Probability and Statistics for Computer Science

"The weak law of large numbers gives us a very
valuable way of thinking about expectations." ---Prof. Forsythe

Credit: wikipedia

Last time

米 Random Variable
粦 Expected value
粦 Variance \＆covariance

Last time

Content

Content

粦 Random Variable
粦 Review with questions
粦 The weak law of large numbers
粦 Simulation \＆example of airline overbooking

Expected value

粦 The expected value (or expectation) of a random variable X is

$$
E[X]=\sum_{x} x P(x)
$$

The expected value is a weighted sum of all the values X can take

Linearity of Expectation

Expected value of a function of X

What is $\mathrm{E}[\mathrm{E}[\mathrm{X}]]$?
A. $E[X]$
B. 0
C. Can't be sure

Probability distribution

粦 Given the random variable \boldsymbol{X}, what is

$\mathrm{E}[2|X|+1]$?

> A. 0
> B. 1
> C. 2
> D. 3
> E. 5

Probability distribution

Given the random variable \boldsymbol{S} in the 4sided die, whose range is $\{2,3,4,5,6,7,8\}$, probability distribution of S. What is $\mathrm{E}[\mathrm{S}]$?

A. 4
B. 5
C. 6

1/16

A neater expression for variance

粦 Variance of Random Variable X is defined as:

$$
\operatorname{var}[X]=E\left[(X-E[X])^{2}\right]
$$

粦 It's the same as:

$$
\operatorname{var}[X]=E\left[X^{2}\right]-E[X]^{2}
$$

Probability distribution and cumulative distribution

类 Given the random variable \boldsymbol{X}, what is
$\operatorname{var}[2|\boldsymbol{X}|+1]$?

> A. 0
> B. 1
> C. 2
> D. 3
> E. -1

Probability distribution

粦 Given the random variable \boldsymbol{X}, what is

$\operatorname{var}[2|\boldsymbol{X}|+1]$? Let $\boldsymbol{Y}=2|\boldsymbol{X}|+1$

Probability distribution

Give the random variable \boldsymbol{S} in the 4sided die, whose range is $\{2,3,4,5,6,7,8\}$, probability distribution of S.

Content

粦 Random Variable
粦 Review with questions
粦 The weak law of large numbers

Towards the weak law of large numbers

The weak law says that if we repeat a random experiment many times, the average of the observations will "converge" to the expected value

For example, if you repeat the profit example, the average earning will "converge" to $\mathrm{E}[X]=20 \mathrm{p}-10$

The weak law justifies using simulations (instead of calculation) to estimate the expected values of random variables

Markov's inequality

For any random variable X that only takes $x \geq 0$ and constant $a>0$

$$
P(X \geq a) \leq \frac{E[X]}{a}
$$

粦 For example, if $a=10 \mathrm{E}[\mathrm{X}]$

$$
P(X \geq 10 E[X]) \leq \frac{E[X]}{10 E[X]}=0.1
$$

Proof of Markov's inequality

Chebyshev＇s inequality

粦 For any random variable X and constant $a>0$

$$
P(|X-E[X]| \geq a) \leq \frac{\operatorname{var}[X]}{a^{2}}
$$

粦 If we let $\mathrm{a}=\mathrm{k} \sigma$ where $\sigma=\operatorname{std}[X]$

$$
P(|X-E[X]| \geq k \sigma) \leq \frac{1}{k^{2}}
$$

米 In words，the probability that X is greater than k standard deviation away from the mean is small

Proof of Chebyshev's inequality

Given Markov inequality, $a>0, x \geq 0$

$$
P(X \geq a) \leq \frac{E[X]}{a}
$$

粦 We can rewrite it as

$$
\omega>0 \quad P(|U| \geq w) \leq \frac{E[|U|]}{w}
$$

Proof of Chebyshev's inequality

$$
\text { If } \quad U=(X-E[X])^{2}
$$

$$
P(|U| \geq w) \leq \frac{E[|U|]}{w}=\frac{E[U]}{w}
$$

Proof of Chebyshev's inequality

米 Apply Markov inequality to $U=(X-E[X])^{2}$
$P(|U| \geq w) \leq \frac{E[|U|]}{w}=\frac{E[U]}{w}=\frac{\operatorname{var}[X]}{w}$
米 Substitute $U=(X-E[X])^{2}$ and $w=a^{2}$
$P\left((X-E[X])^{2} \geq a^{2}\right) \leq \frac{\operatorname{var}[X]}{a^{2}} \quad$ Assume $a>0$
$\Rightarrow P(|X-E[X]| \geq a) \leq \frac{\operatorname{var}[X]}{a^{2}}$

Now we are closer to the law of large numbers

Sample mean and IID samples

粦 We define the sample mean $\overline{\mathbf{X}}$ to be the average of \boldsymbol{N} random variables X_{l}, \ldots, X_{N} ．

粦 If X_{1}, \ldots, X_{N} are independent and have identical probability function $P(x)$
then the numbers randomly generated from them are called IID samples

粦 The sample mean is a random variable

Sample mean and IID samples

業 Assume we have a set of IID samples from \mathbf{N} random variables X_{1}, \ldots, X_{N} that have probability function $P(x)$

粦 We use $\overline{\mathbf{X}}$ to denote the sample mean of these IID samples

$$
\overline{\mathbf{X}}=\frac{\sum_{i=1}^{N} X_{i}}{N}
$$

Expected value of sample mean of IID random variables

By linearity of expected value

$$
E[\overline{\mathbf{X}}]=E\left[\frac{\sum_{i=1}^{N} X_{i}}{N}\right]=\frac{1}{N} \sum_{i=1}^{N} E\left[X_{i}\right]
$$

Expected value of sample mean of IID random variables

粦 By linearity of expected value

$$
E[\overline{\mathbf{X}}]=E\left[\frac{\sum_{i=1}^{N} X_{i}}{N}\right]=\frac{1}{N} \sum_{i=1}^{N} E\left[X_{i}\right]
$$

Given each X_{i} has identical $P(x)$

$$
E[\overline{\mathbf{X}}]=\frac{1}{N} \sum_{i=1}^{N} E[X]=E[X]
$$

Variance of sample mean of IID random variables

䊩 By the scaling property of variance

$$
\operatorname{var}[\overline{\mathbf{X}}]=\operatorname{var}\left[\frac{1}{N} \sum_{i=1}^{N} X_{i}\right]=\frac{1}{N_{2}} \operatorname{var}\left[\sum_{i=1}^{N} X_{i}\right]
$$

Variance of sample mean of IID random variables

米 By the scaling property of variance

$$
\operatorname{var}[\overline{\mathbf{X}}]=\operatorname{var}\left[\frac{1}{N} \sum_{i=1}^{N} X_{i}\right]=\widehat{\left(\frac{1}{N^{2}}\right.} \operatorname{var}\left[\sum_{i=1}^{N} X_{i}\right]
$$

And by independence of these IID random variables

$$
\operatorname{var}[\overline{\mathbf{X}}]=\frac{1}{N^{2}} \sum_{i=1}^{N} \operatorname{var}\left[X_{i}\right]
$$

Variance of sample mean of IID random variables

米 By the scaling property of variance

$$
\operatorname{var}[\overline{\mathbf{X}}]=\operatorname{var}\left[\frac{1}{N} \sum_{i=1}^{N} X_{i}\right]=\frac{1}{N^{2}} \operatorname{var}\left[\sum_{i=1}^{N} X_{i}\right]
$$

米 And by independence of these IID random variables

$$
\operatorname{var}[\overline{\mathbf{X}}]=\frac{1}{N^{2}} \sum_{i=1}^{N} \operatorname{var}\left[X_{i}\right]
$$

粦 Given each X_{i} has identical $P(x)$ ，var $\left[X_{i}\right]=\operatorname{var}[X]$

$$
\operatorname{var}[\overline{\mathbf{X}}]=\frac{1}{N^{2}} \sum_{i=1}^{N} \operatorname{var}[X]=\frac{\operatorname{var}[X]}{N}
$$

Expected value and variance of sample mean of IID random variables

粦 The expected value of sample mean is the same as the expected value of the distribution

$$
E[\overline{\mathbf{X}}]=E[X]
$$

䊩 The variance of sample mean is the distribution's variance divided by the sample size \mathbf{N}

$$
\operatorname{var}[\overline{\mathbf{X}}]=\frac{\operatorname{var}[X]}{N}
$$

Weak law of large numbers

*

Given a random variable X with finite variance, probability distribution function $P(x)$ and the sample mean $\overline{\mathbf{X}}$ of size \boldsymbol{N}.

粦 For any positive number $\epsilon>0$

$$
\lim _{N \rightarrow \infty} P(|\overline{\mathbf{X}}-E[X]| \geq \epsilon)=0
$$

类 That is: the value of the mean of IID samples is very close with high probability to the expected value of the population when sample size is very large

Proof of Weak law of large numbers

Apply Chebyshev's inequality

$$
P(|\overline{\mathbf{X}}-E[\overline{\mathbf{X}}]| \geq \epsilon) \leq \frac{\operatorname{var}[\overline{\mathbf{X}}]}{\epsilon^{2}}
$$

Proof of Weak law of large numbers

Apply Chebyshev's inequality

$$
P(|\overline{\mathbf{X}}-E[\overline{\mathbf{X}}]| \geq \epsilon) \leq \frac{\operatorname{var}[\overline{\mathbf{X}}]}{\epsilon^{2}}
$$

Substitute $E[\overline{\mathbf{X}}]=E[X]$ and $\operatorname{var}[\overline{\mathbf{X}}]=\frac{\operatorname{var}[X]}{N}$

Proof of Weak law of large numbers

Apply Chebyshev's inequality

$$
P(|\overline{\mathbf{X}}-E[\overline{\mathbf{X}}]| \geq \epsilon) \leq \frac{\operatorname{var}[\overline{\mathbf{X}}]}{\epsilon^{2}}
$$

米 Substitute $E[\overline{\mathbf{X}}]=E[X]$ and $\operatorname{var}[\overline{\mathbf{X}}]=\frac{\operatorname{var}[X]}{N}$

$$
P(|\overline{\mathbf{X}}-E[\mathbf{X}]| \geq \epsilon) \leq \frac{\operatorname{var}[\mathbf{X}]}{N \epsilon^{2}}
$$

Proof of Weak law of large numbers

Apply Chebyshev's inequality

$$
P(|\overline{\mathbf{X}}-E[\overline{\mathbf{X}}]| \geq \epsilon) \leq \frac{\operatorname{var}[\overline{\mathbf{X}}]}{\epsilon^{2}}
$$

粦 Substitute $E[\overline{\mathbf{X}}]=E[X]$ and $\operatorname{tar}[\overline{\mathbf{X}}]=\frac{\operatorname{var}[X]}{N}$

$$
P(|\overline{\mathbf{X}}-E[\mathbf{X}]| \geq \epsilon) \leq \frac{\operatorname{var}[\mathbf{X}]}{N \epsilon^{2}} \xrightarrow[N \rightarrow \infty]{ } 0
$$

Proof of Weak law of large numbers

粦 Apply Chebyshev's inequality

$$
P(|\overline{\mathbf{X}}-E[\overline{\mathbf{X}}]| \geq \epsilon) \leq \frac{\operatorname{var}[\overline{\mathbf{X}}]}{\epsilon^{2}}
$$

粦 Substitute $E[\overline{\mathbf{X}}]=E[X]$ and $\epsilon^{2} \operatorname{var}[\overline{\mathbf{X}}]=\frac{\operatorname{var}[X]}{N}$

$$
P(|\overline{\mathbf{X}}-E[\mathbf{X}]| \geq \epsilon) \leq \frac{\operatorname{var}[\mathbf{X}]}{N \epsilon^{2}} \xrightarrow[N \rightarrow \infty]{ } 0
$$

$$
\lim _{N \rightarrow \infty} P(|\overline{\mathbf{X}}-E[X]| \geq \epsilon)=0
$$

Applications of the Weak law of large numbers

Applications of the Weak law of large numbers

粦 The law of large numbers justifies using simulations (instead of calculation) to estimate the expected values of random variables

$$
\lim _{N \rightarrow \infty} P(|\overline{\mathbf{X}}-E[X]| \geq \epsilon)=0
$$

粦 The law of large numbers also justifies using histogram of large random samples to approximate the probability distribution function $P(x)$, see proof on
Pg. 353 of the textbook by DeGroot, et al.

Histogram of large random IID samples approximates the probability distribution

粦 The law of large numbers justifies using histograms to approximate the probability distribution．Given \boldsymbol{N} IID random variables X_{l} ， ．．．，X_{N}
粦 According to the law of large numbers

$$
\overline{\mathbf{Y}}=\frac{\sum_{i=1}^{N} Y_{i}}{N} \xrightarrow{N \rightarrow \infty} E\left[Y_{i}\right]
$$

粦 As we know for indicator function

$$
E\left[Y_{i}\right]=P\left(c_{1} \leq X_{i}<c_{2}\right)=P\left(c_{1} \leq X<c_{2}\right)
$$

Simulation of the sum of two-dice

䊩 http://www.randomservices.org/ random/apps/DiceExperiment.html

Probability using the property of Independence: Airline overbooking

粦 An airline has a flight with s seats. They always sell $\mathbf{t}(\mathbf{t}>\mathbf{s})$ tickets for this flight. If ticket holders show up independently with probability \mathbf{p}, what is the probability that the flight is overbooked?
$\mathrm{P}($ overbooked $)=\sum_{u=s+1}^{t} C(t, u) p^{u}(1-p)^{t-u}$

Simulation of airline overbooking

粦 An airline has a flight with $\mathbf{7}$ seats．They always sell 12 tickets for this flight．If ticket holders show up independently with probability \mathbf{p} ，estimate the following values
粦 Expected value of the number of ticket holders who show up
粦 Probability that the flight being overbooked
粦 Expected value of the number of ticket holders who can＇t fly due to the flight is overbooked．

Conditional expectation

Expected value of X conditioned on event A :

$$
E[X \mid A]=\sum_{x \in D(X)} x P(X=x \mid A)
$$

粦 Expected value of the number of ticketholders not flying

$$
E[\text { NF|overbooked }]=\sum_{u=s+1}^{t}(u-s) \frac{\binom{t}{u} p^{u}(1-p)^{t-u}}{\sum_{v=s+1}^{t}\binom{t}{v} p^{v}(1-p)^{t-v}}
$$

Simulate the arrival

Expected value of the number of ticket holders who show up
$n t=100000, t=12, s=7, p=0.1,0.2, \ldots 1.0$
\longrightarrow Num of trials (nt)

Num of tickets (t)

We generate a matrix of random numbers from uniform distribution in [0,1],
Any number < p is considered an arrival

Simulate the arrival

Expected value of the number of ticket

 $n t=100000, t=12$,$s=7, p=0.1,0.2, \ldots$
1.0

Simulate the expected probability of overbooking

粦 Expected probability of the flight being overbooked $t=12, s=7, p=0.1,0.2, \ldots 1.0$

Expected probability is equal to the expected value of indicator function. Whenever we have Num of arrival > Num of seats, we mark it with an indicator function. Then estimate with the sample mean of indicator functions.

Simulate the expected probability of overbooking

Expected probability of the flight being overbooked

$n t=100000$,
$t=12, s=7$,
$p=0.1,0.2, \ldots 1.0$

Expected probability of flight being overbooked

Simulate the expected value of the number of grounded ticket holders given overbooked

粦 Expected value of the number of ticket holders who can't fly due to the flight being overbooked
$N t=200000$,
$t=12, s=7$,
$p=0.1,0.2, \ldots 1.0$

Expected value of the number of ticket holder not flying given overbooke

Assignments

Finish Chapter 4 of the textbook
Next time: Continuous random variable, classic known probability distributions

Additional References

Charles M. Grinstead and J. Laurie Snell "Introduction to Probability"

Morris H. Degroot and Mark J. Schervish "Probability and Statistics"

See you next time

See You!

