Probability and Statistics 2

for Computer Science

“...many problems are naturally
classification problems”---Prof.
Forsyth
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Review of Covariance matrix
Dimension Reduction
Principal Component Analysis

Examples of PCA



Principal Component Analysis (I1)

Introduction to classification



Step 2: Rotate so that the new data has

diagonalized covariance matrix
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Step 3: Drop component(s)

Project to x-axis
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PCA an example

Step 1.
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The Mean square error of the projection

The mean square error is the sum of the
smallest d-s eigenvalues in A
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The Mean square error of the projection

The mean square error is the sum of the
smallest d-s eigenvalues in A
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The Mean square error of the projection

The mean square error is the sum of the
smallest d-s eigenvalues in A
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The Mean square error of the projection

The mean square error is the sum of the
smallest d-s eigenvalues in A

J=s+1

1 1 L d .
N_1 ZZ: |7 —Pz'HQ T N_1 zz: :zs: (7“@(]))2 = Z EZ: —Nl_ 1(7}@)2



Examples: Immune Cell Data

There are 38816 white
blood immune cells from

a mouse sample T cells
Each immune cell has
40+
features/components
B cells

Four features are used as
illustration.

There are at least 3 cell
types involved Natural killer cells




Scatter matrix of Immune Cells

There are 38816 White 2 4 6 8 10 2 4 6 8 10 2 4 6 8 10 2 4 6 8 10
blood immune cells from .| i I =
a mouse sample ]
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PCA of Immune Cells

> resl

Svalues Eigenvalues

[1] 4.7642829 2.1486896 1.3730662
0.4968255

Eigenvectors
Svectors

L1 021 03] 4] o
[1,] 0.2476698 0.00801294 -0.6822740
0.6878210
[2,] 0.3389872 -0.72010997 -0.3691532 -
0.4798492 B
[3,] -0.8298232 0.01550840-0.5156117 -
0.2128324 v
[4,] 0.3676152 0.69364033 -0.3638306 -
0.5013477

PCA_immune_cells_2

PC2

PC 1



New coordinates in PCA

> head(new_coord_t)

PC1 PC2 PC3 PC4
1 3.6739228 0.1127233-1.32744266
0.61005994
2 -0.9255199 -2.1016573 -0.80762548 -
0.29104900 .
3 3.1150230 0.3526459 -0.83994064 o
0.46074556
4 3.1801414 0.5679807 -0.07097689 § 2
0.01539266

PCA_immune_cells_2

5 2.7972723 -0.1073053 -0.39168826 - W -
0.03981390
6 3.3012610 0.1979659 0.17965423 ¥ 4

0.45373049

PC 1



What is the percentage of variance that

PC1 covers?

Given the eigenvalues: 4.7642829 2.1486896

1.3730662 0.4968255, what is the .
percentage that PC1 covers? V4~ Cfigfv*rfredv)
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PCA an example

Step 1.
3 -4 7 1 —4 -3 0
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More features used

There are 38816 white
blood immune cells from
a mouse sample T cells

Each immune cell has 42
features/components

There are at least 3 cell B cells
types involved

4t L3 b

Natural killer cells




Eigenvalues of the covariance matrix
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Large variance doesn’t mean important

Dattern

Principal
component 1
is just cell
length




Principal component 2 and 3 show

8 00 Quartz 2 [*]

PCA Immune cells with 40+ features

PC3
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Principal component 4 is not very

informatijve

e 00 Quartz 2 [*]

PCA Immune cells with 40+ features

PC 4




Principal component 5 is interesting

8 00

Quartz 2 [*]

PC5

PCA Immune cells with 40+ features




Principal component 6 is interesting

e OO0 Quartz 2 [*]

PCA Immune cells with 40+ features
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Scaling the data or not in PCA

Sometimes we need to scale the data for each feature
have very different value range.

After scaling,the eigenvalues may change significantly.

Data needs to be investigated case by case



Eigenvalues of the covariance matrix

(scaled data)

8 O O Quartz 2 [*]

Eigenvalues (scaled data)

Eigenvalues
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off very < 1
quickly
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Principal component 1 & 2 (scaled data)

8 00 Quartz 2 [*]

PCA Immune cells with 40+ features (scaled data)

15

Even the first 2
PCs don’t separate
the different types
of cell very well

10

PC 2




Q. Which of these are true?

A. Feature selection should be
conducted with domain knowledge

B. Important feature may not show big
variance

C. Scaling doesn’t change eigenvalues of
covariance matrix X

@A&B



Reconstructing the data

Given the projected data P4« and mean({x}), we can
approximately reconstruct the original data . — — - -

S .
AN € _ ( ]
D =Up + mean({zx}) \""' D'”;M ‘%D/
. -Y=um
Each reconstructed data item D, is a linear —

combination of the columns of U weighted by D;

The columns of U are the normalized eigenvectors of
the Covmat({x}) and are called the principal
components of the data {x}



End-to-end mean square error

Each @; becomes r; by translation and rotation

Each P; becomes Z/B\i by the opposite rotation and
translation

Therefore the end to end mean square error is:
1 ~ > 1 2 ’
Nog 2wl = gy Yl e =2
Asi1, ...y Ag are the smallest d-s eigenvalues of the
Covmat({x})



PCA: Human face data

 The dataset consists of 213 images 2§ Jaces
¢ Each image is grayscale and has 64 by 64 resolution

 We can treat each image as a vector with dimension

d: = by x bY

o T
nN=23

Credit: Prof. Forsyth



How quickly the eigenvalues decrease?

Eigenvalues, total of 213 images Eigenvalues, total of 213 images
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Number of eigenvalue Number of eigenvalue

Credit: Prof. Forsyth



What do the principal components of the
images look like?

Mean image

The first 16 /

principal
components
arranged into
images

Credit: Prof. Forsyth




Reconstruction of the image

15t row show the reconstructions using
some number of principal components
2" row show the corresponding errors




Q. Which are true?

A . PCA allows us to project data to the
direction along which the data has the

biggest variance
B. PCA allows us to compress data
C. PCA uses linear transformation to show

patterns of data
PCA allows us to visualize data in lower

dlmen5|ons

- AII of the above



Q. Which of these is NOT true?

A. The eigenvectors of covariance can

have opposite signs and it won’t affect

the reconstruction

B. The PCA analysis in some statistical

program returns standard deviation

instead of variance (J =7 ot

@It doesn’t matter how you store the
ata in matrix



Learning to classify

Given a set of feature vectors x,, where each has a class
label y,, we want to train a classifier that maps
unlabeled data with the same features to its label.

— N —

CDA45

6.59564671
6.742586812
6.300680301
5.455310882
5.725565772
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Binary classifiers

A binary classifier maps each feature vector to one of
two classes.

For example, you can train the classifier to:

% Predict a gain or loss of an investment

% Predict if a gene is beneficial to survival or not
*



Multiclass classifiers

A multiclass classifier maps each feature vector to one
of three or more classes.

For example, you can train the classifier to:

% Predict the cell type given cells’ measurement

% Predict if an image is showing tree, or flower or car, etc
*



Given our knowledge of probability and
statistics, can you think of any classifiers?




Given our knowledge of probability and

statistics, can you think of any classifiers?

We will cover classifiers such as nearest
neighbor, decision tree, random forest, Naive
Bayesian and support vector machine.



Nearest neighbors classifier

¢ Given an unlabeled feature vector
% Calculate the distance from x
% Find the closest labeled x;
% Assign the same label to x

% Practical issues
¥ We need a distance metric .
% We should first standardize the data Source: wikipedia

% Classification may be less effective for very high
dimensions




Variants of nearest neighbors classifier

In k-nearest neighbors, the classifier: g A

% Looks at the k nearest labeled ,
feature vectors x; .

% Assigns a label to x based on a
majority vote

~ - -

In (k, £)-nearest neighbors, the classifier:
% Looks at the k nearest labeled feature vectors

% Assigns a label to x if at least £ of them agree on the
classification



How do we know if our classifier is good?

We want the classifier to avoid some mistakes on
unlabeled data that we will see in run time.

Problem 1: some mistakes may be more costly than
others

We can tabulate the types of error and define a loss
function

Problem 2: It’s hard to know the true labels of the
run-time data

We must separate the labeled data into a training set
and test/validation set



Performance of a binary classifier

A binary classifier can make two types of errors
% False positive (FP)

% False negative (FN) Predicted
Sometimes one type Actual T R
of error is more costly i | il | Soimestion |
% Drug effect test Positive | False Negative ] True Positive
% Crime detection

TN FP
We can tabulate the performance in 15 3
a class confusion matrix 2>

TP



Performance of a binary classifier

A loss function assigns costs to mistakes

The 0-1 loss function treats

FPs and FNs the same

% Assigns loss 1 to every
mistake

% Assigns loss O to every
correct decision

Under the 0-1 loss function
* accuracy= TP+ TN

Actual

Predicted

Negative Positive

Negative

True Negative I[ False Positive

Positive

False Negative ]I True Positive

I'P+TN+FP+ FN

The baseline is 50% which we get by

random decision.




Performance of a multiclass classifier

ASSU m | ng there are ¢ C|aSSES . Confusion matrix, without normalization )¢

The class confusion matrix is setosa
CXC

versicolor -

True label

Under the 0-1 loss function

accuracy= sum of diagonal terms

sum of all terms

virginica -

ie. in the right example, accuracy = ; d . >
32/38=84%

] . Source: scikit-learn
The baseline accuracy is 1/c.



Training set vs. validation/test set

We expect a classifier to perform worse on run-time data

% Sometimes it will perform much worse: an overfitting in
training
% An extreme case is: the classifier correctly labeled 100% when

the input is in the training set, but otherwise makes a random
guess

To protect against overfitting, we separate training set
from validation/test set

% Training set for training the classifier
% Validation/test set is for evaluating the performance

It’s common to reserve at least 10% of the data for testing



Cross-validation

If we don’t want to “waste” labeled data on validation, we

can use cross-validation to see if our training method is
2 | » 13-
sound. [ .
L cave ona out || D>Traiva

Split the labeled data into training and validation sets in

multiple ways ( 7V Lt

»° .

(1) P
For each split (called a fold) e w'th
% Train a classifier on the training set { SO Catel

: L — < — Ce
% Evaluate its accuracy on the validation set 5 . Traisg
7‘5‘*‘% —
2o 8o

Average the accuracy to evaluate the training
methodology



How many trained models | can have for the leave

one out cross-validation?

If | have a data set that has 50 labeled data entries, how
many leave-one-out validations | can have?



How many trained models can | have with this

cross-validation?

If | have a data set that has 51 |labeled data entries, |
divide them into three folds (17 @) How many

trained models can | have? ¥

( {‘

17 )

*The common practice of using fold is to divide the samples into equal sized k groups
and reserve one of the group as the test data set.

17



Decision tree: object classification

The object classification decision tree can classify
objects into multiple classes using sequence of
simple tests. It will naturally grow into a tree.

0
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Training a decision tree: example

o e _J)
The “Iris” data set Iris
pgfa( 2 | o oo
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Q: What is accuracy of this decision tree

given the confusion matrix ?

50 0 0
0 49 5
0 1 45
A. 6/150
B. 144/150

C. 145/150



Read Chapter 11 of the textbook

Next time: Decision tree, Random
forest classifier

Prepare for midterm2 exam (11/12)
% Lec 11-Lec 17, Chapter 6-10



Additional References

Robert V. Hogg, Elliot A. Tanis and Dale L.
Zimmerman. “Probability and Statistical
Inference”

Morris H. Degroot and Mark J. Schervish
"Probability and Statistics”



See you next time




