Probability and Statistics for Computer Science

"A major use of probability in statistical inference is the updating of probabilities when certain events are observed" – Prof. M.H. DeGroot

Credit: wikipedia

Hongye Liu, Teaching Assistant Prof, CS361, UIUC, 9.8.2020

Fixed team review Opt out doudline is today 9/8 a 7 pm central

Laws of Sets

Commutative Laws

 $A \cap B = B \cap A$ $A \cup B = B \cup A$

Associative Laws

 $(A \cap B) \cap C = A \cap (B \cap C)$ $(A \cup B) \cup C = A \cup (B \cup C)$

Distributive Laws

 $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

Laws of Sets

Idempotent Laws

 $A \cap A = A$ $A \cup A = A$

Identity Laws

 $A \cup \phi = A$ $A \cap U = A$ $A \cup U = U$ $A \cap \phi = \phi$

Involution Law(A c) c = A

U is the complete set

Complement Laws

 $A \cup A^{c} = U$ $A \cap A^{c} = \emptyset$ $U^{c} = \emptyset$ $\phi^{c} = U$

Warm up

i) Ways of forming a queue with 10 Students perminents 10! 1098--1 2) Ways of forming a great of 5 students K-Permi randomly from 10 students K-Permi 10! 18 K & E 10 9 8 7 6 (0! N! K & S 10! 18 K & E 10 9 8 7 6 (0! K!) 3) words if forming Committees of 5 randomly cont. from co students (3)

Which is larger?

 $1 \begin{pmatrix} 93 \\ 20 \end{pmatrix} = 2 \begin{pmatrix} 13 \\ 63 \end{pmatrix}$ B. 2) C. None A. 1) $\binom{N}{K} = \binom{N}{N-K}$

Last time

Probability: a first look

Definitions Random Experiment. Ourcome, Sample Space, Event probability-three axioms Properties of probability Calculating probability

Objectives

Probability More probability calculation Conditional probability * Bayes rule \checkmark * Independence

Senate Committee problem

The United States Senate contains **two** senators from each of the **50** states. If a committee of eight senators is selected at random, what is the probability that it will contain at least one of the two senators from **IL**?

$$l = P(none of IL senators one) 98= 1 - \frac{98}{(8)} chosen (E) 98freq. \frac{\#[E]}{\#[52]} [52]$$

216 Senators $\binom{2}{2}\binom{88}{6}$ (2) $(\frac{38}{7})$ R=('s) ده)

Probability: Birthday problem

* Among 30 people, what is the probability that at least 2 of them celebrate their birthday on the same day? Assume that there is no February 29 and each day of the year is equally likely to be a birthday.

 $P = \left[-\frac{161}{152} \right] = \left[-\frac{365!}{22x1} \right]$ 365 30 30 335!____ $= \frac{365, 365, 365}{5, 5, 5, 5, 5, 5}$ にた 365 365 } 71.2 JZ = 36530 - 365+364x363 (E)365 P -> 30 all our d'éferent 365!

How does it change with the of people

P=0-706 K=30

Table 1.1	The probability p that at least two
	people in a group of k people will
	have the same birthday

k	р	k	р
5	0.027	25	0.569
10	0.117	30	0.706
15	0.253	40	0.891
20	0.411	50	0.970
22	0.476	60	0.994
23	0.507		

De Groot et. d.

where are the differences between these two examples?

Senare Committee, Birthday.

order Læsit conter

marters

۲')`

Motivation of conditional probability probability TUSTis Piscose if Vara Dava drisan tros

Example:

An insurance company knows in a population of 100 thousands females, <u>89.835% expect to live to age 60</u> while 57.062% can expect to live to 80. Given a woman at the age of 60, what is the probability that she lives to 80?

* The probability of A given B

A : a woman $P(A|B) = \frac{57,062}{89,835} = 0.6352$ lives to 80

B : a woman is at 60 now $P(A|B) = \frac{P(A \cap B)}{P(B)}$ $\frac{P(B)}{57.65/10000}$ While $P(A) = \frac{57,062}{100,000} = 0.57062$ = 0.57062

Conditional Probability: die example

Throw 5-sided fair Y 5 die twice. 4 A: max(X, Y) = 4 2 B: min(X, Y) = 2 1

P(A|B) = ?

Conditional probability, that is?

Venn Diagrams of events as sets

Multiplication rule using conditional probability

Joint event $P(B) \neq 0$ P(A|B)P(B)7 Larty

Multiplication using conditional probability

P (samp news, 0.810.5 = P (Soup). P (vert/soup)

P(ment)=?

Symmetry of joint event in terms of conditional prob.

$$P(A|B) = \frac{P(A \cap B)}{P(B)} \quad P(B) \neq 0$$

Symmetry of joint event in terms of conditional prob.

$B \cap A = A \cap B$ $\therefore P(B \cap A) = P(A \cap B)$

P(A|B)P(B) = P(B|A)P(A)

P(A) \$ 0 P(B) \$ 0

The famous **Bayes** rule P(A|B(P(B) = P(B|A)P(A) $P(A|B) = \frac{P(B|A)P(A)}{P(B)}$ 1 p(1× ((), or ...)) D p(1× ((), or ...)) D Thomas Bayes (1701-1761)

Bayes rule: lemon cars

There are two car factories, **A** and **B**, that supply the same dealer. Factory A produced 1000 cars, of which 10 were lemons. Factory B produced 2 cars and both were lemons. You bought a car that turned out to be a lemon. What is the probability that it came from factory **B**? it came PCANB)

Bayes rule: lemon cars

There are two car factories, A and B, that supply the same dealer. Factory A produced 1000 cars, of which 10 were lemons. Factory B produced 2 cars and both were lemons. You bought a car that turned out to be a lemon. What is the probability that it came from factory B? X 100 2 $P(B|L) = \frac{P(L|B)P(B)}{P(L)} =$ 1.7

Simulation of Conditional Probability

http:// www.randomservices.org/ random/apps/ **ConditionalProbabilityExperim** ent.html

Additional References

- * Charles M. Grinstead and J. Laurie Snell "Introduction to Probability"
- Morris H. Degroot and Mark J. Schervish "Probability and Statistics"

Assignments

- Reading Chapter 3 of the textbook
- ** Next time: More on independence and conditional probability

Addition material on Counting

Addition principle

Suppose there are *n* disjoint events, the number of outcomes for the union of these events will be the sum of the outcomes of these events.

Multiplication principle

- Suppose that a choice is made in two consecutive stages
 Stage 1 has *m* choices
 - Stage 2 has n choices
- * Then the total number of choices is *mn*

Multiplication: example

How many ways are there to draw two cards of the same suit from a standard deck of 52 cards? The draw is without replacement.

Multiplication: example

How many ways are there to draw two cards of the same suit from a standard deck of 52 cards? The draw is without replacement.

Permutations (order matters)

From 10 digits (0,...9) pick 3 numbers for a CS course number (no repetition), how many possible numbers are there?

Permutations (order matters)

From 10 digits (0,...9) pick 3 numbers for a CS course number (no repetition), how many possible numbers are there? 10×9×8 = P(10,3) = 720

$$P(n,r) = \frac{n!}{(n-r)!}$$

Combinations (order not important)

* A graph has N vertices, how many edges could there exist at most? Edges are undirectional.

$$C(n,r) = \frac{n!}{(n-r)!r!} = \frac{P(n,r)}{r!} = C(n,n-r)$$

Combinations (order not important)

* A graph has N vertices, how many edges could there exist at most? Edges are undirectional.

$$C(n,r) = \frac{n!}{(n-r)!r!} = \frac{P(n,r)}{r!} = C(n,n-r)$$

Partition

How many ways are there to rearrange ILLINOIS?

3!2!1!1!1! \\\

* General form n!

 $n_1!n_2!...n_r!$

Allocation

Putting 6 identical letters into 3 mailboxs (empty allowed)

Choose 2 from the 8 positions

Allocation

Putting 6 identical letters into 3 mailboxs (empty allowed)

Choose 2 from the 8 positions:

Counting: How many think pairs could there be?

* Q. Estimate for # of pairs from different groups. There are 4 even sized groups in a class of 200

Random experiment

- We want the following experiment a random experiment for probabilistic study?
 $2H_{2(g)} + O_{2(g)} ♀ 2H_2O(g)$
 - A. Yes
 - B. No

Size of sample space

- * Q: What is the size of the sample space of this experiment? Deal 5 different cards out of a fairly shuffled deck of standard poker (order matters).
 - **A**. C(52,5) **B**. P(52,5) **C**. 52

Roll a 4-sided die twice

The event "max is 4" and "sum is 4" are disjoint.

A. True

B. False

Probability

* Q: A deck of ordinary cards is shuffled and 13 cards are dealt. What is the probability that the last card dealt is an ace?

- **A**. 4*P(51,12)/P(52,13) **B**. 4/13
- **C**. 4*C(51,12)/C(52,13)

Allocation: beads

Putting 3000 beads randomly into 20 bins (empty allowed)

$C(3019, 19) = \frac{3019!}{19!3000!}$

See you next time

See You!

