Conditional probability comes back in matrix!

Credit: wikipedia
Last Time

- Application of Clustering
 Cluster Center Histogram

- Spectral Clustering
Objectives

Markov Chain (I)
Motivation

- So far, the processes we learned such as **Bernoulli** and **Poisson** process are sequences of **independent** trials.

- There are a lot of real world situations where sequences of events are **Not independent** in comparison.

- **Markov chain** is one type of characterization of a series of **dependent** trials.
An example of dependent events in a sequence

I had a glass of wine with my grilled ________
An example of dependent events in a sequence
An example of dependent events in a sequence
Markov chain

Markov chain is a process in which outcome of any trial in a sequence is conditioned by the outcome of the trial immediately preceding, but not by earlier ones.

Such dependence is called chain dependence

Andrey Markov (1856-1922)
Markov chain in terms of probability

Let \(X_0, X_1, \ldots \) be a sequence of discrete finite-valued random variables.

The sequence is a Markov chain if the probability distribution \(X_t \) only depends on the distribution of the immediately preceding random variable \(X_{t-1} \):

\[
P(X_t|X_0, \ldots, X_{t-1}) = P(X_t|X_{t-1})
\]

If the conditional probabilities (transition probabilities) do NOT change with time, it’s called constant Markov chain.

\[
P(X_t|X_{t-1}) = P(X_{t-1}|X_{t-2}) = \ldots = P(X_1|X_0)
\]
Toss a fair coin until you see two heads in a row and then stop, what is the probability of stopping after exactly \(n \) flips?

Use a state diagram, which is a **directed graph**. Circles are the states of likely outcomes. Arrow directions show the direction of transitions. Numbers over the arrows show transition probabilities.

1 -> Start or just had tail/restart
2 -> had one head after start/restart
3 -> 2 heads in a row/Stop
The model helps form recurrence formula

Let p_n be the probability of stopping after n flips.

\[
p_1 = 0 \quad p_2 = \frac{1}{4} \quad p_3 = \frac{1}{8} \quad p_4 = \frac{1}{8} \quad \ldots
\]
The model helps form recurrence formula

Let \(p_n \) be the probability of stopping after \(n \) flips

\[
p_1 = 0 \quad p_2 = \frac{1}{4} \quad p_3 = \frac{1}{8} \quad p_4 = \frac{1}{8} \quad \ldots
\]

If \(n > 2 \) there are two ways the sequence starts

- Toss T and finish in \(n-1 \) tosses
- Or toss HT and finish in \(n-2 \) tosses

So we can derive a recurrence relation

\[
p_n = \frac{1}{2} p_{n-1} + \frac{1}{4} p_{n-2}
\]
Transition probability btw states
Let’s model daily weather as one of the three states (Sunny, Rainy, and Snowy) with Markov chain that has the transition probabilities as shown here.
Let's model daily weather as one of the three states (Sunny, Rainy, and Snowy) with a Markov chain that has the transition probabilities as shown here.

The transition probability matrix is:

\[
P = \begin{bmatrix}
0.7 & 0.2 & 0.1 \\
0.2 & 0.6 & 0.2 \\
0.4 & 0.1 & 0.5
\end{bmatrix}
\]

- \(i\), the current state at time point \(t\)
- \(j\), the next state at time point \(t+1\)
Q: Is this TRUE?

For a constant Markov Chain, at any step t, the probability distribution among the states remain the same.

A. Yes.

B. No.
Q: The transition probabilities for a node sum to 1

A. Yes.

B. No.

Only the row sum is 1, that is: the probabilities associated with outgoing arrows sum to 1.
The transition probability matrix P is a square matrix with entries p_{ij}.

Since $p_{ij} = P(X_t = j | X_{t-1} = i)$,

\[p_{ij} \geq 0 \quad \text{and} \quad \sum_j p_{ij} = 1 \]

\[
P = \begin{bmatrix}
0.7 & 0.2 & 0.1 \\
0.2 & 0.6 & 0.2 \\
0.4 & 0.1 & 0.5
\end{bmatrix}
\]

The transition probability matrix
Let \(\mathbf{\pi} \) be a row vector containing the probability distribution over all the finite discrete states at \(t=0 \)

\[
\pi_i = P(X_0 = i)
\]

For example: if it is rainy today, and today is \(t=0 \), then

\[
\mathbf{\pi} = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix}
\]

Let \(\mathbf{P}^{(t)} \) be a row vector containing the probability distribution over states at time point \(t \)

\[
p_i^{(t)} = P(X_t = i)
\]
Propagating the probability distribution

Propagating from t=0 to t=1,

\[
P_j^{(1)} = P(X_1 = j)
= \sum_i P(X_1 = j, X_0 = i)
= \sum_i P(X_1 = j | X_0 = i) P(X_0 = i)
= \sum_i p_{ij} \pi_i
\]

In matrix notation,

\[
p^{(1)} = \pi P
\]
Probability distributions:

Suppose that it is rainy, we have the initial probability distribution.

\[\pi = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix} \]

What are the probability distributions for tomorrow and the day after tomorrow?

\[p^{(1)} = \pi P \]

\[p^{(2)} = p^{(1)} P \]
We have just seen that
\[p^{(2)} = p^{(1)} P = (\pi P) P = \pi P^2 \]
So in general
\[p^{(t)} = \pi P^t \]
If one state can be reached from any other state in the graph, the Markov chain is called **irreducible** (single chain).
Furthermore, if it satisfies:
\[\lim_{{t \to \infty}} \pi P^t = S \]
then the Markov chain is stationary and \(S \) is the stationary distribution.
Stationary distribution

- The stationary distribution \mathbf{s} has the following property: $\mathbf{s} \mathbf{P} = \mathbf{s}$
- \mathbf{s} is a row eigenvector of \mathbf{P} with eigenvalue 1
- In the example of the weather model, regardless of the initial distribution,

\[
\mathbf{S} = \lim_{t \to \infty} \pi \begin{bmatrix}
0.7 & 0.2 & 0.1 \\
0.2 & 0.6 & 0.2 \\
0.4 & 0.1 & 0.5
\end{bmatrix}^t = \begin{bmatrix}
\frac{18}{37} & \frac{11}{37} & \frac{8}{37}
\end{bmatrix}
\]
State 1: Up-to-date
State 2: Behind

What's the transition matrix?
If I start with $\pi = [0, 1]$, what is my probability of being up-to-date eventually? $\frac{3}{4}$
Example: Up-to-date or behind model

\[SP = S \Rightarrow (SP)^T = S^T \Rightarrow P^T S^T = S^T \]
\[(P^T - I)S^T = 0 \]
Examples of non-stationary Markov chains

Periodic

Absorbing

Kelvin Murphy, “Machine learning, A Probabilistic perspective”
See you next time

See You!