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“…many problems are naturally 
classification problems”---Prof. 
Forsyth
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Last time

✺ Review of Covariance matrix

✺ Dimension Reduction

✺ Principal Component Analysis

✺ Examples of PCA



Objectives

✺ Principal Component Analysis (II)

✺ Introduction to classification



Step	2:	Rotate	so	that	the	new	data	has	
diagonalized	covariance	matrix	

Credit:	Prof.	Forsyth	
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Step	3:	Drop	component(s)	

Credit:	Prof.	Forsyth	
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PCA	an	example	
�  Step	1.		

�  Step	2.		

�  Step	3.	

D =

[

3 −4 7 1 −4 −3

7 −6 8 −1 −1 −7

]

⇒ mean(D) =

[

0
0

]

m =

[

3 −4 7 1 −4 −3

7 −6 8 −1 −1 −7

]

Covmat(m) =

[

20 25
25 40

]

λ1 ! 57; λ2 ! 3⇒

U
T
=

[

0.5606288 0.8280672

−0.8280672 0.5606288

]

⇒ r = U
T
m =

[

7.478 −7.211 10.549 −0.267 −3.071 −7.478

1.440 −0.052 −1.311 −1.389 2.752 −1.440

]

⇒ U =

[

0.5606288 −0.8280672

0.8280672 0.5606288

]

⇒ p =

[

7.478 −7.211 10.549 −0.267 −3.071 −7.478

0 0 0 0 0 0

]

AV = Av

lA-a°
✗=p? it✓ .



The Mean square error of the projection

✺ The mean square error is the sum of the 
smallest d-s eigenvalues in Λ
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The Mean square error of the projection

✺ The mean square error is the sum of the 
smallest d-s eigenvalues in Λ

1

N − 1

∑

i

‖ri − pi‖
2 =

1

N − 1

∑

i

d∑

j=s+1

(r(j)i )2 =
d∑

j=s+1

∑

i

1

N − 1
(r(j)i )2

=
d∑

j=s+1

var(r(j)i )



The Mean square error of the projection

✺ The mean square error is the sum of the 
smallest d-s eigenvalues in Λ
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Examples: Immune Cell Data
✺ There are 38816 white 

blood immune cells from 
a mouse sample

✺ Each immune cell has 
40+ 
features/components

✺ Four features are used as 
illustration.

✺ There are at least 3 cell 
types involved

T cells

B cells

Natural killer cells



Scatter matrix of Immune Cells
✺ There are 38816 white 

blood immune cells from 
a mouse sample

✺ Each immune cell has 
40+ 
features/components

✺ Four features are used 
for the illustration.

✺ There are at least 3 cell 
types involved

Dark red: T cells

Brown: B cells

Blue: NK cells

Cyan: other small population



PCA of Immune Cells 
> res1

$values

[1] 4.7642829 2.1486896 1.3730662 

0.4968255

$vectors

[,1]        [,2]       [,3]       [,4]

[1,]  0.2476698  0.00801294 -0.6822740  

0.6878210

[2,]  0.3389872 -0.72010997 -0.3691532 -

0.4798492

[3,] -0.8298232  0.01550840 -0.5156117 -

0.2128324

[4,]  0.3676152  0.69364033 -0.3638306 -

0.5013477

Eigenvalues

Eigenvectors



New coordinates in PCA
> head(new_coord_t)

PC1        PC2         PC3         PC4

1  3.6739228  0.1127233 -1.32744266  

0.61005994

2 -0.9255199 -2.1016573 -0.80762548 -

0.29104900

3  3.1150230  0.3526459 -0.83994064  

0.46074556

4  3.1801414  0.5679807 -0.07097689  

0.01539266

5  2.7972723 -0.1073053 -0.39168826 -

0.03981390

6  3.3012610  0.1979659  0.17965423  

0.45373049CD3e  -0.3676152  0.69364033 -

0.3638306 -0.5013477 [4,]  0.3676152  

0.69364033 -0.3638306 -0.5013477iwaoBoafEoqqqG



What is the percentage of variance that 
PC1 covers?

Given the eigenvalues: 4.7642829 2.1486896 
1.3730662 0.4968255, what is the 
percentage that PC1 covers?

A. 54%
B. 16%
C. 25%

var ( fi # futfzefy)

I var (fi ) = I Ri
☐
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PCA	an	example	
�  Step	1.		

�  Step	2.		

�  Step	3.	

D =

[

3 −4 7 1 −4 −3

7 −6 8 −1 −1 −7

]

⇒ mean(D) =

[

0
0

]

m =

[

3 −4 7 1 −4 −3

7 −6 8 −1 −1 −7

]

Covmat(m) =

[

20 25
25 40

]

λ1 ! 57; λ2 ! 3⇒

U
T
=

[

0.5606288 0.8280672

−0.8280672 0.5606288

]

⇒ r = U
T
m =

[

7.478 −7.211 10.549 −0.267 −3.071 −7.478

1.440 −0.052 −1.311 −1.389 2.752 −1.440

]

⇒ U =

[

0.5606288 −0.8280672

0.8280672 0.5606288

]

⇒ p =

[

7.478 −7.211 10.549 −0.267 −3.071 −7.478

0 0 0 0 0 0

]

AV = AV
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More	features	used	
�  There	are	38816	white	

blood	immune	cells	from	
a	mouse	sample	

�  Each	immune	cell	has	42	
features/components	

�  There	are	at	least	3	cell	
types	involved	

T	cells	

B	cells	

Natural	killer	cells	

42×38816



Eigenvalues	of	the	covariance	matrix	



Large	variance	doesn’t	mean	important	
pattern	

Principal	
component	1	
is	just	cell	
length	



Principal	component	2	and	3	show	
different	cell	types	



Principal	component	4	is	not	very	
informative	



Principal	component	5	is	interesting	

ITcells

I



Principal	component	6	is	interesting	

NK

8



Scaling	the	data	or	not	in	PCA	

�  Some4mes	we	need	to	scale	the	data	for	each	feature	
have	very	different	value	range.		

�  Aper	scaling	the	eigenvalues	may	change	significantly.	

�  Data	needs	to	be	inves4gated	case	by	case	
)



Eigenvalues	of	the	covariance	matrix	
(scaled	data)	

Eigenvalues	
do	not	drop	
off	very	
quickly	



Principal	component	1	&	2	(scaled	data)	

Even	the	first	2	
PCs	don’t	separate	
the	different	types	
of	cell	very	well	



Q.	Which	of	these	are	true?	

A.	Feature	selec4on	should	be	
conducted	with	domain	knowledge	
B.	Important	feature	may	not	show	big	
variance	
C.	Scaling	doesn’t	change	eigenvalues	of	
covariance	matrix	
D.	A	&	B	

✓

✓

✗

☐



Reconstructing	the	data	

�  Given	the	projected	data											and	mean({x}),	we	can	
approximately	reconstruct	the	original	data		

�  Each	reconstructed	data	item							is	a	linear	
combina4on	of	the	columns	of						weighted	by		

�  The	columns	of						are	the	normalized	eigenvectors	of	
the	Covmat({x})	and	are	called	the	principal	
components	of	the	data	{x}		

pd×n

D̂i

U

piU

D̂ = Up+mean({x})
V5

.

.

.

-

-

-
-
-

,

m= D-mean ax} )
,

'

T
(r=vTm_,

'



End-to-end	mean	square	error	

�  Each								becomes						by	transla4on	and	rota4on	

�  Each							becomes							by	the	opposite	rota4on	and	
transla4on	

�  Therefore	the	end	to	end	mean	square	error	is:	

�  																								are	the	smallest	d-s	eigenvalues	of	the	
Covmat({x})	
λs+1, ...,λd
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PCA:	Human		face	data		

�  The	dataset	consists	of	213	images	

�  Each	image	is	grayscale	and	has	64	by	64	resolu4on	

�  We	can	treat	each	image	as	a	vector	with	dimension	
d	=	4096	

Credit:	Prof.	Forsyth	

of faces

① = 64×64

ing'Iti

n = 213
• I



How	quickly	the	eigenvalues	decrease?	

Credit:	Prof.	Forsyth	



What	do	the	principal	components	of	the	
images	look	like?	

Mean	image	

The	first	16	
principal	
components	
arranged	into	
images	

Credit:	Prof.	Forsyth	

4096×1



Reconstruction	of	the	image	

The	original	

1	Mean	 5	 10	 20	 50	 100	

1st	row	show	the	reconstruc4ons	using	
some	number	of	principal	components	
2nd	row	show	the	corresponding	errors	

Credit:	Prof.	Forsyth	

mean { x} )

04096%213
1



Q.	Which	are	true?	

A	.	PCA	allows	us	to	project	data	to	the	
	direc4on	along	which	the	data	has	the	
	biggest	variance	

B.  PCA	allows	us	to	compress	data	
C.  PCA	uses	linear	transforma4on	to	show	

pacerns	of	data	
D.  PCA	allows	us	to	visualize	data	in	lower	

dimensions	
E.  All	of	the	above	☐



Q.	Which	of	these	is	NOT	true?	

A.	The	eigenvectors	of	covariance	can	
have	opposite	signs	and	it	won’t	affect	
the	reconstruc4on	
B.	The	PCA	analysis	in	some	sta4s4cal	
program	returns	standard	devia4on	
instead	of	variance	
C.	It	doesn’t	macer	how	you	store	the	
data	in	matrix	

14=1

✓→ did

☐



Learning	to	classify	

�  Given	a	set	of	feature	vectors	xi,	where	each	has	a	class	
label	yi,	we	want	to	train	a	classifier	that	maps		
unlabeled	data	with	the	same	features	to	its	label.	

CD45	 CD19	 CD11b	 CD3e	 Type	

6.59564671	 1.297765164	 7.073280884	 1.155202366	 1	
6.742586812	 4.692018952	 3.145976639	 1.572686963	 4	
6.300680301	 1.20613983	 6.393630905	 1.424572629	 2	
5.455310882	 0.958837541	 6.149306002	 1.493503124	 1	
5.725565772	 1.719787885	 5.998232014	 1.310208305	 1	
5.552847151	 0.881373587	 6.02155471	 0.881373587	 3	

{
g- 0-9 6 0.8 ?



Binary	classifiers	

�  A	binary	classifier	maps	each	feature	vector	to	one	of	
two	classes.	

�  For	example,	you	can	train	the	classifier	to:	
�  Predict	a	gain	or	loss	of	an	investment	
�  Predict	if	a	gene	is	beneficial	to	survival	or	not	
�  …	



Multiclass	classifiers	

�  A	mul4class	classifier	maps	each	feature	vector	to	one	
of	three	or	more	classes.	

�  For	example,	you	can	train	the	classifier	to:	
�  Predict	the	cell	type	given	cells’	measurement	
�  Predict	if	an	image	is	showing	tree,	or	flower	or	car,	etc	
�  ...	



Given	our	knowledge	of	probability	and	
statistics,	can	you	think	of	any	classifiers?	

Naive Bayes →M*Pp,o'
P C o or

1)

a
PCK )

-41in. •



Given	our	knowledge	of	probability	and	
statistics,	can	you	think	of	any	classifiers?	
�  We	will	cover	classifiers	such	as	nearest	

neighbor,	decision	tree,	random	forest,	Naïve	
Bayesian	and	support	vector	machine.	



Nearest	neighbors	classifier	

�  Given	an	unlabeled	feature	vector	
�  Calculate	the	distance	from	x	
�  Find	the	closest	labeled	xi	
�  Assign	the	same	label	to	x	

�  Prac4cal	issues	
�  We	need	a	distance	metric	
�  We	should	first	standardize	the	data	
�  Classifica4on	may	be	less	effec4ve	for	very	high	

dimensions	

Source:	wikipedia	

no

*
•
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Variants	of	nearest	neighbors	classifier	

�  In	k-nearest	neighbors,	the	classifier:	
�  Looks	at	the	k	nearest	labeled	

feature	vectors	xi	
�  Assigns	a	label	to	x	based	on	a	

majority	vote	

�  In	(k,	l)-nearest	neighbors,	the	classifier:	
�  Looks	at	the	k	nearest	labeled	feature	vectors	
�  Assigns	a	label	to	x	if	at	least	l	of	them	agree	on	the	

classifica4on	



How	do	we	know	if	our	classifier	is	good?	

�  We	want	the	classifier	to	avoid	some	mistakes	on	
unlabeled	data	that	we	will	see	in	run	4me.	

�  Problem	1:	some	mistakes	may	be	more	costly	than	
others	
We	can	tabulate	the	types	of	error	and	define	a	loss	
func4on	

�  Problem	2:	It’s	hard	to	know	the	true	labels	of	the	
run-4me	data	
We	must	separate	the	labeled	data	into	a	training	set	
and	test/valida4on	set	



Performance of a binary classifier

✺ A binary classifier can make two types of errors
✺ False positive (FP)
✺ False negative (FN)

✺ Sometimes one type 
of error is more costly
✺ Drug effect test
✺ Crime detection

✺ We can tabulate the performance in 
a class confusion matrix

15 3
7 25

FPTN

TPFN



Performance	of	a	binary	classifier	
�  A	loss	func4on	assigns	costs	to	mistakes	

�  The	0-1	loss	func4on	treats	
FPs	and	FNs	the	same	
�  Assigns	loss	1	to	every	

mistake	
�  Assigns	loss	0	to	every	

correct	decision	

�  Under	the	0-1	loss	func4on	
�  accuracy=	

�  The	baseline	is	50%	which	we	get	by	
random	decision.	

TP + TN

TP + TN + FP + FN



Performance	of	a	multiclass	classifier	
�  Assuming	there	are	c	classes:	

�  The	class	confusion	matrix	is	
c	×	c	

�  Under	the	0-1	loss	func4on	
accuracy=	

ie.	in	the	right	example,	accuracy	=	
32/38=84%	

�  The	baseline	accuracy	is	1/c.	

sum of diagonal terms

sum of all terms

Source:	scikit-learn	

*



Training	set	vs.	validation/test	set	
�  We	expect	a	classifier	to	perform	worse	on	run-4me	data	
�  Some4mes	it	will	perform	much	worse:	an	overfiFng	in	

training	
�  An	extreme	case	is:	the	classifier	correctly	labeled	100%	when	

the	input	is	in	the	training	set,	but	otherwise	makes	a	random	
guess		

	�  To	protect	against	overfivng,	we	separate	training	set	
from	valida4on/test	set	
�  Training	set	for	training	the	classifier	
�  ValidaHon/test	set	is	for	evalua4ng	the	performance	

�  It’s	common	to	reserve	at	least	10%	of	the	data	for	tes4ng	



Cross-validation	
�  If	we	don’t	want	to	“waste”	labeled	data	on	valida4on,		we	

can	use	cross-validaHon	to	see	if	our	training	method	is	
sound.	

�  Split	the	labeled	data	into	training	and	valida4on	sets	in	
mul4ple	ways	

�  For	each	split	(called	a	fold)	
�  Train	a	classifier	on	the	training	set	
�  Evaluate	its	accuracy	on	the	valida4on	set	

�  Average	the	accuracy	to	evaluate	the	training	
methodology	

12 I → testing
Leave one out 1 , → training
-

( or data

(%) points
with
labels

1¥ = 20

÷'s
is



How	many	trained	models	I	can	have	for	the	leave	
one	out	cross-validation?	

If	I	have	a	data	set	that	has	50	labeled	data	entries,	how	
many	leave-one-out	valida4ons	I	can	have?	

A.	50	

B.	49	

C.	50*49	

☐



How	many	trained	models	can	I	have	with	this	
cross-validation?	

If	I	have	a	data	set	that	has	51	labeled	data	entries,	I	
divide	them	into	three	folds	(17,17,17).	How	many	
trained	models	can	I	have?	

*The	common	pracHce	of	using	fold	is	to	divide	the	samples	into	equal	sized	k	groups	
and	reserve	one	of	the	group	as	the	test	data	set.	

-

-

*
17
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Decision(tree:(object(classification(

�  The$object$classifica4on$decision(tree$can$classify$
objects$into$mul4ple$classes$using$sequence$of$
simple$tests.$It$will$naturally$grow$into$a$tree.$

Cat(

toddler(

dog(

chair(leg(

sofa( box(

moving not moving

part or
whole

human
non-human

big or small



Iris example . which type is this ?



Training(a(decision(tree:(example(

�  The$“Iris”$data$set$

Setosa$ Versicolor$

Virginica$

1?$Where?$

petal
width

T

Q
50 Setosa

0 Virginica
0 Versicolor

-



Q:(What(is(accuracy(of(this(decision(tree(
given(the(confusion(matrix(?(




50 0 0

0 49 5

0 1 45





A. $6/150$
B. $144/150$
C. $145/150$



Assignments

✺Read Chapter 11 of the textbook

✺Next time: Decision tree, Random 
forest classifier

✺Prepare for midterm2 exam (11/12)
✺ Lec 11-Lec 17, Chapter 6-10



Additional References

✺ Robert V. Hogg, Elliot A. Tanis and Dale L. 
Zimmerman. “Probability and Statistical 
Inference” 

✺ Morris H. Degroot and Mark J. Schervish
"Probability and Statistics”



See you next time

See
You!


