Probability and Statistics for Computer Science

> "I have now used each of the terms mean, variance, covariance and standard deviation in two slightly different ways." ---Prof. Forsythe

Credit: wikipedia

No pain in a hand of 5 from 52 cards

The probability of drawing hands of 5-cards that have no pairs.
(no replacement)

* Consider the order doeswit matter $|E|=$?

$$
\frac{52 \times 48 \times \cdots \times 36}{5!}=\binom{13}{5} \cdot 4^{5}
$$

$$
|\Omega|=?
$$

No pair in a hand of 5 from 52 cards
The probability of drawing hands of 5-cards that have no pairs.
(no replacement)

* Consider the order doesuit matter $|E|=$? $\quad\binom{13}{5} \cdot 4^{5} \rightarrow$ decide on suits tr $_{\Delta 0} 5$ card el choose the number from $[1,2,3, \ldots, 3,3, k]$

$$
|s|=? \quad\binom{52}{5}
$$

$|\Omega|$ \#outcomes in the sample space
$|E|$ Hontcones in E

$$
p=\frac{|E|}{|\Omega|}
$$

nate sure we have equal pros. for each ant come, arris the same

i.e. the one card that happens to be a O
$\frac{13}{52} \rightarrow 52$ choices is pick a pick a card

$$
\frac{1}{4}
$$

Last time
Random variable
$X(\omega)$

* Definition
$\omega \rightarrow x$
* Probability distribution PDF, CD

* Conditional probability distri.

$$
\begin{aligned}
P(X \mid Y) & P\left(X=x_{0}\right) \\
& \rightarrow P\left(\left\{\omega . s+. X(\omega)=x_{0}\right\}\right)
\end{aligned}
$$

$$
X(\omega)=\left\{\begin{array}{rr}
50 & \omega=\text { head } \\
-50 & \omega=\text { tail }
\end{array} \quad 50 \rightarrow 50 \text { dollars } \quad\right. \text { on the bet }
$$

Objectives
Random variable (R.V.)

* Expected value properties
* Variance \& Covariance $\frac{f(x)}{f(x, Y)}$
* Markov's Inequality

Expected value (Discrete case)

粦 The expected value (or expectation) of a random variable X is

$$
E[X]=\sum_{x} x P(x) p^{P(X=x)}
$$

The expected value is a weighted sum of the values X can take all

Expected value

粦 The expected value of a random variable X is

1 hars
0

$$
1+\frac{\lambda}{2}+0 \times \frac{1}{2} \int_{x} \sum_{x} p(x)=1
$$

The expected value is a weighted sum of, the values X can take all

Expected value: profit

粦 A company has a project that has \mathbf{p} probability of earning 10 million and (1-p) probability of losing 10 million.

米 Let X be the return of the project.

$$
P(X=x) \quad E[X]=10 \cdot p+(-10) \times(1-p)
$$

$$
=20 p-10 \geqslant 0
$$

$$
p \geqslant \frac{1}{2}
$$

Solve
Cookies
at home

A) random draw trams Expected value=?
B) random draw I twice with replacement indegantly [if the two draws are the same, you get the prize.ل.

Linearity of Expectation

粦 For random variables X and Y and constants k，c粦 Scaling property

$$
E[k X]=k E[X]
$$

絭 Additivity

$$
E[X+Y]=E[X]+E[Y]
$$

类 And $E[k X+c]=k E[X]+c$

Linearity of Expectation

粦 Proof of the additive property

$$
E[X+Y]=E[X]+E[Y] \quad s=X+Y
$$

$$
E[x+Y]=E[s]=\sum_{s} s P(s)
$$

$$
=\sum_{\{s=x, y\}}^{S} s \sum_{\{=x, y\}\}} p(x, y)
$$

$$
\begin{aligned}
& E[X+Y]=E[s]=\sum_{s} s P(s) \\
& p(s=s) \\
& =\sum_{i s=m y\}}^{5} S \sum_{\{=x=0, y]} P(x, y) \\
& \left.=\begin{array}{r}
p(x=x, y=y \\
\alpha s=x y
\end{array}\right) \quad=\sum_{x} \sum_{y}(x+y) p(x, y) \\
& =\sum_{x} \sum_{y} x p(x, y)+\sum_{x} \sum_{y} y p(x, y) \\
& E\left[x_{1}+x_{2}-\cdots\right]=\sum_{x}^{x} x \sum_{y} p(x, y)+\sum_{y} \sum_{x} y p(x, y) \\
& =E\left[x_{1}\right]+E\left[x_{2}\right]+\cdots=\sum_{x} x \underline{p(x)}+\sum_{y} y \sum_{x} \underline{p}(x, y) \\
& =\frac{\sum_{x} x p(x)}{E[x)^{L}+\left[\frac{\sum_{y} y p\left(y^{\alpha}\right)}{\forall}\right.} \\
& =E(X)^{\mu}+E[\varphi]
\end{aligned}
$$

Q. What's the value?

What is $\mathrm{E}[E[\mathrm{X}]+\mathrm{I}]=$?

$$
\begin{array}{rl}
Y & E\left[Y^{\prime}+1\right] \\
\text { C. } 0 & =E\left[Y^{\prime}\right]+1 \\
& =E[E[x)]+1 \\
P(Y)=1
\end{array}
$$

A. $E[X]+1$
B. 1

$$
\begin{aligned}
E[Y] & =Y \times 1 \\
& =E(x)+1
\end{aligned}
$$

Expected value of a function of X

米 If \boldsymbol{f} is a function of a random variable X, then $Y=f(X)$ is a random variable too

米 The expected value of $Y=\boldsymbol{f}(X)$ is

$$
E[Y]=E[f(X)]=\sum_{x} f(x) P(x)
$$

The exchange of variable theorem

$$
\begin{aligned}
& f(X)=Y \quad \text { If each } x \rightarrow \text { each } y \\
& E[Y]=\sum_{y} y P(y) \rightarrow E[Y]=\sum_{i P} y P(x) B:-j \text { cut } \\
& \because P(Y=y)=P(x=x) \\
&=\sum_{x} f(x) P(x) \\
& \text { if }
\end{aligned}
$$

Expected time of cat

粦 A cat moves with random constant speed \mathbf{V}, either $5 \mathrm{mile} / \mathrm{hr}$ or $20 \mathrm{mile} / \mathrm{hr}$ with equal probability, what's the expected time for it to travel 50 miles?

$$
T=\frac{D}{\underline{V}}=f(V)
$$

$$
E[T]=\sum_{v} f(v) P(v)
$$

$$
\pm \frac{D}{E[v]}
$$

$$
\begin{aligned}
& V P \cdot P\left(V_{1}\right)+\frac{P}{V_{2}} \cdot P\left(V_{2}\right) \\
= & \frac{50}{5} \times \frac{1}{2}+\frac{50}{20} \times \frac{1}{2}=6.25
\end{aligned}
$$

Q: Is this statement true?

If there exists a constant such that $\boldsymbol{P}(X \geq \mathrm{a})=1$, then $\mathrm{E}[X] \geq \mathrm{a}$. It is:
A. True
B. False

$$
\begin{aligned}
& \text { False } \\
& \begin{aligned}
E[x]=\sum x p(x)= & \sum_{x<a} x(x)^{0}+\sum_{x \geqslant a} x p(x) \\
& \geqslant \sum_{x \geqslant a}^{a p(x)} \sum_{x} \sum_{x \geqslant a}^{\prime} p^{\prime}(x)
\end{aligned}
\end{aligned}
$$

Variance and standard deviation

米 The variance of a random
variable X is

$$
f(x)=(x-E[x])^{2}
$$

pp (x)

$$
0 \rightarrow \sim \operatorname{lin}]
$$

粦 The standard deviation of a $\left\{x_{i}\right\}$ random variable X is

$$
\operatorname{std}[X]=\sqrt{\operatorname{var}[X]}=\frac{\sum\left(x_{i}-\mu\right)^{2}}{N}
$$

Properties of variance

粦 For random variable X and constant k

$$
\begin{gathered}
\operatorname{var}[X] \geq 0 \\
\operatorname{var}[k X]=k^{2} \operatorname{var}[X]
\end{gathered}
$$

A neater expression for variance

米 Variance of Random Variable X is defined as:
$Y \equiv(X-E[x])^{2}$

$$
=E[f(x)]
$$

$$
\operatorname{var}[X]=E\left[(\underset{E}{[X]} E[X])^{2}\right]
$$

$$
=E[Y]=\sum_{y} y P(y)
$$ It's the same as: $=\sum_{x}(x-E(x))^{2} \cdot \rho(x)$

$$
\operatorname{var}[X]=E\left[X^{2}\right]^{\times} E[X]^{2}
$$

$$
\begin{aligned}
& x(w)= \begin{cases}1 & w=H \text { enl } \\
0 & w=\text { sall }\end{cases} \\
& x-E[x]= \begin{cases}\frac{1-\frac{1}{2}}{0-\frac{1}{2}} & w=\text { Hewd } \\
w=\text {-wil }\end{cases} \\
& (x-E[x])^{2}=\left\{\begin{array}{l}
\left(\frac{1}{2}\right)^{2}=\frac{1}{4} \\
\left(-\frac{1}{2}\right)^{2}=\frac{1}{4} \\
(x=T
\end{array}\right. \\
& X=x+1
\end{aligned}
$$

A neater expression for variance

$$
\operatorname{var}[X]=E\left[(X-E[X])^{2}\right]
$$

A neater expression for variance

$$
\begin{aligned}
\operatorname{var}[X] & =E\left[(X-E[X])^{2}\right] \\
\operatorname{var}[X] & =E\left[(X-\mu)^{2}\right] \text { where } \mu=E[X] \\
& =E\left[x^{2}-2 \underline{\mu}+\mu^{2}\right] \\
& =E\left[x^{2}\right]+E[-2 \mu x]+E\left[\mu^{2}\right] \\
& =E\left[x^{2}\right]-2 \mu E[x]+E\left[\mu^{2}\right] \\
& =E\left[x^{2}\right]-\underline{2}[E[x])^{2}+E\left[E[x)^{2}\right]
\end{aligned}
$$

A neater expression for variance

$$
\begin{aligned}
\operatorname{var}[X] & =E\left[\left(\underline{(X-E[X])^{2}}\right]\right. \\
\operatorname{var}[X] & =E\left[(X-\mu)^{2}\right] \quad \text { where } \mu=E[X] \\
& =E\left[X^{2}-2 X \mu+\mu^{2}\right]
\end{aligned}
$$

$$
=E\left[x^{2}\right]-E[x]^{2}
$$

Variance: the profit example

粦 For the profit example, what is the variance of the return? We know $E[X]=$

20p-10

$\operatorname{var}[X]=E\left[X^{2}\right]=(E[X])^{2}$
$X= \begin{cases}10 & 5 \\ -10 & f\end{cases}$

$$
\begin{aligned}
E\left[x^{2}\right]= & \sum_{x} x^{2} \cdot p(x) \\
= & 10^{2} p(x=10)+(-10)^{2} \cdot p(x=-10) \\
& =100 p+100(1-p)
\end{aligned}
$$

Motivation for covariance

米 Study the relationship between random variables

粦 Note that it＇s the un－normalized correlation

米 Applications include the fire control of radar，communicating in the presence of noise．

Covariance

粦 The covariance of random variables X and Y is
$\operatorname{cov}(X, Y)=E[(X-E[X])(Y-E[Y])]$
粦 Note that
$\operatorname{cov}(X, X)=E\left[(X-E[X])^{2}\right]=\operatorname{var}[X]$

A neater form for covariance

粦 A neater expression for covariance (similar derivation as for variance)

$$
\begin{aligned}
\operatorname{cov}(X, Y) & \left.=E[X Y]-E[X] \frac{E[Y]}{U}\right] \\
& =\sum_{x y} \sum_{y}(X-E(x])(Y-E[Y]) \cdot P(x, y)
\end{aligned}
$$

Correlation coefficient is normalized covariance

粦 The correlation coefficient is

$$
\operatorname{corr}(X, Y)=\frac{\operatorname{cov}(X, Y)}{\sigma_{X} \sigma_{Y}}
$$

米 When X, Y takes on values with equal probability to generate data sets $\{(x, y)\}$, the correlation coefficient will be as seen in Chapter 2.

Correlation coefficient is normalized covariance

粦 The correlation coefficient can also be written as:
$\operatorname{corr}(X, Y)=\frac{E[X Y]-E[X] E[Y]}{\sigma_{X} \sigma_{Y}}$

Covariance seen from scatter plots

Positive
 Covariance \downarrow

Negative Covariance
 \downarrow

Negative Correlation

Credit:

When correlation coefficient or covariance is zero

粦 The covariance is 0 ！

No Correlation

粪 That is：

 $\operatorname{cov}(X, Y)$$$
=E[X Y]-E[X] E[Y]=0
$$

$$
E[X Y]=E[X] E[Y]
$$

粦 This is a necessary property of independence of random variables＊（not equal to independence）not sufficient

Variance of the sum of two random

 variables$\int \operatorname{var}[X+Y]=\operatorname{var}[X]+\operatorname{var}[Y]+2 \operatorname{cov}(X, Y)$

Extra pt. in HW

These are equivalent:
(I) $\operatorname{cov}(X, Y)=0 ; \operatorname{corr}(X, Y)=0$
(II) $E[X Y]=E[X] E[Y]$
(III) $\operatorname{var}[X+Y]=\operatorname{var}[X]+\operatorname{var}[Y]$ uncorrelated!!

Properties of independence in terms of expectations

$$
\text { 类 } E[X Y]=E[X] E[Y]
$$

If X, Y are independent then $\left\{\begin{array}{l}\operatorname{Cov}(X, Y)=0 ; \operatorname{corr}(X, Y)=0 \\ E[X Y]=E[X] E[Y] \\ \operatorname{var}[X+Y]=\operatorname{var}(X]+\operatorname{var}[Y]\end{array}\right.$

$\mathrm{Q}:$ What is this expectation?

We toss two identical coins A \& B independently for three times and 4 times respectively, for each head we earn \$1, we define X is the earning from A and Y is the earning from B . What is $\mathrm{E}(X Y)$?
A. \$2
B. \$3
C. \$4

Uncorrelated vs Independent

米 If two random variables are uncorrelated, does this mean they are independent? Investigate the case X takes -1, 0, 1 with equal probability and $Y=X^{2}$.

Assignments

Finish Chapter 4 of the textbook
Next time: Proof of Chebyshev inequality \& Weak law of large numbers, Continuous random variable

Additional References

Charles M. Grinstead and J. Laurie Snell "Introduction to Probability"

Morris H. Degroot and Mark J. Schervish "Probability and Statistics"

See you next time

See You!

