Probability and Statistics for Computer Science

"Probabilistic analysis is mathematical, but intuition dominates and guides the math" - Prof. Dimitri Bertsekas

Credit: wikipedia

Hongye Liu, Teaching Assistant Prof, CS361, UIUC, 9.3.2020

Homework (I)

* Due $9 / 3$ today at $11: 59$ pm

粦 There is one optional problem with extra 5 points. (Won't be in exams)

What＇s＂Probability＂about？

粦 Probability provides mathematical tools／models to reason about uncertainty／randomness

粦 We deal with data，but often hypothetical，simplified

䊩 The purpose is to reason how likely something will happen

Content

粦 Probability a first look粦 Outcome and Sample Space
＊Event
粦 Probability
Probability axioms \＆Properties
粦 Calculating probability

Outcome

粦 An outcome \mathbf{A} is a possible result of a random repeatable experiment

Random: uncertain, Nondeterministic, ...

Sample space

粦 The Sample Space, Ω, is the set of all possible outcomes associated with the experiment

类 Discrete or Continuous

Sample Space example (1)

* Experiment: we roll a tetrahedral die twice

粦 Discrete Sample space:

$\{(1,1),(1,2) \ldots$.

Sample Space example (2)

粦 Experiment: Romeo and Juliet's date

Continuous Sample space:

$$
\Omega=\{(x, y) \mid 0 \leq x, y \leq 1\}
$$

Sample Space depends on experiment（3）

Different coin tosses
粦 Toss a fair coin

絭 Toss a fair coin twice

粦 Toss until a head appears

Sample Space depends on experiment (4)

Drawing 2 socks one at a time from a bag containing 1 blue sock, 1 orange sock and 1 white sock with replacement?

米 Drawing 2 socks one at a time from a bag containing 1 blue sock, 1 orange sock and 1 white sock without replacement?

Drawing 2 socks one at a time from a bag containing 1 blue sock, 1 orange sock and 1 white sock with replacement? What is the size of the sample space?

$$
\text { A. } 5 \text { B. } 7 \quad \text { C. } 9
$$

Drawing 2 socks one at a time from a bag containing 1 blue sock, 1 orange sock and 1 white sock without replacement? What is the size of the sample space?

$$
\text { A. } 5 \text { B. } 6 \text { C. } 9
$$

Sample Space in real life

米 Grades in a course

米 Possible mutations in a gene

Content

粦 Probability a first look粪 Outcome and Sample Space ＊Event类 Probability
Probability axioms \＆Properties
粦 Calculating probability

An event E is a subset of the sample space Ω
So an event is a set of outcomes that is a subset of Ω ，ie．

粦 Zero outcome
粦 One outcome
粦 Several outcomes
粦 All outcomes

The same experiment may have different events

䊩 When two coins are tossed絭 Both coins come up the same？粦 At least one head comes up？

Some experiment may never end

絭 Experiment: Tossing a coin until a head appears

粦 E : Coin is tossed at least 3 times
This event includes infinite \# of outcomes

Venn Diagrams of events as sets

Ω

E_{1}

$E_{1} \cap E_{2}$

$E_{1}{ }^{c}$

$E_{1}-E_{2}$

Combining events

粦 Say we roll a six－sided die．Let

$$
E_{1}=\{1,2,5\} \text { and } E_{2}=\{2,4,6\}
$$

粦 What is $E_{1} \cup E_{2}$
粦 What is $E_{1} \cap E_{2}$
粦 What is $E_{1}-E_{2}$
粦 What is $E_{1}^{c}=\Omega-E_{1}$

Content

粦 Probability a first look * Outcome and Sample Space

* Event * Probability

Probability axioms \& Properties
粪 Calculating probability

Frequency Interpretation of Probability

Given an experiment with an outcome A, we can calculate the probability of A by repeating the experiment over and over

$$
P(A)=\lim _{N \rightarrow \infty} \frac{\text { number of time A occurs }}{N}
$$

So,

$$
\begin{gathered}
0 \leq P(A) \leq 1 \\
\sum_{A_{i} \in \Omega} P\left(A_{i}\right)=1
\end{gathered}
$$

Axiomatic Definition of Probability

A probability function is any function P that maps sets to real number and satisfies the following three axioms:

1) Probability of any event E is non-negative

$$
P(E) \geq 0
$$

2) Every experiment has an outcome

$$
P(\Omega)=1
$$

Axiomatic Definition of Probability

3) The probability of disjoint events is additive

$$
\begin{aligned}
& P\left(E_{1} \cup E_{2} \cup \ldots \cup E_{N}\right)=\sum_{i=1}^{N} P\left(E_{i}\right) \\
& \text { if } E_{i} \cap E_{j}=\emptyset \text { for all } i \neq j
\end{aligned}
$$

©.

粪 Toss a coin 3 times

The event "exactly 2 heads appears" and "exactly 2 tails appears" are disjoint.
A. True
B. False

Venn Diagrams of events as sets

Ω

E_{1}

$E_{1} \cap E_{2}$

$E_{1}{ }^{c}$

$E_{1}-E_{2}$

Properties of probability

类 The complement

$$
P\left(E^{c}\right)=1-P(E)
$$

䊩 The difference

$$
\begin{gathered}
P\left(E_{1}-E_{2}\right)= \\
P\left(E_{1}\right)-P\left(E_{1} \cap E_{2}\right)
\end{gathered}
$$

Properties of probability

米 The union

$$
\begin{aligned}
& P\left(E_{1} \cup E_{2}\right)= \\
& P\left(E_{1}\right)+P\left(E_{2}\right) \\
& -P\left(E_{1} \cap E_{2}\right)
\end{aligned}
$$

米 The union of multiple E

$$
\begin{aligned}
& P\left(E_{1} \cup E_{2} \cup E_{3}\right)=P\left(E_{1}\right)+P\left(E_{2}\right)+P\left(E_{3}\right) \\
- & P\left(E_{1} \cap E_{2}\right)-P\left(E_{2} \cap E_{3}\right)-P\left(E_{3} \cap E_{1}\right) \\
+ & P\left(E_{1} \cap E_{2} \cap E_{3}\right)
\end{aligned}
$$

Content

粦 Probability a first look粦 Outcome and Sample Space
䊩 Event
粦 Probability
Probability axioms \＆Properties
業 Calculating probability

The Calculation of Probability

Discrete countable finite event Discrete countable infinite event Continuous event

Counting to determine probability of countable finite event

From the last axiom, the probability of event \mathbf{E} is the sum of probabilities of the disjoint outcomes

$$
P(E)=\sum_{A_{i} \in E} P\left(A_{i}\right)
$$

If the outcomes are atomic and have equal probability,

$$
P(E)=\frac{\text { number of outcomes in } E}{\text { total number of outcomes in } \Omega}
$$

Probability using counting：（1）

粦 Tossing a fair coin twice：
粦 Prob．that it appears the same？

粦 Prob．that at least one head appears？

Probability using counting: (2)

4 rolls of a 5-sided die:
E: they all give different numbers
Number of outcomes that make the event happen:

粦 Number of outcomes in the sample space

粦 Probability:

Probability using counting: (2)

What about $\mathrm{N}-1$ rolls of a N -sided die?
E: they all give different numbers
Number of outcomes that make the event happen:

粦 Number of outcomes in the sample space

米 Probability:

Probability by reasoning with the complement property

䊩 If $\mathrm{P}\left(\mathrm{E}^{\mathrm{c}}\right)$ is easier to calculate

$$
P(E)=1-P\left(E^{c}\right)
$$

Probability by reasoning with the complement property

A person is taking a test with \mathbf{N} true or false questions, and the chance he/she answers any question right is 50\%, what's probability the person answers at least one question right?

Probability by reasoning with the union property

米 If E is either E 1 or E 2

$$
P(E)=P\left(E_{1} \cup E_{2}\right)=
$$

$$
P\left(E_{1}\right)+P\left(E_{2}\right)-P\left(E_{1} \cap E_{2}\right)
$$

Probability by reasoning with the properties (2)

A person may ride a bike on any day of the year equally. What's the probability that he/she rides on a Sunday or on $15^{\text {th }}$ of a month?

Counting may not work

粦 This is one important reason to use the method of reasoning with properties

What if the event has outcomes

粦 Tossing a coin until head appears絭 Coin is tossed at least 3 times

This event includes infinite \# of outcomes.
And the outcomes don't have equal probability.

TTH, TTTH, TTTTH....

Additional References

Charles M. Grinstead and J. Laurie Snell "Introduction to Probability"

Morris H. Degroot and Mark J. Schervish "Probability and Statistics"

See you next time

See You!

