Probability and Statistics for Computer Science

> "I have now used each of the terms mean, variance, covariance and standard deviation in two slightly different ways." ---Prof. Forsythe

Credit: wikipedia

Objectives

粦 Random Variable
粦 Expected value
粦 Variance \＆covariance
粦 Markov＇s inequality

Three important facts of Random variables

米 Random variables have probability functions

米 Random variables can be conditioned on events or other random variables

米 Random variables have averages

Expected value

粦 The expected value (or expectation) of a random variable X is

$$
E[X]=\sum_{x} x P(x)
$$

The expected value is a weighted sum of the values X can take

Expected value

粦 The expected value of a random variable X is

$$
E[X]=\sum_{x} x P(x)>^{<=1}
$$

The expected value is a weighted sum of the values X can take

Expected value: profit

类 A company has a project that has p probability of earning 10 million and 1-p probability of losing 10 million.

米 Let X be the return of the project.

Expected value as mean

米 Suppose we have a data set $\left\{x_{i}\right\}$ of N data points. Let's define a random variable \boldsymbol{X} taking on each of the data points with equal probability $1 / N$.

$$
E[X]=\sum_{i} x_{i} P\left(x_{i}\right)=\frac{1}{N} \sum_{i} x_{i}=\operatorname{mean}\left(\left\{x_{i}\right\}\right)
$$

The expected value is also called the mean.

Linearity of Expectation

粦 For random variables X and Y and constants k，c粦 Scaling property

$$
E[k X]=k E[X]
$$

絭 Additivity

$$
E[X+Y]=E[X]+E[Y]
$$

类 And $E[k X+c]=k E[X]+c$

Linearity of Expectation

粦 Proof of the additive property

$$
E[X+Y]=E[X]+E[Y]
$$

Q. What's the value?

粦 What is $\mathrm{E}[\mathrm{E}[\mathrm{X}]+1]$?
$\begin{array}{lll}\text { A. } E[X]+1 & \text { B. } 1 & \text { C. } 0\end{array}$

Expected value of a function of X

粦 If \boldsymbol{f} is a function of a random variable X, then $Y=f(X)$ is a random variable too

粦 The expected value of $Y=f(X)$ is

Expected value of a function of X

米 If \boldsymbol{f} is a function of a random variable X, then $Y=f(X)$ is a random variable too

米 The expected value of $Y=\boldsymbol{f}(X)$ is

$$
E[Y]=E[f(X)]=\sum_{x} f(x) P(x)
$$

Expected time of cat

粦 A cat moves with random constant speed V, either $5 \mathrm{mile} / \mathrm{hr}$ or $20 \mathrm{mile} / \mathrm{hr}$ with equal probability, what's the expected time for it to travel 50 miles?

Q: Is this statement true?

If there exists a constant such that $\boldsymbol{P}(X \geq \mathrm{a})=1$, then $\mathrm{E}[X] \geq \mathrm{a}$. It is:
A. True
B. False

Variance and standard deviation

米 The variance of a random variable X is

$$
\operatorname{var}[X]=E\left[(X-E[X])^{2}\right]
$$

粦 The standard deviation of a random variable X is

$$
\operatorname{std}[X]=\sqrt{\operatorname{var}[X]}
$$

Properties of variance

粦 For random variable X and constant k

$$
\begin{gathered}
\operatorname{var}[X] \geq 0 \\
\operatorname{var}[k X]=k^{2} \operatorname{var}[X]
\end{gathered}
$$

A neater expression for variance

米 Variance of Random Variable X is defined as:

$$
\operatorname{var}[X]=E\left[(X-E[X])^{2}\right]
$$

米 It's the same as:

$$
\operatorname{var}[X]=E\left[X^{2}\right]-E[X]^{2}
$$

A neater expression for variance

$$
\operatorname{var}[X]=E\left[(X-E[X])^{2}\right]
$$

A neater expression for variance

$$
\operatorname{var}[X]=E\left[(X-E[X])^{2}\right]
$$

$$
\operatorname{var}[X]=E\left[(X-\mu)^{2}\right] \quad \text { where } \mu=E[X]
$$

A neater expression for variance

$$
\operatorname{var}[X]=E\left[(X-E[X])^{2}\right]
$$

$$
\operatorname{var}[X]=E\left[(X-\mu)^{2}\right] \quad \text { where } \mu=E[X]
$$

$$
=E\left[X^{2}-2 X \mu+\mu^{2}\right]
$$

Variance: the profit example

粦 For the profit example, what is the variance of the return? We know $\mathrm{E}[X]=$ 20p-10

$$
\operatorname{var}[X]=E\left[X^{2}\right]-(E[X])^{2}
$$

Motivation for covariance

米 Study the relationship between random variables

粦 Note that it＇s the un－normalized correlation

米 Applications include the fire control of radar，communicating in the presence of noise．

Covariance

粦 The covariance of random variables X and Y is
$\operatorname{cov}(X, Y)=E[(X-E[X])(Y-E[Y])]$
粦 Note that
$\operatorname{cov}(X, X)=E\left[(X-E[X])^{2}\right]=\operatorname{var}[X]$

A neater form for covariance

粦 A neater expression for covariance (similar derivation as for variance)
$\operatorname{cov}(X, Y)=E[X Y]-E[X] E[Y]$

Correlation coefficient is normalized covariance

粦 The correlation coefficient is

$$
\operatorname{corr}(X, Y)=\frac{\operatorname{cov}(X, Y)}{\sigma_{X} \sigma_{Y}}
$$

米 When X, Y takes on values with equal probability to generate data sets $\{(x, y)\}$, the correlation coefficient will be as seen in Chapter 2.

Correlation coefficient is normalized covariance

粦 The correlation coefficient can also be written as:
$\operatorname{corr}(X, Y)=\frac{E[X Y]-E[X] E[Y]}{\sigma_{X} \sigma_{Y}}$

Correlation seen from scatter plots

Zero
 Correlation
 \downarrow

Normalized body temperature

Positive
 correlation

Negative correlation

Negative Correlation

Credit:
Prof.Forsyth

Covariance seen from scatter plots

Positive
 Covariance \downarrow

Negative Covariance
 \downarrow

Negative Correlation

Credit:

When correlation coefficient or covariance is zero

米 The covariance is 0 ！
No Correlation
粦 That is：

$$
\begin{aligned}
& E[X Y]-E[X] E[Y]=0 \\
& E[X Y]=E[X] E[Y]
\end{aligned}
$$

粦 This is a necessary property of independence of random variables＊（not equal to independence）

Variance of the sum of two random variables

$$
\operatorname{var}[X+Y]=\operatorname{var}[X]+\operatorname{var}[Y]+2 \operatorname{cov}(X, Y)
$$

Properties of independence in terms of expectations

$$
\text { 类 } E[X Y]=E[X] E[Y]
$$

Proof of independence in terms of expectation (1)

$$
E[X Y]=E[X] E[Y]
$$

Properties of independence in terms of expectations

$$
\text { 粦 } E[X Y]=E[X] E[Y]
$$

$$
\operatorname{cov}(X, Y)=0
$$

$$
\operatorname{var}[X+Y]=\operatorname{var}[X]+\operatorname{var}[Y]
$$

$\mathrm{Q}:$ What is this expectation?

We toss two identical coins A \& B independently for three times and 4 times respectively, for each head we earn \$1, we define X is the earning from A and Y is the earning from B . What is $\mathrm{E}(X Y)$?
A. \$2
B. \$3
C. \$4

Uncorrelated vs Independent

米 If two random variables are uncorrelated, does this mean they are independent? Investigate the case X takes -1, 0, 1 with equal probability and $Y=X^{2}$.

Covariance example

It's an underlying concept in principal component analysis in Chapter 10

Markov's inequality

粦 For any random variable X and constant $a>0$

$$
P(|X| \geq a) \leq \frac{E[|X|]}{a}
$$

So, a random variable is unlikely to have the absolute value much larger than the mean of its absolute value

米 For example, if $a=10 \mathrm{E}[|X|]$

$$
P(|X| \geq 10 E[|X|]) \leq 0.1
$$

Proof of Markov's inequality

Proof of Markov's inequality

Proof of Markov's inequality

Chebyshev's inequality

For any random variable X and constant $a>0$

$$
P(|X-E[X]| \geq a) \leq \frac{\operatorname{var}[X]}{a^{2}}
$$

粦 If we let $\mathrm{a}=\mathrm{k} \sigma$ where $\sigma=\operatorname{std}[X]$

$$
P(|X-E[X]| \geq k \sigma) \leq \frac{1}{k^{2}}
$$

粦 In words, the probability that X is greater than k standard deviation away from the mean is small

Assignments

Finish Chapter 4 of the textbook
Next time: Proof of Chebyshev inequality \& Weak law of large numbers, Continuous random variable

Additional References

Charles M. Grinstead and J. Laurie Snell "Introduction to Probability"

Morris H. Degroot and Mark J. Schervish "Probability and Statistics"

See you next time

See You!

