Probability and Statistics for Computer Science

"It's straightforward to link a number to the outcome of an experiment. The result is a Random variable." ---Prof. Forsythe

Random variable is a function, it is not the same as in $\mathbf{X = X + 1}$

Which is larger?
10 The probability of drawing hands of 5-cards that have no pairs.
(no replacement)
(2) 0.5

$$
>0.5
$$

A. \mathcal{O} is larger
$B .(D$ is larger

$$
\quad|\Omega|=5^{52} P_{5}^{5 \text { perm }}=|E| \rightarrow \frac{52 \times 4.8 \times 8 \times \times 40 \times 36}{1 \Omega 1}
$$

Last time $P(A \mid B)=\frac{P(A \cap B)}{P(B)}$
Conditional probability

* Product rule of joint prob.
* Barges rule
* Independence

$$
P(A \mid B)=P(A)
$$

$$
P(\operatorname{An} B)=P(A) P(B)
$$

Objectives
Random variable zuterfnce

* Definition
* Probability distribution

PDF, CD

* Conditional probability distri:

Random numbers

䊩 Amount of money on a bet
粦 Age at retirement of a population
Rate of vehicles passing by the toll
Body temperature of a puppy in its pet clinic Level of the intensity of pain in a toothache Degree ot a mode in a network

Random variable as vectors

Brain imaging of Human emotions

A) Moral conflict B) Multi-task C) Rest

A. McDonald et al. Neurolmage doi: 10.1016/ j.neuroimage.2016.10.048

Random variables
A random variable maps cull outcomes to Numbers, so (ω) (x)

Bernoulli: it's a function!!

$$
\begin{aligned}
& p\left(+r^{i}\right)=\frac{1}{2}
\end{aligned}
$$

\downarrow $X(\omega)$

Random variables

粦 The values of a random variable can be either discrete, continuous or mixed.

Discrete Random variables

粦 The range of a discrete random variable is a countable set of real numbers.
4 -die

Random Variable Example

米 Number of pairs in a hand of 5 cards

粦 Let a single outcome be the hand of 5 cards
粦 Each outcome maps to values in the set of numbers $\{0,1,2\} \quad 0,1,2$

Random Variable Example

粦 Number of pairs in a hand of 6 cards
粦 Let a single outcome be the hand of 6 cards

粦 What is the range of values of this random variable？

$$
0,1,2,3
$$

Q: Random Variable

类 If we roll a 3-sided fair die, and define random variable U, such that $U(\omega)=\left\{\begin{array}{cc}-1 & \omega \text { is side } 1 \\ 0 & \omega \text { is side } 2 \\ 1 & \omega \text { is side } 3\end{array}\right.$
what is the range of

$$
x=u^{2} \text { can take }
$$

$$
\begin{array}{ll}
\text { A. }\{-1,0,1\} & \text { B. }\{0,1\}
\end{array}
$$

Three important facts of Random variables

米 Random variables have probability functions

米 Random variables can be conditioned on events or other random variables

米 Random variables have averages

Random variables have probability functions

粦 Let X be a random variable粦 The set of outcomes $\left\{\omega \in \Omega\right.$ s.t. $\left.X(\omega)=x_{0}\right\}$ is an event with probability

$$
P\left(X=x_{0}\right)=P\left(\left\{\omega s+. X(\omega)=x_{0}\right\}\right)
$$

X is the random variable

x_{0} is any unique instance that X takes on

Probability Distribution

粦 $P(X=x)$ is called the probability distribution for all possible \boldsymbol{x}
粦 $P(X=x)$ is also denoted as $P(x)$ or $p(x)$
粦 $P(X=x) \geq 0$ for all values that X can take，and is 0 everywhere else
粦 The sum of the probability
distribution is $1 \quad \sum_{x} P(x)=1$

Examples of Probability Distributions

$$
\begin{aligned}
& x(\omega)=\left\{\begin{array}{l}
1 \\
0
\end{array}\right. \text { head } \\
& \underset{0}{P(x=x)} \\
& \frac{1}{2} \uparrow x
\end{aligned}
$$

$$
X(\omega)=\left\{\begin{array}{lll}
0 & \text { te } \cdot \text { t pars }=0 \\
1 & \therefore & =1 \\
2 & \cdots & =2
\end{array} \quad p(X=x)\right.
$$

$$
U(\omega)=\left\{\begin{array}{cc}
-1 & \text { side } \\
0 & \text { side } \\
\text { side } \\
\text { side } \\
X(w)=U^{2} \\
\frac{2}{3} \uparrow & P(x=x)
\end{array} \quad P(X=x)= \begin{cases}\frac{1}{3} & x=0 \\
\frac{2}{3} & x=1 \\
0 & \text { otherwise }\end{cases}\right.
$$

Cumulative distribution

粦 $P(X \leq x)$ is called the cumulative distribution function of X

粦 $P(X \leq x)$ is also denoted as $f(x) y$
粦 $P(X \leq x)$ is a non－decreasing
function of x

Probability distribution and cumulative distribution

粦 Give the random variable \boldsymbol{X},
$X(\omega)= \begin{cases}1 & \text { outcome of } \omega \text { is head } \\ 0 & \text { outcome of } \omega \text { is tail }\end{cases}$

Q. What is the value?

A biased four-sided die is rolled once. Random uaridale X is defined is be the down-face value.

$$
\underbrace{P(X=x)= \begin{cases}\frac{x}{10} & x=1,2,3,4 \\ 0 & \text { all others }\end{cases} }_{\rightarrow}
$$

A) 0.1
C) 0.2
B) 0.3
D) 0.6
E) 1

Functions of Random Variables

$$
U=\left\{\begin{array}{ccc}
-1 & \text { side } & 1 \\
0 & \cdots & 2 \\
1 & & 3
\end{array}\right.
$$

$$
X=U^{2}
$$

$$
x=x_{1}+x_{2}+\cdots
$$

Q. Are these random variables the same?
$X(\omega)=\left\{\begin{array}{ll}1 & \text { head } \\ 0 & \text { tail }\end{array} \quad Y(\omega)= \begin{cases}1 & \text { head } \\ 0 & \text { tail }\end{cases}\right.$ Bernoml: RV.
$0 x^{2}=0 \quad$ Sernami $\quad: \quad 2$ $1 \times 2=\tilde{U}=2 X$,

$$
V=\underset{\vdots}{X}+Y_{!}
$$

A) U and V are the same
(B) U and V are Not the $U \rightarrow\{0,2\} \quad V \rightarrow\{0,1,2\}$ same.

Function of random variables: die example

Roll 4-sided fair die twice.

Define these random variables:
X, the values of $1^{\text {st }}$ roll

Y, the values of $2^{\text {nd }}$ roll
Sum $S=X+Y$
Difference $D=X-Y$
Size of Sample Space = ?

Random variable: die example

Roll 4-sided fair die

$$
Y_{4}
$$ twice.

$$
\begin{aligned}
& P(X=1)=\frac{1}{4} \\
& P(Y \leq 2)=\frac{1}{2}
\end{aligned}
$$

3
2
1

$$
P(S=7)
$$

$P(D \leq-1)$
Size of Sample Space
$=16$

Random variable: die example

$$
S=X+Y
$$

$$
D=X-Y
$$

$$
Y
$$

\[

\]

$P\left(w . \text { st. } S_{(\omega)}^{1}{ }^{2}{ }^{2}=7\right)^{3} \quad 4 \quad X$

$$
\begin{array}{lllll}
1 & 2 & 3 & 4
\end{array} X
$$

$$
P(S=7)=\frac{2}{16}
$$

$$
P(D \leq-1)=\frac{G}{16}
$$

Probability distribution of the sum of two random variables

Give the random variable \boldsymbol{S} in the 4sided die, whose range is $\{2,3,4,5,6,7,8\}$, probability distribution of S.

Probability distribution of the difference of two random variables

粦 Give the random variable $\boldsymbol{D}=X-Y$, what is the probability distribution of D?

Conditional Probability

米 The probability of \boldsymbol{A} given \boldsymbol{B}

Conditional probability distribution of random variables

类 The conditional probability distribution of X given Y is

$$
\begin{aligned}
& P(x \mid y)=\frac{P(x, y)}{P(y)} \quad P(y) \neq 0 \\
& P(x, y)=P(X=x \cap Y=y) \\
& P(y)=P(Y=y) \\
& P(x \mid y)=P(X=x \mid Y=y)
\end{aligned}
$$

Get the marginal from joint distri.

米 We can recover the individual probability distributions from the joint probability distribution $p(x, y)=p(y \mid x) p(x)$

$$
\begin{aligned}
P(x)=\sum_{y} P(x, y) & \sum_{y} p(x, y) \\
P(y)=\sum_{y} P(x, y) & \left.=p(x) \sum_{y} p y y^{\pi} \mid x\right) \\
& =p(x)
\end{aligned}
$$

Joint probabilities sum to 1

粦 The sum of the joint probability distribution

Joint Probability Example

粦 Tossing a coin twice, we define random variable X and Y for each toss.
$X(\omega)=\left\{\begin{array}{l}1 \quad \text { outcome of } \omega \text { is head } \\ 0 \quad \text { outcome of } \omega \text { is tail }\end{array}\right.$
$Y(\omega)=\left\{\begin{array}{l}1 \quad \text { outcome of } \omega \text { is head } \\ 0 \quad \text { outcome of } \omega \text { is tail }\end{array}\right.$

Joint probability distribution example

$P(x, y)$

Joint Probability Example

Now we define Sum $\boldsymbol{S}=X+Y$, Difference $\boldsymbol{D}=X-Y . \boldsymbol{S}$ takes on values $\{0,1,2\}$ and \boldsymbol{D} takes on values $\{-1,0,1\}$

$$
\begin{aligned}
& X(\omega)= \begin{cases}1 & \text { outcome of } \omega \text { is head } \\
0 & \text { outcome of } \omega \text { is tail }\end{cases} \\
& Y(\omega)= \begin{cases}1 & \text { outcome of } \omega \text { is head } \\
0 & \text { outcome of } \omega \text { is tail }\end{cases}
\end{aligned}
$$

Joint Probability Example

$$
2^{\text {nd }} \text { toss }
$$

$$
S=S \quad D=d
$$

D
$0 \quad P(S=S, D=d)=\frac{1}{2} \times \frac{1}{2}$
$1^{\text {st }}$ toss
$\begin{array}{ccc}Y=0 & 0 & 0\end{array} \frac{\overrightarrow{4}}{4}=P(A)$.

Joint probability distribution example

$P(s, d)$
$\begin{array}{llllll}-1 & 0 & 1 & D & P(s)\end{array}$
0
$-\quad 1$
2
$P(d)$

$P(s)=\sum_{D} P(\xi, D)$

Independence of random variables

粦 Random variable X and Y are independent if

$$
P(x, y)=P(x) P(y) \text { for all } x \text { and } y
$$

粦 In the previous coin toss example粦 Are X and Y independent？
粦 Are S and \boldsymbol{D} independent？

$$
P(S, D)=P(S) P(D) \text { for } a(s, d \text {. }
$$

Joint probability distribution example

$P(x, y)$
$P(x)$

Joint probability distribution example

$P(s, d)$
$\begin{array}{lll}-1 & 0 & 1\end{array}$
D $\quad P(s)$

S	0	0	$\frac{1}{4}$	0
	1	$\frac{1}{4}$	0	0

$s=1, d=0$
$P(s=1, d=0)=0$
S.D are Not
$P C S=1) P(d=0)=\frac{1}{4}$

Joint probability distribution example

$P(s, d) \quad-10_{0} 01 \quad D \quad P(s)$

$$
P(S=1, D=0) \neq P(S=1) P(D=0)
$$

Conditional probability distribution example

$P(s \mid d)=\frac{P(s, d)}{P(d)}$
$\begin{array}{lll}-1 & 0 & 1\end{array}$
D

0	0	$\frac{1}{2}$	0	
1	1	0	1	
2	0	$\frac{1}{2}$	0	

Bayes rule for random variable

䊩 Bayes rule for events generalizes to random variables

$$
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}
$$

$$
P(x \mid y)=\frac{P(y \mid x) P(x)}{P(y)}
$$

$$
=\frac{P(y \mid x) P(x)}{\sum_{x} P(y \mid x) P(x)}, \text { Total Probability }
$$

Conditional probability distribution example

$$
\begin{aligned}
& P(D=-1 \mid S=1)=\frac{P(S=1 \mid D=-1) P(D=-1)}{P(S=1)}=\frac{1 \times \frac{1}{4}}{\frac{1}{2}}
\end{aligned}
$$

Assignments

Chapter 4 of the textbook

Next time: More random variable, Expectations, Variance

Additional References

Charles M. Grinstead and J. Laurie Snell "Introduction to Probability"

Morris H. Degroot and Mark J. Schervish "Probability and Statistics"

See you next time

See You!

