Probability and Statistics for Computer Science

"The eternal mystery of the world is its comprehensibility ... The fact that it is comprehensible is a miracle." – Albert Einstein

Credit: wikipedia

Hongye Liu, Teaching Assistant Prof, Course CS361, UIUC, 8.25.2020

* Upon entry speakers of the students are muted for the quality of sound in zoom # Mease "raise up hand" to speake, the audio will be unmitted for you. * You can use "char" to write private note to the instructor. * You can use "chut to ask juistions and write comments. * Don't share your screen during chis lecture.

Test Poll1

Have you read the syllabus on the course website?

A. Yes. B. No.

Test Poll2

Have you done the survey on the course Compass website?

A. Yes. B. No.

Test Poll3

Have you watched the welcome video in the Orientation module?

A. Yes. B. No.

Objectives

Welcome/Orientation

Big picture of the contents

* Lecture 1 - Data Visualization & Summary (I)

Vision

Passion for learning

* Compassion for each other

How to succeed in this course?

- **Factors that will hinder you from success**
- # Factors that will help you succeed

Avoid these that could cause failure

- * Academic integrity infraction by all means!
- Missing homeworks or project
- # Late/Poor homeworks or project
- Insufficient viewing of the contents
- * Poor time management
- * Too many challenging classes at the same time
- * Not motivated/not interested in the topic

Factors that will help you succeed

- Try your best to be engaged/motivated, learn from the course and from each other
- Be Active in class participation
- Do as much practice as possible, not just the homeworks and project.
- Read the textbook and other recommended books.
- Clear your doubts/misconceptions asap (every lecture/discussion is important)

Interactions are important!

- * Try to go to office hours as much as possible
- Try to meet or talk to the instructor as least once personally
- % You are encouraged to join the team work
- Show compassion via community service

We will try to customize for students in international locations for team work

Please answer this poll:

Are you in an international location that has more than 3hrs time difference from Central USA?

A. Yes

B. No

Graded Team work

COVID? arrange rang ways Lec:s: Your granding fear 6 miles he "Soud Write 3:

Extra Points

Quizzes

Course materials

Compass Course Site Find it through Compass for CS361 Fall 2020 AL1

Public Website

https://courses.engr.illinois.edu/cs361/ fa2020/

Lecture videos and ClassTranscribe

- * Lecture and discussion will be recorded and accessible at https://mediaspace.illinois.edu/
- ClassTranscribe provides transcripts for these videos

https://classtranscribe.illinois.edu/home

* The specific links are all on Compass

Our Staff

Instructor: Hongye Liu Teaching Assistants: Enyi Jiang (ADA) Anay Pattanaik (ADB), Nathan (ADC, ADD), Aditya Karan (ADE), Jinglin Chen (ADF),

Office hours are yet to be finalized.

Our Staff (II)

Course Assistants: Ajay Fewell, Brian Yang, Chenhui Zhang, Muhammed Imran, Vishesh Gupta, Yuxin Wang, and Zihan Xu.

What are the contents?

* Probability and Statistics in action *Randomuss** What does this course teach?

Textbook: Forsyth, D. A. "Probability and Statistics for Computer Science," Springer (2018)

Why are there 4 sections? How are they related?

This field really started with gaming

We are familiar with flipping a coin or throwing a dice, the result is uncertain!

Head Or Tail?

Which side is front?

Life is uncertain so aim for longterm average

We repeat a lot of experiments and see if there is regularity

Head Or Tail?

Which side is front?

Throwing a lot of "coins" for many times in one touch

* Galton board, the Bead Machine

https://www.youtube.com/watch? v=Kq7e6cj2nDw

Simulation of random draw of a picture on computer

It's the same as throwing a 4-sided die.

Probability and Statistics Experiment in action

Break ant !!

What does this course teach?

Describing datasets (Summary & visualization)

Figure 2-4. Monthly normal mean temperatures for four locations in the US. Data source: NOAA.

Summarization of 4 locations' annual mean temperature by month

Probability

Mathematical

Romeo and Juliet have a date

Each arrives with a delay btw 0 and 1 hour. The first to arrive leaves after 1/4 hour. All pairs of delays are equally likely.

What's the probability that they will meet?

Probability

Mathematical

How many slots are empty on average for a simple hashing?

(N items, K slots)

Inference

Tools (Machine learning)

Algorithmical

High-dimensional or complex shaped data sets need tools! Humans are limited in 2-3D. Machine learning is Highly desired! Often depends on Statistics.

Why these 4 sections?

- Summary & visualization
 Graphical
- Probability
 Mathematical
- # Inference Statistical Inference
 Analytical

* Tools – Machine Learning tools
Algorithmical

Why these 4 sections?

* The common thread is Data.

We are doing computer science and so

are like these yellow fish

Data Science + Comp. Science

Aathematics

Statistics

What is special of Data? For Data?

Contex t

Why these 4 sections?

- Real world data is often high dimensional and complex
- * These 4 parts of knowledge or techniques are inseparably/ organically connected in many real world applications.

ice m

tjust

LECTURE 1

Q. What do you feel about it when we speak of data visualization?

Example 1: Black hole

Constructed image using data collected from many different telescopes' view of the same object

This project received a 3million-dollar award

Credit: NASA

Example 2: Four seasons by Vivaldi

Pitch is shown by the distance from center;
Length of the note is the size of dot
Instrument is shown by the color

https://medium.com/future-today/off-the-staff-an-experiment-invisualizing-notes-from-music-scores-58f6ee9f0cef

Example 3: Word cloud

Frequency of words of a document in novel visual presentation

Example 4 GIS map

Color scaled dots show the lead level in water in an area in Michigan

Lecture I: Data Visualization & Summary

Cells

Datasets {x} – a set of N items x_i, i=1...N, each of which is a tuple An crame

		•	
μ	rn.	Γρι	ins

Cell ID	CD45	CD3e	CD19	CD11b	Ki67
1	7.10543765	1.99490875	2.13073358	7.82894178	2.57289058
2	6.5957055	4.65342077	1.62918585	0.88137359	0.88137359
3	6.81991147	1.76259579	4.63429706	2.74452653	0.88137359
4	6.90112651	1.41502227	4.54593607	0.88137359	0.88137359
5	6.75571436	2.87597714	2.18671075	6.72464322	0.91192661
6	7.39538689	2.55285118	4.55845203	1.57273629	0.88137359
7	6.50181654	0.9030504	0.88137359	6.55459538	1.61883699
8	6.60986569	2.1753298	1.52779681	6.44086205	1.5347653
9	6.97651408	2.38246511	1.90249637	3.41580053	1.85303806
10	7.14397512	3.36924119	9.23325502	4.79035059	0.88137359

Each row is a tuple

Lecture I: Data Visualization & Summary

Celle

* Convention: columns are the *features*; the number of features is *dimension*.

Proteins>							
Cell ID	CD45	CD3e	CD19	CD11b	Ki67		
1	7.10543765	1.99490875	2.13073358	7.82894178	2.57289058		
2	6.5957055	4.65342077	1.62918585	0.88137359	0.88137359		
3	6.81991147	1.76259579	4.63429706	2.74452653	0.88137359		
4	6.90112651	1.41502227	4.54593607	0.88137359	0.88137359		
5	6.75571436	2.87597714	2.18671075	6.72464322	0.91192661		
6	7.39538689	2.55285118	4.55845203	1.57273629	0.88137359		
7	6.50181654	0.9030504	0.88137359	6.55459538	1.61883699		
8	6.60986569	2.1753298	1.52779681	6.44086205	1.5347653		
9	6.97651408	2.38246511	1.90249637	3.41580053	1.85303806		
10	7.14397512	3.36924119	9.23325502	4.79035059	0.88137359		

Each row is a tuple with dimension =5

Data types

* Continuous temp. height

Data types

Categorical

Smoker or non-Smoker, Female or Male etc.

Ordinal

Not satisfied, satisfied, very satisfied

* Continuous (any real number within a range) Temperature

Q. Which of the following data is not categorical?

A. Weight of enrolled students in a class
B. Weight of apples in a grocery store
C. Instruments played by an orchestra
D. Type of chemical reagents in a lab
E. A & B

Simple Visualization of Data

- # General principles
- # Bar chart
- # Histogram
- * Conditional histogram

Simple Visualization of Data

General principles

Must not mislead or distort;

Aesthetically pleasing;

Clear, Attractive, Convincing;

Show message/significance.

Simple Visualization of Data

An example of good, ugly, bad, wrong

Dr. Wilke illustrated the difference between good, ugly, bad and wrong visualization

Figure 1-1. Examples of ugly, bad, and wrong

C. Wilke "Fundamentals of Data Visualization"

Q: Is this a good bar chart?

How about using a color scale

Visualizing Data with Histogram

Histogram

A set of bars that are organized by bins that contain numerical data (discrete or continuous)

Data: "iris"

Visualizing Data with Histogram (II)

Conditional

histogram

Histogram generated by subsets of the data

Visualizing Data with Histogram (III)

Additional References

- * Charles M. Grinstead and J. Laurie Snell "Introduction to Probability"
- Morris H. Degroot and Mark J. Schervish "Probability and Statistics"

See you next time

See you!

