Probability and Statistics for Computer Science

> "The eternal mystery of the world is its comprehensibility
> ... The fact that it is
> comprehensible is a miracle."
> - Albert Einstein

Credit: wikipedia

* Unoonentry speakers of the students are muted for the quality of sound in zoom rom
* Mease "raise up hand" to speak, the audio will be unamited for you.
* You can use "chat" to write private note to the instructor.
* You cans use "chari" to ask questions and write comments.
* Don't share your screen during this lecture.

Test Poll1

粦 Have you read the syllabus on the course website?
A. Yes. B. No.

Test Poll2

粦 Have you done the survey on the course Compass website?
A. Yes. B. No.

Test Poll3

粦 Have you watched the welcome video in the Orientation module?
A. Yes. B. No.

Objectives

䊩 Welcome／Orientation

粦 Big picture of the contents

絭 Lecture 1 －Data Visualization \＆ Summary（I）

Vision

粦 Passion for learning

䊩 Compassion for each other

How to succeed in this course?

类 Factors that will hinder you from success
粦 Factors that will help you succeed

Avoid these that could cause failure

粦 Academic integrity infraction－by all means！
粦 Missing homeworks or project
䊩 Late／Poor homeworks or project
䊩 Insufficient viewing of the contents
粦 Poor time management
粦 Too many challenging classes at the same time
粦 Not motivated／not interested in the topic

Factors that will help you succeed

粦 Try your best to be engaged／motivated，learn from the course and from each other

粦 Be Active in class participation
粦 Do as much practice as possible，not just the homeworks and project．

粦 Read the textbook and other recommended books．
粪 Clear your doubts／misconceptions asap（every lecture／discussion is important）

Interactions are important！

粦 Try to go to office hours as much as possible

粦 Try to meet or talk to the instructor as least once personally

粦 You are encouraged to join the team work

粦 Show compassion via community service

We will try to customize for students in international locations for team work粦 Please answer this poll:

Are you in an international location that has more than 3hrs time difference from Central USA?
A. Yes
B. No

Graded Team work
tho many ways to arrange "covid"?

$$
5 \times 4 \times 3 \times 2+1=120
$$

$$
5 \text { ! }
$$

Yow grading decision, reason

Deduction	$2 f$
0	120
-1	60
-2	other

Team menoleses: Les der $x x x$

Extra Points

Quizzes

Course materials

Compass Course Site
Find it through Compass for CS361 Fall 2020 AL1

米 Public Website
https://courses.engr.illinois.edu/cs361/ fa2020/

Lecture videos and ClassTranscribe

Lecture and discussion will be recorded and accessible at https://mediaspace.illinois.edu/

ClassTranscribe provides transcripts for these videos
https://classtranscribe.illinois.edu/home
粦 The specific links are all on Compass

Our Staff

Instructor: Hongye Liu
Teaching Assistants: Enyi Jiang (ADA)

> Anay Pattanaik (ADB), Nathan (ADC, ADD), Aditya Karan (ADE), Jinglin Chen (ADF),

Office hours are yet to be finalized.

Our Staff (II)

Course Assistants: Ajay Fewell, Brian Yang, Chenhui Zhang, Muhammed Imran, Vishesh Gupta, Yuxin Wang, and Zihan Xu.

What are the contents？

粦 Probability and Statistics in action
 Randomness畨 What does this course teach？

Textbook：Forsyth，D．A．＂Probability and Statistics for Computer Science，＂Springer（2018）

粦 Why are there 4 sections？How are they related？

This field really started with gaming

类 We are familiar with flipping a coin or throwing a dice, the result is uncertain!

Head Or Tail?

Which side is front?

Life is uncertain so aim for longterm average

粦 We repeat a lot of experiments and see if there is regularity

Which side is front?

Throwing a lot of "coins" for many times in one touch

䊩 Galton board, the Bead Machine
https://www.youtube.com/watch?
v=Kq7e6cj2nDw

Simulation of random draw of a picture on computer

粦 It's the same as

throwing a 4-sided die.

Probability and Statistics Experiment in action

Mreak out !!

What does this course teach？

Describing Datasets
Summary \＆visualization

粦 Probability Chances in numbers米 Inference－Statistical Inference Caok
粦 Tools－Machine Learning tools

Describing datasets (Summary \& visualization)

Descriptive \& Graphical

Figure 2-4. Monthly normal mean temperatures for four locations in the US. Data source: NOAA.

Summarization of 4 locations' annual mean temperature by month

Probability

粪 Mathematical

Romeo and Juliet have a date
Each arrives with a delay btw 0 and 1 hour. The first to arrive leaves after 1/4 hour. All pairs of delays are equally likely.

What's the probability that they will meet?

Probability

粪 Mathematical

How many slots are empty on average for a simple hashing?
(N items.
K slots,

Inference

粦 Analytical

Tools (Machine learning)

䊩 Algorithmical

Different human cells

High-dimensional or complex shaped data sets need tools! Humans are limited in
2-3D.
Machine learning is Highly desired!
Often depends on Statistics.

Why these 4 sections？

类 Summary \＆visualization Graphical

粦 Probability Mathematical

粦 Inference－Statistical Inference Analytical
粦 Tools－Machine Learning tools Algorithmical

Why these 4 sections?

粦 The common thread is Data.
粦 We are doing computer science and so
are like
these
yellow
fish

What is special of Data? For Data?
Context t

Why these 4 sections?

粦 Real world data is often high dimensional and complex
These 4 parts of knowledge or techniques are inseparably/ organically connected in many real world applications.

Not in

$$
p: \text { ec meal fashion }
$$

What do we emphasize?

* Mathematical principle not any

Mathematical principle using tools Critical thinking ask questions粦 Working with real world data

LECTURE 1

Q. What do you feel about it when we speak of data visualization?

Example 1: Black hole

Constructed image using data collected from many different telescopes' view of the same object

This project received a 3million-dollar award

$$
\text { invisible } \rightarrow \text { visible }
$$

more insights a data

Example 2: Four seasons by Vivaldi

Pitch is shown by the distance from center; Length of the note is the size of dot Instrument is shown by the color

https://medium.com/future-today/off-the-staff-an-experiment-in-visualizing-notes-from-music-scores-58f6ee9f0cef

Spring

Autumn

Summer

Winter

Example 3: Word cloud

Frequency of words of a document in novel visual presentation

Example 4: GIS map

Flint Drinking Water Tests for Lead - January 2016

Map generated by Michigan Radlo's Mark Brush with help
from Ellas Brush, Cass Adair, and SmartyStreets
(C) OpenStreetMap contributors, (C) CARTO

Lecture I: Data Visualization
 \&Summary

Datasets $\{x\}$ - a set of N items X_{i},

 $\mathrm{i}=1 \ldots . . \mathrm{N}$, each of which is a tuple An crackle Proteins

Cell ID	CD45	CD3e	CD19	CD11b	Ki67
1	7.10543765	1.99490875	2.13073358	7.82894178	2.57289058
2	6.5957055	4.65342077	1.62918585	0.88137359	0.88137359
3	6.81991147	1.76259579	4.63429706	2.74452653	0.88137359
4	6.90112651	1.41502227	4.54593607	0.88137359	0.88137359
5	6.75571436	2.87597714	2.18671075	6.72464322	0.91192661
6	7.39538689	2.55285118	4.55845203	1.57273629	0.88137359
7	6.50181654	0.9030504	0.88137359	6.55459538	1.61883699
8	6.60986569	2.1753298	1.52779681	6.44086205	1.5347653
9	6.97651408	2.38246511	1.90249637	3.41580053	1.85303806
10	7.14397512	3.36924119	9.23325502	4.79035059	0.88137359

Each row is a tuple

Lecture I: Data Visualization \&Summary

Convention: columns are the features; the number of features is dimension.

Proteins

Cell ID	CD45	CD3e	CD19	CD11b	Ki67
1	7.10543765	1.99490875	2.13073358	7.82894178	2.57289058
2	6.5957055	4.65342077	1.62918585	0.88137359	0.88137359
3	6.81991147	1.76259579	4.63429706	2.74452653	0.88137359
4	6.90112651	1.41502227	4.54593607	0.88137359	0.88137359
5	6.75571436	2.87597714	2.18671075	6.72464322	0.91192661
6	7.39538689	2.55285118	4.55845203	1.57273629	0.88137359
7	6.50181654	0.9030504	0.88137359	6.55459538	1.61883699
8	6.60986569	2.1753298	1.52779681	6.44086205	1.5347653
9	6.97651408	2.38246511	1.90249637	3.41580053	1.85303806
10	7.14397512	3.36924119	9.23325502	4.79035059	0.88137359

Each row is a tuple with dimension $=5$

Data types
Categorical
posive neystive
Ordinal \downarrow Ratings ABrades

Continuous
temp. height

Data types

Categorical
Smoker or non-Smoker, Female or Male etc.
Ordinal
Not satisfied, satisfied, very satisfied
Continuous (any real number within a range)
Temperature

Q. Which of the following data is not categorical?

A. Number of enrolled students in a class
B. Weight of apples in a grocery store
C. Instruments played by an orchestra
D. Type of chemical reagents in a lab
E. $A \& B$

Simple Visualization of Data

General principles
来 Bar chart
粦 Histogram
粦 Conditional histogram

Simple Visualization of Data

General principles
Must not mislead or distort;
Aesthetically pleasing;
Clear, Attractive, Convincing;
Show message/significance.
ヘヘ

Simple Visualization of Data

Count of cars by Cylinder

Bar chart

A set of bars that are organized by categorical or ordinal feature

Data: "mtcars"

An example of good, ugly, bad, wrong

Dr. Wilke
illustrated the difference between good, ugly, bad and wrong visualization

Figure 1-1. Examples of ugly, bad, and wrong
C. Wilke "Fundamentals of Data Visualization"

Q: Is this a good bar chart?

How much do you expect this course to relate to your future career?
Answered: 11 Skipped: 0 First: 8/23/2019 Zoom: 8/20/2019 to 8/26/2019

How about using a color scale

Q1 (by day)

How much do you expect this course to relate to your future career?

Answered: 11 Skipped: 0 First: 8/23/2019 Zoom: 8/20/2019 to 8/26/2019

Visualizing Data with Histogram

粦 Histogram
A set of bars that are organized by bins that contain numerical data
(discrete or continuous)

Data: "iris"

Visualizing Data with Histogram (II)

䊩 Conditional

 histogramHistogram
generated by
subsets of the data

Data: "iris"

Species \square setosa \square versicolor \square virginica

Visualizing Data with Histogram (III)

Conditional

 histogramData: Combined Score (HWs, Prj and Exams) grouped by students with participation or not full in CS361 fall 2019

Additional References

Charles M. Grinstead and J. Laurie Snell "Introduction to Probability"

Morris H. Degroot and Mark J. Schervish "Probability and Statistics"

See you next time

See you!

