Probability and Statistics for Computer Science

> "The eternal mystery of the world is its comprehensibility
> ... The fact that it is
> comprehensible is a miracle."
> - Albert Einstein

Credit: wikipedia

How to Zoom in the lectures

米 Students＇Video and Audio will be both muted during the lecture unless permitted by the instructor for questions．

粦 You can use the chatbox to ask questions or write comments．

米 Questions will be collected by the assistant for answers or summary．

Test Poll1

粦 Have you read the syllabus on the course website?
A. Yes. B. No.

Test Poll2

粦 Have you done the survey on the course Compass website?
A. Yes. B. No.

Test Poll3

粦 Have you watched the welcome video in the Orientation module?
A. Yes. B. No.

Objectives

䊩 Welcome／Orientation

粦 Big picture of the contents

絭 Lecture 1 －Data Visualization \＆ Summary（I）

Vision

粦 Passion for learning

䊩 Compassion for each other

How to succeed in this course?

类 Factors that will hinder you from success
粦 Factors that will help you succeed

Avoid these that could cause failure

粦 Academic integrity infraction－by all means！
粦 Missing homeworks or project
䊩 Late／Poor homeworks or project
䊩 Insufficient viewing of the contents
粦 Poor time management
粦 Too many challenging classes at the same time
粦 Not motivated／not interested in the topic

Factors that will help you succeed

粦 Try your best to be engaged／motivated，learn from the course and from each other

粦 Be Active in class participation
粦 Do as much practice as possible，not just the homeworks and project．

粦 Read the textbook and other recommended books．
粪 Clear your doubts／misconceptions asap（every lecture／discussion is important）

Interactions are important！

粦 Try to go to office hours as much as possible

粦 Try to meet or talk to the instructor as least once personally

粦 You are encouraged to join the team work

粦 Show compassion via community service

We will try to customize for students in international locations for team work粦 Please answer this poll:

Are you in an international location that has more than 3hrs time difference from Central USA?
A. Yes
B. No

Graded Team work

Extra Points

Quizzes

Course materials

Compass Course Site
Find it through Compass for CS361 Fall 2020 AL1

米 Public Website
https://courses.engr.illinois.edu/cs361/ fa2020/

What are the contents？

粦 Probability and Statistics in action

䅈 What does this course teach？Textbook：Forsyth，D．A．＂Probability and Statistics for Computer Science，＂Springer（2018）

粦 Why are there 4 sections？How are they related？

This field really started with gaming

类 We are familiar with flipping a coin or throwing a dice, the result is uncertain!

Head Or Tail?

Which side is front?

Life is uncertain so aim for longterm average

粦 We repeat a lot of experiments and see if there is regularity

Which side is front?

Throwing a lot of "coins" for many times in one touch

䊩 Galton board, the Bead Machine
https://www.youtube.com/watch?
v=Kq7e6cj2nDw

Probability and Statistics Experiment in action

Simulation of random draw of a picture on computer

粦 It's the same as

throwing a 4-sided die.

What does this course teach？

Describing Datasets

Summary \＆visualization

粪 Probability

粦 Inference－Statistical Inference
粦 Tools－Machine Learning tools

Describing datasets (Summary \& visualization)

Descriptive \& Graphical

Figure 2-4. Monthly normal mean temperatures for four locations in the US. Data source: NOAA.

Summarization of 4 locations' annual mean temperature by month

Probability

粪 Mathematical

Romeo and Juliet have a date
Each arrives with a delay btw 0 and 1 hour. The first to arrive leaves after 1/4 hour. All pairs of delays are equally likely.

What's the probability that they will meet?

Probability

粪 Mathematical

How many slots are empty on average for a simple hashing table?

Inference

粦 Analytical

Tools (Machine learning)

䊩 Algorithmical

Different human cells

High-dimensional or complex shaped data sets need tools! Humans are limited in 2-3D.
Machine learning is Highly desired! Often depends on Statistics.

Why these 4 sections？

Summary \＆visualization Graphical
粦 Probability
Mathematical
粦 Inference－Statistical Inference Analytical
粦 Tools－Machine Learning tools Algorithmical

Why these 4 sections?

粦 The common thread is Data.
粦 We are doing computer science and so
are like
these
yellow
fish

What is special of Data? For Data?

Why these 4 sections?

粦 Real world data is often high dimensional and complex

䊩 These 4 parts of knowledge or techniques are inseparably/ organically connected in many real world applications.

What do we emphasize？

粦 Mathematical principle

粦 Critical thinking
粦 Working with real world data

LECTURE 1

Q. What do you feel about it when we speak of data visualization?

Example 1: Black hole

Constructed image using data collected from many different telescopes' view of the same object

This project received a 3million-dollar award

Example 2: Four seasons by Vivaldi

Pitch is shown by the distance from center; Length of the note is the size of dot Instrument is shown by the color

https://medium.com/future-today/off-the-staff-an-experiment-in-visualizing-notes-from-music-scores-58f6ee9f0cef

Example 3: Word cloud

Frequency of words of a document in novel visual presentation

Example 4: GIS map

Flint Drinking Water Tests for Lead - January 2016

Map generated by Mchigan Rado's Mark Brush with help from Ellas Brush, Cass Adair, and SmartyStreets

Lecture I: Data Visualization
 \&Summary

Datasets $\{x\}$ - a set of N items X_{i}, $\mathrm{i}=1$...N, each of which is a tuple Proteins

Cell ID	CD45	CD3e	CD19	CD11b	Ki67
1	7.10543765	1.99490875	2.13073358	7.82894178	2.57289058
2	6.5957055	4.65342077	1.62918585	0.88137359	0.88137359
3	6.81991147	1.76259579	4.63429706	2.74452653	0.88137359
4	6.90112651	1.41502227	4.54593607	0.88137359	0.88137359
5	6.75571436	2.87597714	2.18671075	6.72464322	0.91192661
6	7.39538689	2.55285118	4.55845203	1.57273629	0.88137359
7	6.50181654	0.9030504	0.88137359	6.55459538	1.61883699
8	6.60986569	2.1753298	1.52779681	6.44086205	1.5347653
9	6.97651408	2.38246511	1.90249637	3.41580053	1.85303806
10	7.14397512	3.36924119	9.23325502	4.79035059	0.88137359

Each row is a tuple

Lecture I: Data Visualization \&Summary

Convention: columns are the features; the number of features is dimension.

Proteins

Cell ID	CD45	CD3e	CD19	CD11b	Ki67
1	7.10543765	1.99490875	2.13073358	7.82894178	2.57289058
2	6.5957055	4.65342077	1.62918585	0.88137359	0.88137359
3	6.81991147	1.76259579	4.63429706	2.74452653	0.88137359
4	6.90112651	1.41502227	4.54593607	0.88137359	0.88137359
5	6.75571436	2.87597714	2.18671075	6.72464322	0.91192661
6	7.39538689	2.55285118	4.55845203	1.57273629	0.88137359
7	6.50181654	0.9030504	0.88137359	6.55459538	1.61883699
8	6.60986569	2.1753298	1.52779681	6.44086205	1.5347653
9	6.97651408	2.38246511	1.90249637	3.41580053	1.85303806
10	7.14397512	3.36924119	9.23325502	4.79035059	0.88137359

Each row is a tuple with dimension $=5$

Data types

粦 Categorical

粦 Ordinal

粦 Continuous

Q. Which of the following data is not categorical?

A. Number of enrolled students in a class
B. Weight of apples in a grocery store
C. Instruments played by an orchestra
D. Type of chemical reagents in a lab
E. A \& B

Simple Visualization of Data

General principles
来 Bar chart
粦 Histogram
粦 Conditional histogram

Simple Visualization of Data

General principles
Must not mislead or distort;
Aesthetically pleasing;
Clear, Attractive, Convincing;
Show message/significance.

Simple Visualization of Data

Count of cars by Cylinder

Bar chart

A set of bars that are organized by categorical or ordinal feature

Data: "mtcars"

An example of good, ugly, bad, wrong

Dr. Wilke

illustrated the difference between good, ugly, bad and wrong visualization

Figure 1-1. Examples of ugly, bad, and wrong
C. Wilke "Fundamentals of Data Visualization"

Q: Is this a good bar chart?

Q1 (by day)
How much do you expect this course to relate to your future career?
Answered: 11 Skipped: 0 First: 8/23/2019 Zoom: 8/20/2019 to 8/26/2019
A. Yes
B. No

How about using a color scale

Q1 (by day)

How much do you expect this course to relate to your future career?

Answered: 11 Skipped: 0 First: 8/23/2019 Zoom: 8/20/2019 to 8/26/2019

Visualizing Data with Histogram

粦 Histogram

A set of bars that are organized by bins that contains numerical data
(discrete or continuous)

Visualizing Data with Histogram (II)

粦 Conditional

 histogramHistogram
generated by
subsets of the data

Data: "iris"

Species \square setosa \square versicolor \square virginica

Visualizing Data with Histogram (III)

Conditional

 histogram

Summarizing 1D continuous data

Location Parameters

粦 Mean
Median
Mode
Scale parameters

Standard deviation and variance
Interquartile range

Summarizing 1D continuous data

Mean

$$
\operatorname{mean}\left(x_{i}\right)=\frac{1}{N} \sum_{i=1}^{N} x_{i}
$$

It's the centroid of the data geometrically, by identifying the data set at that point, you find the center of balance.

Properties of the mean

Scaling data scales the mean

$$
\operatorname{mean}\left(\left\{k \cdot x_{i}\right\}\right)=k \cdot \operatorname{mean}\left(\left\{x_{i}\right\}\right)
$$

粦 Translating the data translates the mean

$$
\operatorname{mean}\left(\left\{x_{i}+c\right\}\right)=\operatorname{mean}\left(\left\{x_{i}\right\}\right)+c
$$

Less obvious properties of the mean

The signed distances from the mean sum to 0

$$
\sum_{i=1}^{N}\left(x_{i}-\operatorname{mean}\left(\left\{x_{i}\right\}\right)\right)=0
$$

The mean minimizes the sum of the squared distance from the mean

$$
\underset{\mu}{\operatorname{argmin}} \sum_{i=1}^{N}\left(x_{i}-\mu\right)^{2}=\operatorname{mean}\left(\left\{x_{i}\right\}\right)
$$

Os:

粦 What is the answer for
mean(mean $\left.\left(\left\{\mathrm{x}_{\mathrm{i}}\right\}\right)\right)$?
A. mean $\left(\left\{x_{i}\right\}\right) \quad$ B. unsure $C .0$

Recall in which application did we compare the means of experiments?

Standard Deviation

类 The standard deviation

$$
\operatorname{std}\left(\left\{x_{i}\right\}\right)=\sqrt{\frac{1}{N} \sum_{i=1}^{N}\left(x_{i}-\operatorname{mean}\left(\left\{x_{i}\right\}\right)\right)^{2}}
$$

$$
=\sqrt{\left.\operatorname{mean}\left(\left\{x_{i}-\operatorname{mean}\left(\left\{x_{i}\right\}\right)\right)^{2}\right\}\right)}
$$

Can a standard deviation of a dataset be -1?
A. YES
B. NO

Properties of the standard deviation

Scaling data scales the standard deviation

$$
\operatorname{std}\left(\left\{k \cdot x_{i}\right\}\right)=|k| \cdot \operatorname{std}\left(\left\{x_{i}\right\}\right)
$$

䊩 Translating the data does NOT change the standard deviation

$$
\operatorname{std}\left(\left\{x_{i}+c\right\}\right)=\operatorname{std}\left(\left\{x_{i}\right\}\right)
$$

Standard deviation: Chebyshev's inequality

At most $\frac{N}{k^{2}}$ items are k standard deviations (σ) away from the mean

粦 Rough justification: Assume mean $=0$

Question:

Assignments

粦 Register for Compass and Gradescope
Finish the orientation quiz
Submit HWO to Gradescope to test it
粦 Start week1 module on Compass

Additional References

Charles M. Grinstead and J. Laurie Snell "Introduction to Probability"

Morris H. Degroot and Mark J. Schervish "Probability and Statistics"

