

Credit: wikipedia

"A major use of probability in statistical inference is the updating of probabilities when certain events are observed" – Prof. M.H. DeGroot

Last time

Probability More probability calculation Constional probability * Bayes rule * Independence

Objectives $\frac{P(AB)}{P(B)} = \frac{P(AB)}{P(B)}$

****** Conditional Probability

* Independence

Counting: how many ways?

Warm up: which is larger?

Conditional Probability

** The probability of **A** given **B**

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$
$$P(B) \neq 0$$

The line-crossed area is the new sample space for conditional P(A|B)

Joint Probability Calculation

$$\Rightarrow P(A \cap B) = P(A|B)P(B)$$

$$p(A|B) = P(A|B)P(B)$$

$$p(A|B) = P(B)$$

$$p(B) =$$

 $= 0.5 \times 0.8 = 0.4$

Bayes rule

Given the definition of conditional probability and the symmetry of joint probability, we have:

$$P(A|B)P(B) = P(A \cap B) = P(B \cap A) = P(B|A)P(A)$$

And it leads to the famous Bayes rule:

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

Total probability

$$P(B) = P(B \cap A) + P(B \cap A^c)$$

= $P(B \mid A) P(A) + P(B \mid A^c) P(A^c)$

 $A = A_1$ $A^{C} = A_2 \cup A_3$

Total probability general form

$$P(B) = \sum_{i} P(B \cap A_{i})$$

$$= \sum_{i} P(B \cap A_{i}) P(A_{i})$$

Total probability:

Bayes rule using total prob.

$$P(A;IB) = \frac{P(B|A;)P(A;)}{P(B)}$$

$$P(B|A;)P(A;)$$

$$P(B|A;)P(A;)$$

$$P(B|A;)P(A;)$$

$$A_{j} \cap A_{i} = \phi \rightarrow d$$

Bayes rule: rare disease test

There is a blood test for a rare disease. The frequency of the disease is 1/100,000. If one has it, the test confirms it with probability 0.95. If one doesn't have, the test gives false positive with probability 0.001. What is P(D|T), the probability of having disease given a positive test result?

$$P(D|T) = \frac{P(T|D)P(D)}{P(T)}$$
 Using total prob.
$$= \frac{P(T|D)P(D)}{P(T|D)P(D) + P(T|D^c)P(D^c)}$$

Bayes rule: rare disease test

There is a blood test for a rare disease. The frequency of the disease is **1/100,000**. If one has it, the test confirms it with probability 0.95. If one doesn't have, the test gives false positive with probability **0.001**. What is P(D|T), the probability of having disease given a positive test result?

$$P(D|T) \neq \frac{P(T|D)P(D)}{P(T|D)P(D) + P(T|D^c)P(D^c)}$$

$$= \frac{95 \times 10^{-60}}{95 \times 10^{-60}} = 12$$

What about Covid test? Suppose treg. + Covid = 1.21/6 test accuracy = 95% talse positive = 0.00/ PLD) = 1,21/2 P(T(0) = 0.95 P(D|T) = ?P(T/0°)=0.00) = P(T(0))P(0) P(0°) =1-1.21/3 P(T/0)P(0)+P(T/0)P(0) = 32/3

Independence

**** One definition:**

$$P(A|B) = P(A) \text{ or }$$
 $P(B|A) = P(B)$

Whether A happened doesn't change the probability of B and vice versa

Independence: example

Suppose that we have a fair coin and it is tossed twice. let A be the event "the first toss is a head" and B the event "the two outcomes are the same."

A
$$H \times$$
B HH TT
$$P(A|B) = \frac{P(A)}{P(B)} = \frac{1}{2} \frac{P(A)}{P(B)} = \frac{1}{2}$$

* These two events are independent?

Independence

****** Alternative definition

LHS by definition
$$P(A|B) = P(A)$$

$$\Rightarrow \frac{P(A \cap B)}{P(B)} = P(A)$$

$$\Rightarrow P(A \cap B) = P(A)P(B)$$

$$\Rightarrow P(A \cap B) = P(A)P(B)$$

Testing Independence:

** Suppose you draw one card from a standard deck of cards. E_1 is the event that the card is a King, Queen or Jack. E_2 is the event the card is a Heart. Are E_1 and E_2 independent?

| Can | P(A) | P(B) |

$$P(E(nE2)) = \frac{3}{52}$$

$$P(E(n)) = \frac{3 \times 4}{52} = \frac{3}{13}$$

$$P(E(n)) = \frac{3 \times 4}{52} = \frac{3}{13}$$

$$P(E(n)) = \frac{3 \times 4}{52} = \frac{3}{13}$$

$$P(E(n)) = \frac{3}{52}$$

Independence vs Disjoint

** Q. Two disjoint events that have probability> 0 are certainly dependent to each other. ϕ

A. True

B. False

$$P(ARR) = 0$$

$$P(ARR) = 0$$

$$0 = P(ARR) + P(A) P(B)$$

Independence of empty event

** Q. Any event is independent of empty event B.

$$B = \emptyset$$

$$P(\emptyset) = 0$$

$$\beta nA$$

$$P(B nA)$$

$$= P(B)P(A) = 0$$

Pairwise independence is not mutual independence in larger context

$$A_1 U A_2 U A_3 U A_4 = 52$$

$$P(A_1) = P(A_2) = P(A_3) = P(A_4) = 1/4$$

$$A = (A_1 \cup A_2; P(A) = 1)$$

$$p(A \cap B) = p(A) p(B) \vee$$

$$p(B \cap C) = p(B) p(C) \vee$$

$$B = A_1 \cup A_3; P(B)$$

*P(ABC) is the shorthand for $P(A \cap B \cap C)$ (7(18))P(Y)

$$i+ (M1) \Rightarrow P1$$

Mutual independence

** Mutual independence of a collection of events $A_1, A_2, A_3...A_n$ is :

$$P(A_i|A_i \cap A_k \cap \cdots A_p) = P(A_i)$$

$$P(A_i|B_{n_i}) = P(A_i) \Rightarrow P(A_i \cap B_{n_i})$$

$$j,k,...p \neq i \qquad P(B_{n_i})$$

It's very strong independence!

Probability using the property of Independence: Airline overbooking (1)

** An airline has a flight with 6 seats. They always sell 7 tickets for this flight. If ticket holders show up independently with probability \mathbf{p} , what is the probability that the flight is overbooked?

Probability using the property of Independence: Airline overbooking (1)

** An airline has a flight with 6 seats. They always sell 7 tickets for this flight. If ticket holders show up independently with probability **p**, what is the probability that the flight is overbooked?

P(7 passengers showed up)

Probability using the property of Independence: Airline overbooking (2)

** An airline has a flight with 6 seats. They always sell 8 tickets for this flight. If ticket holders show up independently with probability **p**, what is the probability that exactly 6 people showed up?

P(6 people showed up) =
$$\begin{pmatrix}
8 \\
6
\end{pmatrix} \cdot p^6$$
(1-p)(\(\nu_p\))

Probability using the property of Independence: Airline overbooking (3)

** An airline has a flight with 6 seats. They always sell 8 tickets for this flight. If ticket holders show up independently with probability **p**, what is the probability that the flight is overbooked?

P(overbooked) =

Probability using the property of Independence: Airline overbooking (4)

** An airline has a flight with siseats. They always sell t(t>s) tickets for this flight. If ticket holders show up independently with probability p, what is the probability that exactly u people showed up?

Probability using the property of Independence: Airline overbooking (5)

** An airline has a flight with s seats. They always sell **t** (**t**>**s**) tickets for this flight. If ticket holders show up independently with probability **p**, what is the probability that the flight is overbooked?

P(overbooked)
$$= \frac{t}{2} \begin{pmatrix} t \\ u \end{pmatrix} P'' \begin{pmatrix} 1-p \end{pmatrix}^{t-u}$$

Condition may affect Independence

** Assume event **A** and **B** are pairwise independent

Given *C*, *A* and *B* are not independent any more because they become disjoint

Conditional Independence

Event A and B are conditional independent given event C if the following is true.

$$P(A \cap B|C) = P(A|C)P(B|C)$$

Assignments

- **# HW3**
- ****** Finish Chapter 3 of the textbook
- * Next time: Random variable

Additional References

- ** Charles M. Grinstead and J. Laurie Snell "Introduction to Probability"
- Morris H. Degroot and Mark J. Schervish "Probability and Statistics"

Another counting problem

** There are several (>10) freshmen, sophomores, juniors and seniors in a dormitory. In how many ways can a team of 10 students be chosen to represent the dorm? There are no distinction to make between each individual student other than their year in school.

See you next time

See You!

