Probability and Statistics for Computer Science

Credit: wikipedia

"It's straightforward to link a number to the outcome of an experiment. The result is a **Random variable**." ---Prof. Forsythe

Random variable is a function, it is not the same as in **X = X+1**

Hongye Liu, Teaching Assistant Prof, CS361, UIUC, 9.15.2020

Which is larger?

O The probability of drawing hands of 5-cards that have no pairs. (no replacement) · **0**.5 705 B. (D :s langer A. O is longer $[\mathcal{R}] = 5^{2} \mathcal{P}_{5}$ $[\mathcal{E}] = 5^{2} \mathcal{P}_{5}$ $[\mathcal{E}] = 5^{2} \mathcal{P}_{5}$ $[\mathcal{E}] = 5^{2} \mathcal{P}_{5}$

 $P(A|B) = \frac{P(A|B)}{P(B)}$ Lasttime

Conditional probability

* Product rule of joint prob.

* Bayes rule P(A/B)=P(A) * Independence p(AnB) = P(A)P(B)

Objectives

Unterface Random Variable Stor Arra. cs and the * Definition crov (d * Probability distribution PDF. CDF * Conditional probability dismi

Random numbers

- # Amount of money on a bet
- * Age at retirement of a population
- Rate of vehicles passing by the toll
- Body temperature of a puppy in its pet clinic
- * Level of the intensity of pain in a toothache
 Our of a node in a network

Random variable as vectors

Brain imaging of Human emotions A) Moral conflict B) Multi-task C) Rest (x, y, 2, t, 1)

A. McDonald et al. NeuroImage doi: 10.1016/ j.neuroimage.2016.10.048

Random variables

A random variable maps Numbers, So (X) all outcomes LO (w) Bernonli: it's a function!! p (+*.1)= Possible Random Rane Variable Values ~@ w is tail → @ w is head **(**(w)

Random variables

* The values of a random variable can be either discrete, continuous or mixed.

Discrete Random variables

* The range of a discrete random variable is a countable set of real $\chi(\omega)$ 4 numbers. 4-die 8r

Random Variable Example

**** Number of pairs in a hand of 5 cards**

- * Let a single outcome be the hand of 5 cards
- * Each outcome maps to values in the set of numbers {0, 1, 2}

Random Variable Example

- **** Number of pairs in a hand of 6 cards**
 - * Let a single outcome be the hand of 6 cards
 - What is the range of values of this random variable?
 - 0,1,2,3

Q: Random Variable

If we roll a 3-sided fair die, and define random variable U, such that $\begin{array}{c} U(\omega) = \begin{cases} -1 & \omega & \text{is side 1} \\ 0 & \omega & \text{is side 2} \\ 1 & \omega & \text{is side 3} \end{array}$ what is the range of $X = U^2$ can take B. {0, 1} A. {-1, 0, 1}

Three important facts of Random variables

Random variables have probability functions

Random variables can be conditioned on events or other random variables

Random variables have averages

Random variables have probability functions

- # Let X be a random variable
- * The set of outcomes $\{\omega \in \mathcal{S} : \mathcal{S}, \mathcal{S},$

is an event with probability

$$P(X = x_0) = P(\{\omega : x, x, \omega\} = x_0\})$$

X is the random variable χ_{o} is any unique instance that X takes on

Probability Distribution

- P(X = x) is called the probability distribution for all possible x
- # P(X = x) is also denoted as P(x) or p(x)
- $P(X = x) \ge 0$ for all values that X can take, and is 0 everywhere else
- * The sum of the probability distribution is 1 $\sum P(x) = 1$

Examples of Probability Distributions

X(w)={ | hend tail

P(X=x)

P(X=x)

8

$$U(\omega) = \begin{cases} -1 & \text{side i} \\ 0 & \text{side 2} \\ X(\omega) = U^{2} & \text{p(X=x)} \end{cases} \qquad \begin{array}{c} \rho(X=x) = \begin{cases} \frac{1}{3} & X=0 \\ \frac{2}{3} & x=1 \\ \frac{3}{3} & X=1 \\ 0 & \text{otherwise} \end{cases}$$

Cumulative distribution

 $* P(X \leq x)$ is called the cumulative distribution function of X

 $\# P(X \le x)$ is also denoted as f(x)

 $\# P(X \le x)$ is a non-decreasing function of x

Probability distribution and cumulative distribution

* Give the random variable X, $X(\omega) = \begin{cases} 1 & outcome \text{ of } \omega \text{ is head} \\ 0 & outcome \text{ of } \omega \text{ is tail} \end{cases}$ $p(x) \stackrel{P(X = x)}{\uparrow} P(X = x) \qquad f(x) \stackrel{P(X \leq x)}{\uparrow} P(X \leq x)$ 1/2 1/2

Q what is the value?

A biased four-sided die is rolled once. Ramdom variable X is defined to be the down-face value. x =1, 2, 3, 4 $p(X=x)=\begin{cases} x\\ i \circ \end{cases}$ all others SK(X= 4) C) 0.2 A) o.1 0) 0.6 B) 0.3 E) 1

Functions of Random Variables

Q. Are these random variables the same?

 $\chi(w) = \begin{cases} 1 & head \\ 0 & tail \end{cases} \chi(w) = \begin{cases} 1 & head \\ 1 & tail \end{cases}$ $U = 2X, \quad V = X + Y, \quad I$ 0 × 2 = 0 V are the same A) U and TB) U and V are Not the U-> ?o, 2} V-> ?o, 1, 27

Function of random variables: die example

Roll 4-sided fair die twice.

Define these random variables:

X, the values of 1^{st} roll Y, the values of 2^{nd} roll Sum S = X + YDifference D = X - Y

Size of Sample Space = ?

414 = 16

Random variable: die example

Roll 4-sided fair die twice.

$$P(X = 1) = \frac{1}{2}$$
$$P(Y \le 2) = \frac{1}{2}$$

P(S=7)

 $P(D \le -1)$

Size of Sample Space = 16

Random variable: die example

Probability distribution of the sum of two random variables

Probability distribution of the difference of two random variables

% Give the random variable D = X-Y,
what is the probability distribution of
D?

Conditional Probability

 $\frac{P(A \cap I}{D(D)}$

* The probability of A given B

Conditional probability distribution of random variables

* The conditional probability distribution of X given Y is

$$P(x|y) = \frac{P(x,y)}{P(y)} \qquad P(y) \neq 0$$

$$P(x,y) = P(X=xnY=y)$$

$$P(y) = P(Y=y)$$

$$P(y) = P(X=x|Y=y)$$

Get the marginal from joint distri.

We can recover the individual probability distributions from the joint probability distribution P(x,y) = P(y|x) p(x) $P(x) = \sum P(x, y)$ $\sum_{i=1}^{n} p(i)(x) p(x)$ $= p(x) \sum p(x)$ = p(x) $P(y) = \sum P(x, y)$ \mathcal{X}

Joint probabilities sum to 1

* The sum of the joint probability distribution

 $\sum_{y} \sum_{x} P(x, y) = 1$ \boldsymbol{y}

Joint Probability Example

** Tossing a coin twice, we define random variable X and Y for each toss.

$$X(\omega) = \begin{cases} 1 & outcome \ of \ \omega \ is \ head \\ 0 & outcome \ of \ \omega \ is \ tail \end{cases}$$

 $Y(\omega) = \begin{cases} 1 & outcome \ of \ \omega \ is \ head \\ 0 & outcome \ of \ \omega \ is \ tail \end{cases}$

Joint Probability Example

Now we define Sum S = X + Y, Difference D = X - Y. S takes on values {0,1,2} and D takes on values {-1, 0, 1}

 $X(\omega) = \begin{cases} 1 & outcome \ of \ \omega \ is \ head \\ 0 & outcome \ of \ \omega \ is \ tail \end{cases}$

 $Y(\omega) = \begin{cases} 1 & outcome \ of \ \omega \ is \ head \\ 0 & outcome \ of \ \omega \ is \ tail \end{cases}$

Joint Probability Example

Independence of random variables

Random variable X and Y are independent if

$$P(x,y) = P(x)P(y) \text{ for all } x \text{ and } y$$

- # In the previous coin toss example
 - # Are X and Y independent?
 - * Are S and D independent? P(S, p) = P(S) P(D) for $\neg l(S, d)$.

 $P(S = 1, D = 0) \neq P(S = 1)P(D = 0)$

Conditional probability distribution example

$$P(s|d) = \frac{P(s,d)}{P(d)}$$

-1 0 1

S

0

1

2

Bayes rule for random variable

Bayes rule for events generalizes to random variables $P(A|B) = \frac{P(B|A)P(A)}{P(B)}$ $P(x|y) = \frac{P(y|x)P(x)}{P(y)}$ $= \frac{P(y|x)P(x)}{\sum_{x} P(y|x)P(x)} \checkmark$ ✓ Total Probability

Conditional probability distribution example

-

$$P(s|d) = \frac{P(s,d)}{P(d)} -1 \quad 0 \quad 1 \quad D$$

$$S \quad 1 \quad 0 \quad \frac{1}{2} \quad 0$$

$$1 \quad 0 \quad 1$$

$$2 \quad 0 \quad \frac{1}{2} \quad 0$$

$$P(D = -1|S = 1) = \frac{P(S = 1|D = -1)P(D = -1)}{P(S = 1)} = \frac{1 \times \frac{1}{4}}{\frac{1}{2}}$$

Assignments

* Chapter 4 of the textbook

** Next time: More random variable, Expectations, Variance

Additional References

- * Charles M. Grinstead and J. Laurie Snell "Introduction to Probability"
- Morris H. Degroot and Mark J. Schervish "Probability and Statistics"

See you next time

See You!

