Probability and Statistics for Computer Science

"Probabilistic analysis is mathematical, but intuition dominates and guides the math" – Prof. Dimitri Bertsekas

Credit: wikipedia

Hongye Liu, Teaching Assistant Prof, CS361, UIUC, 9.3.2020

Homework (I)

Due 9/3 today at 11:59pm

* There is one optional problem with extra 5 points. (Won't be in exams)

What's "Probability" about?

- * Probability provides mathematical tools/models to reason about uncertainty/randomness
- We deal with data, but often hypothetical, simplified
- * The purpose is to reason how likely something will happen

Content

Probability a first look

- **** Outcome and Sample Space**
- ℁ Event
- % Probability
 - Probability axioms & Properties
- % Calculating probability

Outcome

* An outcome A is a possible result of a random repeatable experiment

Random: uncertain, Nondeterministic, ...

Sample space

* The Sample Space, Ω, is the set of all possible outcomes associated with the experiment

Discrete or Continuous

Sample Space example (1)

* Experiment: we roll a tetrahedral die twice

*** Discrete** Sample space:

Sample Space example (2)

- **Continuous** Sample space: $\Omega = \{(x,y) \mid 0 < x, y < 1\}$

Sample Space depends on experiment (3)

Different coin tosses Toss a fair coin

* Toss a fair coin twice

* Toss until a head appears

Sample Space depends on experiment (4)

* Drawing 2 socks one at a time from a bag containing 1 blue sock, 1 orange sock and 1 white sock with replacement?

* Drawing 2 socks one at a time from a bag containing 1 blue sock, 1 orange sock and 1 white sock without replacement?

Drawing 2 socks one at a time from a bag containing 1 blue sock, 1 orange sock and 1 white sock with replacement? What is the size of the sample space?

A. 5 B. 7 C. 9

Drawing 2 socks one at a time from a bag containing 1 blue sock, 1 orange sock and 1 white sock without replacement? What is the size of the sample space?

A. 5 B. 6 C. 9

Sample Space in real life

Grades in a course

Possible mutations in a gene

Content

Probability a first look

Outcome and Sample Space

Event

% Probability

Probability axioms & Properties

***** Calculating probability

Event

- ${}$ An event E is a subset of the sample space Ω
- * So an event is a set of outcomes that is a subset of Ω , ie.
 - # Zero outcome
 - * One outcome
 - Several outcomes
 - # All outcomes

The same experiment may have different events

- When two coins are tossed
 - # Both coins come up the same?
 - # At least one head comes up?

Some experiment may never end

Experiment: Tossing a coin until a head appears

* E: Coin is tossed at least 3 timesThis event includes infinite # of outcomes

Venn Diagrams of events as sets

Combining events

** Say we roll a six-sided die. Let $E_1 = \{1, 2, 5\} \text{ and } E_2 = \{2, 4, 6\}$

- **** What is** $E_1 \cup E_2$ **** What is** $E_1 \cap E_2$
- * What is $E_1 E_2$
- * What is $E_1^c = \Omega E_1$

Content

Probability a first look

- # Outcome and Sample Space
- ℁ Event

% Probability

Probability axioms & Properties

% Calculating probability

Frequency Interpretation of Probability

Given an experiment with an outcome A, we can calculate the probability of A by repeating the experiment over and over

 $A_i \in \Omega$

Axiomatic Definition of Probability

- * A probability function is any function P that maps sets to real number and satisfies the following three axioms:
 - 1) Probability of any event E is non-negative $P(E) \geq 0$
 - 2) Every experiment has an outcome

$$P(\Omega) = 1$$

Axiomatic Definition of Probability

3) The probability of disjoint events is additive $P(E_1 \cup E_2 \cup ... \cup E_N) = \sum_{i=1}^N P(E_i)$ if $E_i \cap E_j = \emptyset$ for all $i \neq j$

* Toss a coin 3 times

The event "exactly 2 heads appears" and "exactly 2 tails appears" are disjoint.

A. True

B. False

Venn Diagrams of events as sets

Properties of probability

* The complement

 $P(E^c) = 1 - P(E)$

★ The difference $P(E_1 - E_2) =$ $P(E_1) - P(E_1 \cap E_2)$

Properties of probability

* The union

 $P(E_1 \cup E_2) =$ $P(E_1) + P(E_2)$ $- P(E_1 \cap E_2)$

* The union of multiple E

 $P(E_1 \cup E_2 \cup E_3) = P(E_1) + P(E_2) + P(E_3)$ $- P(E_1 \cap E_2) - P(E_2 \cap E_3) - P(E_3 \cap E_1)$ $+ P(E_1 \cap E_2 \cap E_3)$

Content

Probability a first look

- # Outcome and Sample Space
- ℁ Event
- % Probability

Probability axioms & Properties

The Calculation of Probability

- Continuous event

Counting to determine probability of countable finite event

* From the last axiom, the probability of event **E** is the sum of probabilities of the disjoint outcomes $P(E) = \sum P(A)$

$$P(E) = \sum_{A_i \in E} P(A_i)$$

If the outcomes are atomic and have equal probability,

 $P(E) = \frac{number \ of \ outcomes \ in \ E}{total \ number \ of \ outcomes \ in \ \Omega}$

Probability using counting: (1)

** Tossing a fair coin twice:** Prob. that it appears the same?

* Prob. that at least one head appears?

Probability using counting: (2)

- 4 rolls of a 5-sided die:
 - E: they all give different numbers* Number of outcomes that make the event happen:

- * Number of outcomes in the sample space
- % Probability:

Probability using counting: (2)

What about N-1 rolls of a N-sided die?

E: they all give different numbers* Number of outcomes that make the event happen:

* Number of outcomes in the sample space

% Probability:

Probability by reasoning with the complement property

If P(E^c) is easier to calculate

$P(E) = 1 - P(E^c)$

Probability by reasoning with the complement property

A person is taking a test with N true or false questions, and the chance he/she answers any question right is 50%, what's probability the person answers at least one question right? Probability by reasoning with the union property

If E is either E1 or E2

$P(E) = P(E_1 \cup E_2) =$

 $P(E_1) + P(E_2) - P(E_1 \cap E_2)$

Probability by reasoning with the properties (2)

A person may ride a bike on any day of the year equally. What's the probability that he/she rides on a Sunday or on 15th of a month?

Counting may not work

* This is one important reason to use the method of reasoning with properties

What if the event has outcomes

Tossing a coin until head appears
 Coin is tossed at least 3 times
 This event includes infinite # of outcomes.
 And the outcomes don't have equal probability.

ΤΤΗ, ΤΤΤΗ, ΤΤΤΤΗ....

Additional References

- * Charles M. Grinstead and J. Laurie Snell "Introduction to Probability"
- Morris H. Degroot and Mark J. Schervish "Probability and Statistics"

See you next time

See You!

