Probability and Statistics for Computer Science

> "A major use of probability in statistical inference is the updating of probabilities when certain events are observed" Prof. M.H. DeGroot

Credit: wikipedia

Fixed team review Opt out deadline is today $9 / 8$ a 7 pm central

Laws of Sets

Commutative Laws
$A \cap B=B \cap A$
$A \cup B=B \cup A$

Associative Laws
$(A \cap B) \cap C=A \cap(B \cap C)$
$(A \cup B) \cup C=A \cup(B \cup C)$
Distributive Laws
$A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$ $A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$

Laws of Sets

Idempotent Laws
$A \cap A=A$
$A \cup A=A$

Identity Laws
$A \cup \emptyset=A$
$A \cap U=A$
$A \cup U=U$
$A \cap \varnothing=\varnothing$
Involution $\operatorname{Law}\left(A^{c}\right)^{c}=A$

Complement Laws
$A \cup A^{c}=U$
$A \cap A^{c}=\varnothing$
$U^{c}=\varnothing$
$\phi^{c}=U$

De Morgan's Laws
 $=p$ orapecibl-p(AnB)

U is the complete set

Warm up

1) Wargs of forming a queue with 10 stutents permus \qquad

$$
1098 \cdots 1
$$

2) wargs of forming a queuc of 5 students K-permun randounly from 10 stubents
${ }_{3}$) ways if forming camomittes of 5 randouly cand. from io students $\binom{10}{5}$

Which is larger?

1) $\binom{93}{30}$
2) $\binom{93}{63}$
A. 1)
B. 2)
c. None

$$
\binom{N}{K}=\binom{N}{N-K}
$$

Last time
Probability: a first look
Definitions
Random Experiment.
Outcome, Sample Space, Event probalillity-three axioms properties of probability ${ }_{\Delta}$ Calculating probability

Objectives
Probability
More probability calculation
_Cowattional probability

* Bayes rule
* Independence

Senate Committee problem

The United States Senate contains two senators from each of the $\mathbf{5 0}$ states. If a committee of eight senators is selected at random, what is the probability that it will contain at least one of the two senators from IL?

$$
\begin{aligned}
& \text { 1- } P \text { (move of 1L senators are) } 88 \\
& =1-\frac{\binom{98}{8}}{\binom{100}{8}} \quad \text { chosen } \frac{\#|E|}{\#|\Omega|}|\Omega|
\end{aligned}
$$

-子し

$$
\frac{\begin{array}{l}
136 \\
\binom{2}{1} \cdot\binom{88}{7} \\
|\Omega|=\binom{100}{8}
\end{array}+\frac{\begin{array}{c}
2 I 6 \text { senators } \\
\left(\begin{array}{c}
2 \\
1 \\
1
\end{array}\right)\binom{98}{6}
\end{array}}{1}\binom{180}{8}}{1}
$$

Probability: Birthday problem

䊩 Among 30 people, what is the probability that at least 2 of them celebrate their birthday on the same day? Assume that there is no February 29 and each day of the year is equally likely to be a birthday.

$$
\begin{aligned}
& \text { 1- Prob \{ none of the people serve } \\
& \text { order maxiers } \\
& \text { house } \\
& \text { Jingl:n } \\
& |\Omega| \\
& \begin{array}{ll}
1 / 1 & 1 / 2 \\
\hline 1 / 2 & 1 / 1
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& p=1-\frac{1 E 1}{151}=1-\frac{365!}{335!} 30 \\
& \underset{N}{1 \Omega}=\frac{365 \times 365 \times 365}{5} \times \frac{36}{53}-\quad- \\
& 365^{30} \uparrow \quad\{1 . \cdots 365\} \\
& |\Omega|=365^{30} \\
& (E)=365 \times 364 \times 363 \\
& \text { all are d!ttorent } \\
& \frac{365!}{335!} \rightarrow{ }^{365} P_{30}
\end{aligned}
$$

How does it change with $t t$ of people

$$
\begin{array}{r}
P=0.706 \\
k=30
\end{array}
$$

Table I.I	The probability p that at least two people in a group of k people will have the same birthday		
k	p	k	p
5	0.027	25	0.569
10	0.117	30	0706
15	0.253	40	0.891
20	0.411	50	0.970
22	0.476	60	0.994
23	0.507		

Wheat are the differences between these two examples?

Senate Committee, Birthday. order dorset curter

$$
\uparrow^{-}
$$

Conditional Probability

粦 Motivation of conditional

probability

Data

Doth

Conditional Probability

Example:

An insurance company knows in a population of 100 thousands females, 82.835% expect to live to age 60 while 57.062% can expect to live to 80 . Given a woman at the age of 60, what is the probability that she lives to 80 ?

Conditional Probability

米 The probability of \boldsymbol{A} given \boldsymbol{B}

$$
P(A \mid B)=\frac{P(A \cap B)}{\substack{A \text { annme } \\ P(B) \neq 0}}
$$

The "Size" analogy

Credit: Prof. Jeremy Orloff \& Jonathan Bloom

Conditional Probability

A : a woman lives to 80

$$
P(A \mid B)=\frac{57,062}{89,835}=0.6352
$$

B : a woman is at 60 now

$$
\begin{aligned}
P(A \mid B) & =\frac{P(A \cap B)}{P(B)} \\
& =\frac{57.62 / 100000}{89835 / 100000}
\end{aligned}
$$

While $P(A)=\frac{57,062}{100,000}=0.57062=0.6352$

Conditional Probability: die example

Throw 5-sided fair die twice.

$$
\begin{aligned}
& A: \max (X, Y)=4 \\
& B: \min (X, Y)=2
\end{aligned}
$$

$$
P(A \mid B)=\text { ? }
$$

$$
\frac{2}{7}
$$

$$
\frac{P(A \cap B)}{P(B)}=\frac{\frac{2}{25}}{\frac{7}{25}}
$$

Conditional probability, that is?

$$
P(A \mid B)=\frac{P(A \cap B)}{\Gamma} P(B) \quad P(B) \neq 0
$$

Venn Diagrams of events as sets

E_{1}
Ω "

E_{2}
\uparrow

$E_{1} \cup_{\uparrow} E_{2}$

$E_{1} \underbrace{E^{2}}{ }^{2}$

$E_{1}{ }^{c}{ }^{\uparrow}$,

$E_{1}-E_{2}$

Multiplication rule using conditional probability

䊩 Joint event

$$
\begin{aligned}
& P(A \mid B)=\frac{P(A \cap B)}{P(B)} \\
\Rightarrow & P(A \cap B) \neq 0 \\
& P(A \mid B) P(B)
\end{aligned}
$$

$$
B \rightarrow \text { dat g }
$$

Multiplication using conditional probability

Symmetry of joint event in terms of conditional prob.

$P(A \mid B)=\frac{P(A \cap B)}{P(B)} \quad P(B) \neq 0$

Symmetry of joint event in terms of conditional prob.

$$
B \cap A=A \cap B
$$

$$
\because P(B \cap A)=P(A \cap B)
$$

$$
P(A \mid B) P(B)=P(B \mid A) P(A)
$$

$P(A) \neq 0$
$\rho(B) \neq 0$

The famous Bayes rule

$$
\frac{P(A \mid B) P(B)=P(B \mid A) P(A)}{\Rightarrow P(A \mid B)=\frac{P(B \mid \vec{A}) P(A)}{P(B)}}
$$

$$
\uparrow
$$

$$
D_{1} \rightarrow D_{2}
$$

Thomas Bayes (1701-1761)

Bayes rule: lemon cars

There are two car factories, \mathbf{A} and \mathbf{B}, that supply the same dealer. Factory A produced 1000 cars, of which 10 were lemons. Factory B produced $\mathbf{2}$ cars and both were lemons. You bought a car that turned out to be a lemon. What is the probability that it came from factory B ?
B : a bad car from the dealer

$$
A \text { : B) it could torn } F a C B
$$

Bayes rule: lemon cars

There are two car factories, A and B, that supply the same dealer. Factory A produced 1000 cars, of which 10 were lemons. Factory B produced 2 cars and both were lemons. You bought a car that turned out to be a lemon. What is the probability that it came from factory B?

$$
P(B \mid L)=\frac{P(L \mid B) P(B)}{P(L)}=\frac{1 \times \frac{1002}{120}}{\frac{1202}{1002}}=\frac{2}{12}=\frac{1}{6}
$$

Simulation of Conditional Probability

http://
www.randomservices.org/ random/apps/
ConditionalProbabilityExperim ent.html

Additional References

Charles M. Grinstead and J. Laurie Snell "Introduction to Probability"

Morris H. Degroot and Mark J. Schervish "Probability and Statistics"

Assignments

Reading Chapter 3 of the textbook

Next time: More on independence and conditional probability

Addition material on Counting

Addition principle

粦 Suppose there are \boldsymbol{n} disjoint events, the number of outcomes for the union of these events will be the sum of the outcomes of these events.

Multiplication principle

粦 Suppose that a choice is made in two consecutive stages米 Stage 1 has m choices業 Stage 2 has n choices

米 Then the total number of choices is $m n$

Multiplication: example

粦 How many ways are there to draw two cards of the same suit from a standard deck of 52 cards? The draw is without replacement.

Multiplication: example

粦 How many ways are there to draw two cards of the same suit from a standard deck of 52 cards? The draw is without replacement.
52×12

Permutations (order matters)

From 10 digits ($0, \ldots . .9$) pick 3 numbers for a CS course number (no repetition), how many possible numbers are there?

Permutations (order matters)

䊩 From 10 digits ($0, . . .9$) pick 3 numbers for a CS course number (no repetition), how many possible numbers are there?
$10 \times 9 \times 8=\mathrm{P}(10,3)=720$
$P(n, r)=\frac{n!}{(n-r)!}$

Combinations (order not important)

精 A graph has N vertices, how many edges could there exist at most? Edges are undirectional.
$C(n, r)=\frac{n!}{(n-r)!r!}=\frac{P(n, r)}{r!}=C(n, n-r)$

Combinations (order not important)

䊩 A graph has N vertices, how many edges could there exist at most? Edges are undirectional.

$$
C(N, 2)=N \times(N-1) / 2
$$

$C(n, r)=\frac{n!}{(n-r)!r!}=\frac{P(n, r)}{r!}=C(n, n-r)$

Partition

粦 How many ways are there to rearrange ILLINOIS? 8 !

$3!2!1!1!1!$

\| L
䊩 General form n !

$$
\overline{n_{1}!n_{2}!\ldots n_{r}!}
$$

Allocation

粦Putting 6 identical letters into 3 mailboxs (empty allowed) $|\underbrace{L L|L L| L L}|$

Choose 2 from the 8 positions

Allocation

粦Putting 6 identical letters into 3 mailboxs (empty allowed) $\mid \underbrace{L L|L L| L L \mid}$

Choose 2 from the 8 positions: $\mathbf{C (8 , 2) = 2 8}$

Counting: How many think pairs could there be?

米 Q. Estimate for \# of pairs from different groups. There are 4 even sized groups in a class of 200

Random experiment

Q: Is the following experiment a random experiment for probabilistic study?

$$
2 \mathrm{H}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \leftrightarrows 2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}
$$

A. Yes
B. No

Size of sample space

Q : What is the size of the sample space of this experiment? Deal 5 different cards out of a fairly shuffled deck of standard poker (order matters).
$\begin{array}{lll}\text { A. } C(52,5) & \text { B. } P(52,5) & \text { C. } 52\end{array}$

Event

粦 Roll a 4-sided die twice
The event "max is 4" and "sum is 4" are disjoint.
A. True
B. False

Probability

* Q: A deck of ordinary cards is shuffled and 13 cards are dealt. What is the probability that the last card dealt is an ace?
A. $4 * P(51,12) / P(52,13)$ B. $4 / 13$
C. $4^{*} C(51,12) / C(52,13)$

Allocation: beads

粦 Putting 3000 beads randomly
into 20 bins (empty allowed)

$$
C(3019,19)=\frac{3019!}{19!3000!}
$$

See you next time

See You!

