properties of probability

类 The complement

$$
P\left(E^{c}\right)=1-P(E)
$$

䊩 The difference

$$
\begin{gathered}
P\left(E_{1}-E_{2}\right)= \\
P\left(E_{1}\right)-P\left(E_{1} \cap E_{2}\right)
\end{gathered}
$$

$$
P\left(E_{1}\right)-P\left(E_{1} \cap E_{2}\right)
$$

Properties of probability

米 The union

$$
P\left(E_{1} \cup E_{2}\right)=
$$

$P\left(E_{1}\right)+P\left(E_{2}\right)$
$-P\left(E_{1} \cap E_{2}\right)$

$P(5, C E)=P(1)+P(-)+P(3)$
粦 The union of multiple $E \quad \begin{aligned} & P\left(E_{1}\right)+P(E v) \\ & =P(1)+P(v)\end{aligned}$

$$
\begin{aligned}
& \downarrow P\left(E_{1} \cup E_{2} \cup E_{3}\right)=P\left(E_{1}\right)+P\left(E_{2}\right)+P\left(E_{3}\right)+\mathrm{P}(\imath)+\text { р(3) } \\
& { }_{\uparrow} P\left(E_{1} \cap E_{2}\right)-P\left(E_{2} \cap E_{3}\right)-P\left(E_{3} \cap E_{1}\right) \\
& +P\left(E_{1} \cap E_{2} \cap E_{3}\right)
\end{aligned}
$$

The Calculation of Probability

Discrete countable finite event

Discrete countable infinite event
Continuous event

Counting to determine probability of countable finite event

From the last axiom, the probability of event (E) is the sum of probabilities of the disjoint outcomes

$$
P(E)=\sum_{A_{i} \in E} P\left(A_{i}\right)
$$

If the outcomes are atomic and have equal probability,

$$
P(E)=\frac{\text { number of outcomes sin } E}{\hat{\uparrow}}
$$

Probability using counting：（1）

粦 Tossing a fair coin twice：
粦 Prob．that it appears the same？

$$
\begin{array}{ll}
E=\{H H, T T\} & 1 / 2 \\
\Omega=\{H \mu, H T, T H, T T\}
\end{array}
$$

粦 Prob．that at least one head appears？

$$
\frac{3}{4}
$$

Probability using counting: (2)

4 rolls of a 5-sided die:
E: they all give different numbers
Number of outcomes that make the event happen:

粦 Number of outcomes in the sample space

$$
5 \times 5 \times 5 \times 5=5^{4}
$$

絭 Probability:

Probability using counting: (2)

What about $\mathrm{N}-1$ yolls of a N -sided die?
E: they all give different numbers
Number of outcomes that make the event happen:

$$
N \cdot(N-1) \cdots \times 2
$$

粦 Number of outcomes in the sample space粦 Probability:

Probability by reasoning with the complement property

粦 If $\underset{\uparrow}{\mathrm{P}}\left(\mathrm{E}^{\mathrm{C}}\right)$ is easier to calculate

$$
P(E)=1-P\left(E^{c}\right)
$$

Probability by reasoning with the complement property

A person is taking a test with \mathbf{N} true or false questions, and the chance he/she answers any question right is 50\%, what's probability the person answers at least one question right?

Probability by reasoning with the union property

米 If E is either E 1 or $\mathrm{E}{\underset{\tau}{2}}^{2}$
$P(E)=P\left(E_{1} \cup E_{2}\right)=$

$$
P\left(E_{1}\right)+P\left(E_{2}\right)-\overline{P\left(E_{1} \cap E_{2}\right)}
$$

Probability by reasoning with the properties (2)

A person may ride a bike on any day of the year equally. What's the probability that he/she rides on a Sunday or on $15^{\text {th }}$ of a month?

$$
\begin{aligned}
& P(E)=P(E, V E \sim) \quad \text { Evirsth this year } \\
& =P\left(E_{1}\right)+P\left(E_{v}\right) \\
& -P\left(E, \cap E_{2}\right) \quad 52 \text { Sumatas } \\
& =\frac{52}{366}+\frac{12}{366}-\frac{2}{366}
\end{aligned}
$$

Counting may not work

粦 This is one important reason to use the method of reasoning with properties

What if the event has outcomes

Fair

粦 Tossing a,coin until head appears粦 Coin is tossed at least 3 times

This event includes infinite \# of outcomes. And the outcomes don't have equal probability.

Additional References

Charles M. Grinstead and J. Laurie Snell "Introduction to Probability"

Morris H. Degroot and Mark J. Schervish "Probability and Statistics"

See you next time

See You!

