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Demo of Principal Component
Analysis

Introduction to classification



Classifiers

Why do we need classifiers?
What do we use to quantify the performance of a classifier?

What is the baseline accuracy of a 5-class classifier using 0-1
loss function? «/ - z‘,f

What’s validation and cross-valldatlon in classification?



Performance of a multiclass classifier

ASSU m | ng there a re C C|aSSES . Confusion matrix, without normalization

The class confusion matrix is setosa
CXC

versicolor -

True label

Under the 0-1 loss function

accuracy= sum of diagonal terms

sum of all terms

virginica -

ie. in the right example, accuracy = ; d . >
32/38=84%

] . Source: scikit-learn
The baseline accuracy is 1/c.



Cross-validation

If we don’t want to “waste” labeled data on validation, we

can use cross-validation to see if our training method is
sound.

Split the labeled data into training and validation sets in
multiple ways

For each split (called a fold)
% Train a classifier on the training set

% Evaluate its accuracy on the validation set

Average the accuracy to evaluate the training
methodology



Q1. Cross-validation

Cross-validation is a method used to prevent
overfitting in classification.

(A)TRUE

B. FALSE



Decision tree (ll)
Random forest

Support Vector Machine (I)



Decision tree: object classification

The object classification decision tree can classify
objects into multiple classes using sequence of
simple tests. It will naturally grow into a tree.
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Training a decision tree: example

o e _J)
The “Iris” data set Iris
peta( :3 - J‘ o oo
| [ ] [ ]
. J Virginica eeee o0 o0 o °
PetaI.Lenagth< 2.45 wit d (L‘o i ..:.o. .o
(\j — | 0000 o o
j ®® o °
f M __________80% o000 o
i °
0 j oo *
-— ‘ °
setosa Petal Wigth< 1.75 o
50/0/0 - Setosa
S L
Seres 4 Gee
s o w‘ versicolor virginica ® 000000 o
L . 0/49/5 0/1/45 L
9 V"S‘“'“‘ | | | | | | |
0 Viws Cler 1 2 3 4 5 6 7

Features: Sepal.Length, Sepal.Width, Petal.Length,

Petal.Length
Petal.Width Label: Species etal.Leng



Training a decision tree

Choose a dimension/feature and a split

Split the training Data into left- and right-
child subsets D, and D,

Repeat the two steps above recursively on
each child

Stop the recursion based on some conditions

Label the leaves with class labels



Classifying with a decision tree: example
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Q: What is accuracy of this decision tree
given the confusion matrix ?

C. 145/150



Decision Boundary
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Sepal width

Another Decision Boundary
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Credit: Kelvin Murphy, “Machine Learning: A Probabilistic Perspective”, 2012



Choosing a split

An informative split

makes the subsets
more concentrated
and reduces
uncertainty about
class labels




Choosing a split

An informative split

makes the subsets
more concentrated
and reduces o ©
uncertainty about - ° e
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Choosing a split

An informative split

makes the subsets

v
more concentrated
and reduces o © ‘<
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is more informative?

[2)
I & o
°
o ©
|°° = [
= °°
© =3 y
= (=]
°
| o © ® o=
o »
© =) »
. ® o w
»
I »” c ® o=
% o»
= ’ »®
»
% om »
>
| ” ®  o»
% o»
» »
I ” B3 3
»
®  o»
»®
| »




Quantifying uncertainty using entropy

We can measure uncertainty as the
number of bits of information needed

to distinguish between classes in a
dataset (first introduced by Claude

Shannon)

* We need Log, 2 =1 bit to
distinguish 2 equal classes

% We need Log, 4 =2 bit to ':
distinguish 4 equal classes /’

Claude Shannon (1916-2001)



Quantifying uncertainty using entropy

Entropy (Shannon entropy) is the measure of

uncertainty for a general distribution ,

P(i)

% If class i contains a fraction P(i) of the data, we need log>
bits for that class

% The entropy H(D) of a dataset is defined as the weighted
mean of entropy for every class:




Entropy: before the split

Sl 3 21 2
5 925 5 925

= 0.971 bits




Entropy: examples

3 3 2 2
H(D) = _510925 — 510925

= 0.971 bits

H(D;) = —1loga1 = 0 bits
H(D.—) - ')




Entropy: examples

3 3 2 2
H(D) = —=logs= — =loga— H(D;) = —1 logy1 = 0 bits
5! 5 D 5 : L9 9
= 0.971 bits H(D,) = —3logz5 — Slogsg

= 0.918 bits




Information gain of a split

The information gain of a split is the amount of
entropy that was reduced on average after the split

where

* Npisthe number of items in the dataset D

* N, is the number of items in the left-child dataset D,
* Np, is the number of items in the left-child dataset D,



Information gain: examples
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Q. Is the splitting method global




How to choose a dimension and split

If there are d dimensions, choose approximately+/d
of them as candidates at random

For each candidate, find the split that maximizes the
information gain

Choose the best overall dimension and split

Note that splitting can be generalized to categorical
features for which there is no natural ordering of the
data



When to stop growing the decision tree?

Growing the tree too deep can lead to
overfitting to the training data

Stop recursion on a data subset if any of the

following occurs:

% All items in the data subset are in the same class

% The data subset becomes smaller than a predetermined
size

% A predetermined maximum tree depth has been reached.



How to label the leaves of a decision tree

A leaf will usually have a data subset containing
many class labels

Choose the class that has the most items in the
subset

Alternatively, label the leaf with the number it
contains in each class for a probabilistic “soft”
classification.




Pros and Cons of a decision tree
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Random Forest — forest of decision trees

Build the random forest by training each decision tree on a
random subset with replacement from the training data and
subset of features are also randomly selected--- “Bagging”

Evaluate the random forest by testing on its out-of-bag
items

Classify by merging the classifications of individual decision

trees ol X 1)
% By simple vote Z

% Or by adding soft classifications together and then take a
vote




An example of bagging

Drawing random samples = Sample Bagging Bagging Bagging
from our training set with indices Round1l Round2 Round M

replacement. E.g., if our 1 2 7
training set consists of 7 2 2 3
training samples, our 3 1 2
bootstrap samples (here: 4 3 1
n=7) can look as follows, > 4 1
where C,, C,, ... C_ shall 6 7 7
symbolize the decision / 2 1
tree classifiers. l l
G G, -- Cq,
@ @



Pros and Cons of Random forest
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Q2. Do you think random forest will

always outperform simple decision tree?



Considerations in choosing a classifier

When solving a classification problem, it is good to
try several techniques.

Criteria to consider in choosing the classifier include
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Support Vector Machine (SVM) overview

The Decision boundary and function of a
Support Vector Machine

Loss function (cost function in the book)
Training
Validation

Extension to multiclass classification



SVM problem formulation

At first we assume a binary classification problem

The training set consists of N items
% Feature vectors x, of dimension d
% Corresponding class labels y; € {+1}

. o 21
We can picture the training .
data as a d-dimensional ®o
scatter plot with colored © o © o
labels o o o ©
o
()




Decision boundary of SVM

SVM uses a hyperplane as its

decision boundary MEN
o . ° a'x+b=0

The decision boundary is: 0o o

@) /
a12V + as2® + .+ agx® +b=0 © e o @

/7 @ @

o // ® ® @

In vector notation, the 7 ° 7
hyperplane can be written as: w© .

Z
_ r - l(b)

a"x +b=0 24° ?l [ :
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Q3. How many solutions can we have for

the decision boundary?

7(2)4
A. One
B. Several

@Inﬁnite




Classification function of SVM

SVM assigns a class label to a CIIN
feature vector according to the o alx +b=
. /

following rule: @0 !

#1if @’z +b>0 oo ©. e

1if @’z +b<0 o @

®) // ® ® @
In other words, the classification e ® ey
function is: sign(aTmi +b)
Note that
* If |a’x; + b| is small, then &; was close to the decision
boundary

¥ If a,Ta:Z- + bl is large, then &; was far from the decision
boundary



What if there is no clean cut boundary?

Some boundaries are better
than others for the training data

Some boundaries are likely more
robust for run-time data

We need to a quantitative
measure to decide about the
boundary

The loss function can help
decide if one boundary is better
than others




L oss function 1

For any given feature vector &; with class label y; € {£1},
we want

. - T
% Zerolossif &; is classified correctly SZ{]TL(CL T; 1 b) = Yi
%  Positive loss if ; is misclassified sign(a’x; + b) # v;

% IfL;is misclassified, more loss is assigned if it’s further away
from the boundary

This loss function 1 meets the criteria above:
maz (0, —y;(a’ x; + b)) 4 Loss

Training error cost

N
1
S(a,b) = 5 > maz(0, —y:(a”@; + 1)) 0 (" +0)

=1



Q4. What's the value of this function ?

maz (0, —y;(a’x; + b)) if sign(a’x; +b) =y,

o

B. others.



Q5. What's the value of this function ?

max (0, —y;(a’x; + b)) if sign(a’x; +b) £y

0.
i B.IA value greater

than or equal to 0.



Read Chapter 11 of the textbook

Next time: SVM-regularization,
Stochastic descent



Additional References

Robert V. Hogg, Elliot A. Tanis and Dale L.

Zimmerman. “Probability and Statistical
Inference”

Morris H. Degroot and Mark J. Schervish
"Probability and Statistics”

Kelvin Murphy, “Machine learning, A
Probabilistic perspective”



See you next time




