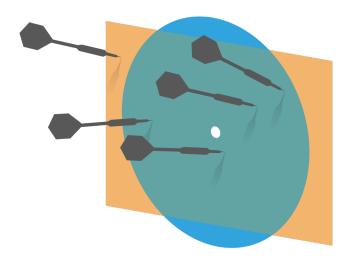
# Probability and Statistics for Computer Science



"Probabilistic analysis is mathematical, but intuition dominates and guides the math" – Prof. Dimitri Bertsekas

Credit: wikipedia

Hongye Liu, Teaching Assistant Prof, CS361, UIUC, 9.3.2021

# What's "Probability" about?

- \* Probability provides mathematical tools/models to reason about uncertainty/randomness
- We deal with data, but often hypothetical, simplified
- \* The purpose is to reason how likely something will happen

# Objectives

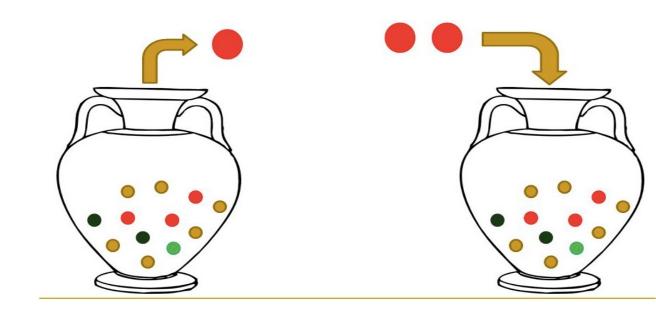
# % Probability a first look

- # Outcome and Sample Space
- **₩ Event**
- % Probability
  - Probability axioms & Properties
- % Calculating probability

### Outcome

### \*\*An outcome A is a possible result of a random repeatable experiment

Random: uncertain, Nondeterministic, ...



# Sample space

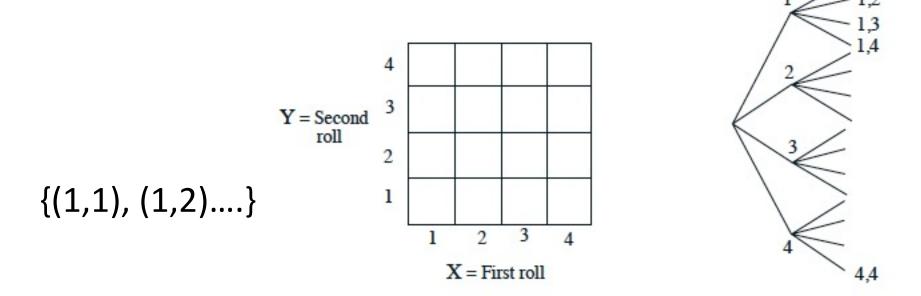
# \* The Sample Space, Ω, is the set of all possible outcomes associated with the experiment

Discrete or Continuous

#### Sample Space example (1)

#### # Experiment: we roll a 4sided-die twice

#### **\* Discrete** Sample space:

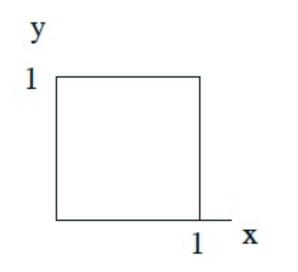


#### Sample Space example (2)

# Experiment: Romeo and Juliet's date

**Continuous** Sample space:

 $\Omega = \{(x, y) \mid 0 \le x, y \le 1\}$ 



# Sample Space depends on experiment (3)

# Different coin tosses Toss a fair coin

#### \* Toss a fair coin twice

#### \* Toss until a head appears

# Sample Space depends on experiment (4)

\* Drawing 2 socks one at a time from a bag containing 1 blue sock, 1 orange sock and 1 white sock with replacement?

Drawing 2 socks one at a time from a bag containing 1 blue sock, 1 orange sock and 1 white sock without replacement? Drawing 2 socks one at a time from a bag containing 1 blue sock, 1 orange sock and 1 white sock with replacement? What is the number of unique outcomes in the sample space?

A. 5 B. 7 C. 9

Drawing 2 socks one at a time from a bag containing 1 blue sock, 1 orange sock and 1 white sock without replacement? What is the number of unique outcomes in the sample space?

A. 5 B. 6 C. 9

### Sample Space in real life

# \* Possible outrages of a power network

\* Possible mutations in a gene

# #A bus' arriving time

#### Event

- \* An event **E** is a subset of the sample space  $\Omega$
- \* So an event is a set of outcomes that is a subset of  $\Omega$ , ie.
  - # Zero outcome
  - # One outcome
  - Several outcomes
  - # All outcomes

# The same experiment may have different events

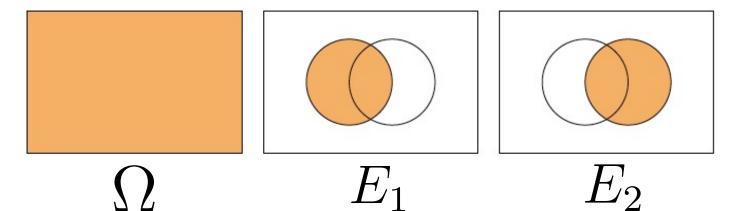
# When two coins are tossed When two coins are tossed Both coins come up the same? At least one head comes up?

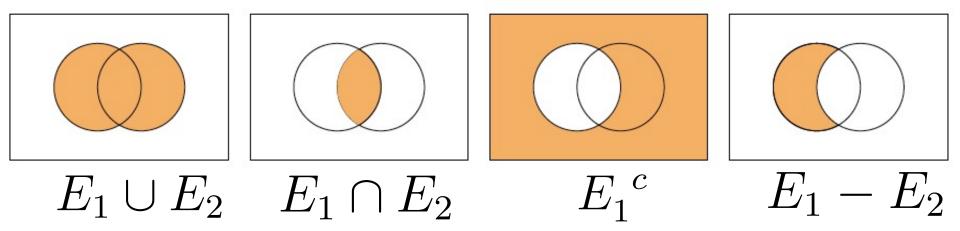
#### Some experiment may never end

\* Experiment: Tossing a coin until a head appears

**E:** Coin is tossed at least 3 times
This event includes infinite # of outcomes

## Venn Diagrams of events as sets





### Combining events

### \*\* Say we roll a six-sided die. Let $E_1 = \{1, 2, 5\} \text{ and } E_2 = \{2, 4, 6\}$

**\*\*** What is  $E_1 \cup E_2$  **\*\*** What is  $E_1 \cap E_2$  **\*\*** What is  $E_1 - E_2$ **\*\*** What is  $E_1^c = \Omega - E_1$ 

#### Frequency Interpretation of Probability

# Given an experiment with an outcome A, we can calculate the probability of A by repeating the experiment over and over

$$\begin{split} P(A) &= \lim_{N \to \infty} \frac{number \ of \ time \ A \ occurs}{N} \\ \ensuremath{\#} \ \text{So,} \\ & 0 \leq P(A) \leq 1 \\ & \sum_{A_i \in \Omega} P(A_i) = 1 \end{split}$$

### Axiomatic Definition of Probability

- \* A probability function is any function P that maps sets to real number and satisfies the following three axioms:
  - 1) Probability of any event E is non-negative

$$P(E) \ge 0$$

2) Every experiment has an outcome

$$P(\Omega) = 1$$

### Axiomatic Definition of Probability

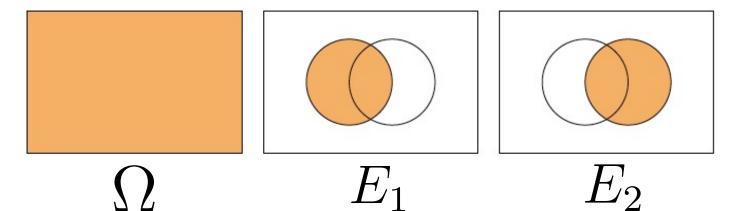
3) The probability of disjoint events is additive  $P(E_1 \cup E_2 \cup ... \cup E_N) = \sum_{i=1}^N P(E_i)$ if  $E_i \cap E_j = \emptyset$  for all  $i \neq j$ 

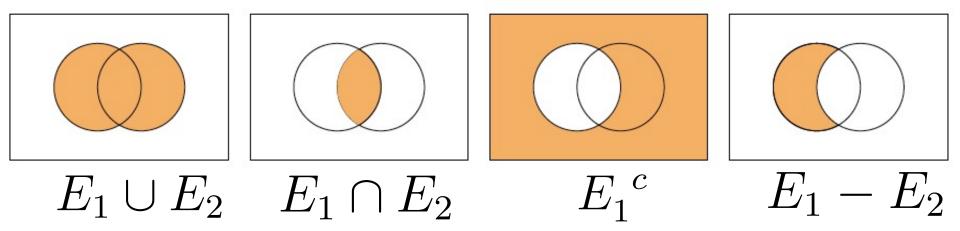
#### \* Toss a coin 3 times

# The event "exactly 2 heads appears" and "exactly 2 tails appears" are disjoint. A. True

B. False

## Venn Diagrams of events as sets





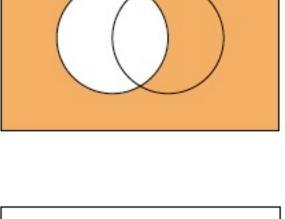
# Properties of probability

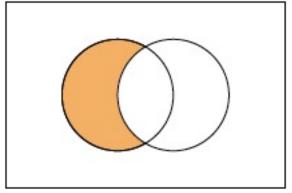
#### \* The complement

 $P(E^c) = 1 - P(E)$ 

#### \* The difference

$$P(E_1 - E_2) = P(E_1) - P(E_1 \cap E_2)$$

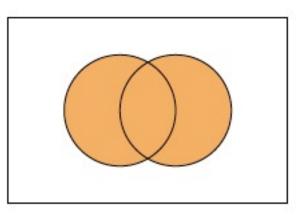




# Properties of probability

#### \* The union

 $P(E_1 \cup E_2) =$  $P(E_1) + P(E_2)$  $- P(E_1 \cap E_2)$ 



#### **\*** The union of multiple E

 $P(E_1 \cup E_2 \cup E_3) = P(E_1) + P(E_2) + P(E_3)$  $- P(E_1 \cap E_2) - P(E_2 \cap E_3) - P(E_3 \cap E_1)$  $+ P(E_1 \cap E_2 \cap E_3)$ 

### The Calculation of Probability

- # Discrete countable finite event
- Continuous event

# Counting to determine probability of countable finite event

\* From the last axiom, the probability of event **E** is the sum of probabilities of the disjoint outcomes  $P(E) = \sum P(A)$ 

$$P(E) = \sum_{A_i \in E} P(A_i)$$

If the outcomes are atomic and have equal probability,

 $P(E) = \frac{number \ of \ outcomes \ in \ E}{total \ number \ of \ outcomes \ in \ \Omega}$ 

### Probability using counting: (1)

# \* Tossing a fair coin twice: \* Prob. that it appears the same?

#### \*\* Prob. that at least one head appears?

## Probability using counting: (2)

- # 4 rolls of a 5-sided die:
  - E: they all give different numbers\* Number of outcomes that make the event happen:

- \*\* Number of outcomes in the sample space
- % Probability:

### Probability using counting: (2)

What about N-1 rolls of a N-sided die?

E: they all give different numbers\* Number of outcomes that make the event happen:

\*\* Number of outcomes in the sample space

% Probability:

# Probability by reasoning with the complement property

#If P(E<sup>c</sup>) is easier to calculate

# $P(E) = 1 - P(E^c)$

# Probability by reasoning with the complement property

A person is taking a test with N true or false questions, and the chance he/she answers any question right is 50%, what's probability the person answers at least one question right? Probability by reasoning with the union property

### #If E is either E1 or E2

# $P(E) = P(E_1 \cup E_2) =$ $P(E_1) + P(E_2) - P(E_1 \cap E_2)$

# Probability by reasoning with the properties (2)

A person may ride a bike on any day of the year equally. What's the probability that he/she rides on a Sunday or on 15<sup>th</sup> of a month?

### Counting may not work

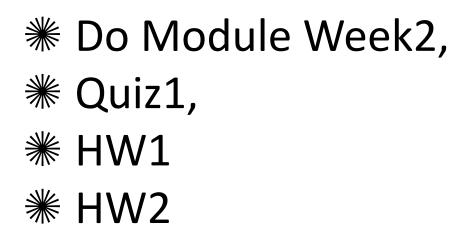
# \*\*This is one important reason to use the method of reasoning with properties

# What if the event has outcomes

Tossing a coin until head appears
 Coin is tossed at least 3 times
 This event includes infinite # of outcomes.
 And the outcomes don't have equal probability.

# ΤΤΗ, ΤΤΤΗ, ΤΤΤΤΗ....

#### Assignments



#### Additional References

- \* Charles M. Grinstead and J. Laurie Snell "Introduction to Probability"
- Morris H. Degroot and Mark J. Schervish "Probability and Statistics"

#### See you next time

See You!

