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Last	time	
� Demo	of	Principal	Component	
Analysis	

� Introduc4on	to	classifica4on	



Classifiers	
�  Why	do	we	need	classifiers?	

�  What	do	we	use	to	quan4fy	the	performance	of	a	classifier?	

�  What	is	the	baseline	accuracy	of	a	5-class	classifier	using	0-1	
loss	func4on?	

�  What’s	valida4on	and	cross-valida4on	in	classifica4on?	

f- =w%



Performance	of	a	multiclass	classifier	
�  Assuming	there	are	c	classes:	

�  The	class	confusion	matrix	is	
c	×	c	

�  Under	the	0-1	loss	func4on	

accuracy=	

ie.	in	the	right	example,	accuracy	=	
32/38=84%	

�  The	baseline	accuracy	is	1/c.	

sum of diagonal terms

sum of all terms

Source:	scikit-learn	



Cross-validation	
�  If	we	don’t	want	to	“waste”	labeled	data	on	valida4on,		we	

can	use	cross-valida+on	to	see	if	our	training	method	is	
sound.	

�  Split	the	labeled	data	into	training	and	valida4on	sets	in	
mul4ple	ways	

�  For	each	split	(called	a	fold)	
�  Train	a	classifier	on	the	training	set	

�  Evaluate	its	accuracy	on	the	valida4on	set	

�  Average	the	accuracy	to	evaluate	the	training	
methodology	



Q1.	Cross-validation	

Cross-valida+on	is	a	method	used	to	prevent	
overficng	in	classifica4on.	

A.	TRUE	

B.	FALSE	

☐



Objectives	
� Decision	tree	(II)	

� Random	forest	

� Support	Vector	Machine	(I)	



Decision	tree:	object	classification	

�  The	object	classifica4on	decision	tree	can	classify	
objects	into	mul4ple	classes	using	sequence	of	
simple	tests.	It	will	naturally	grow	into	a	tree.	

Cat	

toddler	

dog	

chair	leg	

sofa	 box	

moving not moving

part or
whole

human
non-human

big or small



Iris example . which type is this ?



Training	a	decision	tree:	example	

�  The	“Iris”	data	set	

Setosa	 Versicolor	

Virginica	

Features:	Sepal.Length,	Sepal.Width,	Petal.Length,	
Petal.Width	Label:	Species	

petal
width

T

g-

50 Setosa

0 Virginica
0 Versicolor



Training	a	decision	tree	

�  Choose	a	dimension/feature	and	a	split	

�  Split	the	training	Data	into	lef-	and	right-	
child	subsets	Dl	and	Dr	

�  Repeat	the	two	steps	above	recursively	on	
each	child	

�  Stop	the	recursion	based	on	some	condi4ons	

�  Label	the	leaves	with	class	labels	



Classifying	with	a	decision	tree:	example	

�  The	“Iris”	data	set	

Setosa	 Versicolor	

Virginica	



Q:(What(is(accuracy(of(this(decision(tree(
given(the(confusion(matrix(?(




50 0 0

0 49 5

0 1 45





A. $6/150$
B. $144/150$
C. $145/150$

000 15¥
☐



Decision(Boundary(

1.75$

2.45$



Another(Decision(Boundary(

Credit:$Kelvin$Murphy,$“Machine$Learning:$A$Probabilis4c$Perspec4ve”,$2012$



Choosing	a	split	
�  An	informa4ve	split	

makes	the	subsets	
more	concentrated	
and	reduces	
uncertainty	about	
class	labels	
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✖	



Which	is	more	informative?	



Quantifying	uncertainty	using	entropy	

�  We	can	measure	uncertainty	as	the	
number	of	bits	of	informa4on	needed	
to	dis4nguish	between	classes	in	a	
dataset	(first	introduced	by	Claude	
Shannon)	

�  We	need	Log2	2	=1	bit	to	
dis4nguish	2	equal	classes	

�  We	need	Log2	4	=2	bit	to	
dis4nguish	4	equal	classes	

Claude	Shannon	(1916-2001)	
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Quantifying	uncertainty	using	entropy	

�  Entropy	(Shannon	entropy)	is	the	measure	of	
uncertainty	for	a	general	distribu4on	
�  If	class	i	contains	a	frac4on	P(i)	of	the	data,	we	need																		

bits	for	that	class	

�  The	entropy	H(D)	of	a	dataset	is	defined	as	the	weighted	
mean	of	entropy	for	every	class:	

H(D) =
c∑

i=1

P (i)log2
1

P (i)

log2
1

P (i)

= ¥
,

- Plillogpci)



Entropy:	before	the	split	
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Entropy:	examples	
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Entropy:	examples	
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Information	gain	of	a	split		

�  The	informa4on	gain	of	a	split	is	the	amount	of	
entropy	that	was	reduced	on	average	afer	the	split	

	

�  where	
�  ND	is	the	number	of	items	in	the	dataset	D	
�  NDl	is	the	number	of	items	in	the	lef-child	dataset	Dl	
�  NDr	is	the	number	of	items	in	the	lef-child	dataset	Dr	

I = H(D)− (
NDl

ND

H(Dl) +
NDr

ND

H(Dr))



Information	gain:	examples	
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Q.	Is	the	splitting	method		global	
optimum?	

A. 		Yes	
B. 		No	

%
61. No

☐



How	to	choose	a	dimension	and	split	

�  If	there	are	d	dimensions,	choose	approximately						
of	them	as	candidates	at	random	

�  For	each	candidate,	find	the	split	that	maximizes	the	
informa4on	gain	

�  Choose	the	best	overall	dimension	and	split	

�  Note	that	splicng	can	be	generalized	to	categorical	
features	for	which	there	is	no	natural	ordering	of	the	
data	

√

d



When	to	stop	growing	the	decision	tree?	

�  Growing	the	tree	too	deep	can	lead	to	
overficng	to	the	training	data	

�  Stop	recursion	on	a	data	subset	if	any	of	the	
following	occurs:	
�  All	items	in	the	data	subset	are	in	the	same	class	

�  The	data	subset	becomes	smaller	than	a	predetermined	
size	

�  A	predetermined	maximum	tree	depth	has	been	reached.	



How	to	label	the	leaves	of	a	decision	tree	

�  A	leaf	will	usually	have	a	data	subset	containing	
many	class	labels		

�  Choose	the	class	that	has	the	most	items	in	the	
subset	

�  Alterna4vely,	label	the	leaf	with	the	number	it	
contains	in	each	class	for	a	probabilis4c	“sof”	
classifica4on.	

iH¥



Pros	and	Cons	of	a	decision	tree	

�  Pros:	

�  Cons:	

Flexible I -4 data types)

Interpretable
clear decision boundary
Quick

overt :t

Accuracy is low



Random	Forest	–	forest	of	decision	trees	

�  Build	the	random	forest	by	training	each	decision	tree	on	a	
random	subset	with	replacement	from	the	training	data	and	
subset	of	features	are	also	randomly	selected---	“Bagging”	

�  Evaluate	the	random	forest	by	tes4ng	on	its	out-of-bag	
items	

�  Classify	by	merging	the	classifica4ons	of	individual	decision	
trees	

�  By	simple	vote	

�  Or	by	adding	sof	classifica4ons	together	and	then	take	a	
vote	

dxw



An	example	of	bagging	

Drawing	random	samples	
from	our	training	set	with	
replacement.	E.g.,	if	our	
training	set	consists	of	7	
training	samples,	our	
bootstrap	samples	(here:	
n=7)	can	look	as	follows,	
where	C1,	C2,	…	Cm	shall	
symbolize	the	decision	
tree	classifiers.	

Sample	
indices	

Bagging	
Round	1	

Bagging	
Round	2	

…	 Bagging	
Round	M	

1	 2	 7	

2	 2	 3	

3	 1	 2	

4	 3	 1	

5	 4	 1	

6	 7	 7	

7	 2	 1	

C1	 C2	
- - Can

①



Pros	and	Cons	of	Random	forest	

�  Pros:	

�  Cons:	

better accu .

less prone to overfitting
.

longer
complex

no clear decision boundary
Nuit interpretable



Q2.	Do	you	think	random	forest	will	
always	outperform	simple	decision	tree?		

A. 		Yes	
B. 		No	☐



Considerations	in	choosing	a	classifier	

�  When	solving	a	classifica4on	problem,	it	is	good	to	
try	several	techniques.	

�  Criteria	to	consider	in	choosing	the	classifier	include	
* Accuracy

1 testing , and classification)* speed

* flexibility c variety of data , small
-n

big )

1 decision boundary )* Interpretation

* scaling effect



Support	Vector	Machine	(SVM)	overview	

�  The	Decision	boundary	and	func4on	of	a	
Support	Vector	Machine	

�  Loss	func4on	(cost	func4on	in	the	book)	

�  Training	

�  Valida4on	

�  Extension	to	mul4class	classifica4on	



SVM	problem	formulation	

�  At	first	we	assume	a	binary	classifica4on	problem	

�  The	training	set	consists	of	N	items	
�  Feature	vectors	xi	of	dimension	d	

�  Corresponding	class	labels		yi ∈ {±1}

�  We	can	picture	the	training	
data	as	a	d-dimensional	
scaner	plot	with	colored	
labels	

x
(1)

x
(2)



Decision	boundary	of	SVM	

�  SVM	uses	a	hyperplane	as	its	
decision	boundary	

�  The	decision	boundary	is:	

�  In	vector	nota4on,	the	
hyperplane	can	be	wrinen	as:	

a1x
(1)

+ a2x
(2)

+ ...+ adx
(d)

+ b = 0

a
T
x+ b = 0

a
T
x+ b = 0

x
(1)

x
(2)

•=L !:/ *:-(¥:')
✗
(d)

ad



Q3.	How	many	solutions	can	we	have	for	
the	decision	boundary?	

a
T
x+ b = 0

x
(1)

x
(2)

A. 	One	
B. 	Several	
C. 	Infinite	☐ A



Classification	function	of	SVM	

�  SVM	assigns	a	class	label	to	a	
feature	vector	according	to	the	
following	rule:	

�  In	other	words,	the	classifica4on	
func4on	is:	

a
T
x+ b = 0

x
(1)

x
(2)

�  Note	that		
�  If																						is	small,	then									was	close	to	the	decision	

boundary	

�  If																						is	large,	then									was	far	from	the	decision	
boundary		

+1	if		
-1		if	

sign(aT
xi + b)

a
T
xi + b ≥ 0

a
T
xi + b < 0

∣

∣a
T
xi + b

∣

∣

∣

∣a
T
xi + b

∣

∣

xi

xi



What	if	there	is	no	clean	cut	boundary?	

�  Some	boundaries	are	bener	
than	others	for	the	training	data	

�  Some	boundaries	are	likely	more	
robust	for	run-4me	data	

�  We	need	to	a	quan4ta4ve	
measure	to	decide	about	the	
boundary	

�  The	loss	func+on	can	help	
decide	if	one	boundary	is	bener	
than	others	

a
T
x+ b = 0

x
(1)

x
(2)



Loss	function	1	

�  For	any	given	feature	vector							with	class	label																		,	
we	want		
�  Zero	loss	if								is	classified	correctly	

�  Posi4ve	loss	if							is	misclassified	

�  If						is	misclassified,	more	loss	is	assigned	if	it’s	further	away	
from	the	boundary	

�  This	loss	func4on	1	meets	the	criteria	above:	

�  Training	error	cost	

max(0,−yi(a
T
xi + b))

S(a, b) =
1

N

N∑

i=1

max(0,−yi(a
T
xi + b))

xi

xi

xi

xi

yi ∈ {±1}

Loss	

yi(a
T
xi + b)

sign(aT
xi + b) = yi

sign(aT
xi + b) != yi

{gangway



Q4.	What’s	the	value	of	this	function		?	

A.		0.		
B.		others.	

max(0,−yi(a
T
xi + b)) if		 sign(aT

xi + b) = yi

☐



Q5.	What’s	the	value	of	this	function		?	

A.		0.		
B.		A	value	greater		
than	or	equal	to	0.	

max(0,−yi(a
T
xi + b)) if		 sign(aT

xi + b) != yi

☐



Assignments	

� Read	Chapter	11	of	the	textbook	

� Next	4me:	SVM-regulariza4on,	
Stochas4c	descent	
	



Additional	References	

✺  Robert	V.	Hogg,	Elliot	A.	Tanis	and	Dale	L.	
Zimmerman.	“Probability	and	Sta4s4cal	
Inference”		

� Morris	H.	Degroot	and	Mark	J.	Schervish	
"Probability	and	Sta4s4cs”	

�  Kelvin	Murphy,	“Machine	learning,	A	
Probabilis4c	perspec4ve”	



See	you	next	time	

See 
You! 


