Probability and Statistics 2

for Computer Science

“A major use of probability in
statistical inference is the
updating of probabilities
when certain events are
observed” — Prof. M.H.
DeGroot
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Warm up: which is larger?
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Conditional Probability
* Review

% Bayes rule

% Total probability

% Independence




Conditional Probability

2 The probability of A given B
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Joint Probability Calculation

— P(AN B) = P(A|B)P(B)
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Joint Probability Calculation
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A: meat B: sSoup

D: juice
P(soup N'meat) =
P(meat|soup) P(soup)
=0.0x08=04



Joint Probability Calculation

= P(ANB) = P(A|B)P(B)
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Symmetry of joint event in terms of
conditional




Symmetry of joint event in terms of

conditional .
PnA = AnB8
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The famous Bayes rule
P(A|B)P(B) = P(B|A)P(A)

X P(B|A)P(A)
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The famous Bayes rule
P(A|B)P(B) = P(B|A)P(A)

P(B|A)P(A)
P(B)

P(A|B) =

Thomas Bayes (1701-1761)



Bayes rule: lemon cars

There are two car factories, A and B, that
supply the same dealer. Factory A produced
1000 cars, of which 10 were lemons. Factory B
produced 2 cars and both were lemons. You —

C
bought a car that turned out to be a@ ’
What is the probzbility that it came from
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Bayes rule: lemon cars

There are two car factories, A and B, that
supply the same dealer. Factory A produced
1000 cars, of which 10 were lemons. Factory B
produced 2 cars and both were lemons. You
bought a car that turned out to be a lemon.
What is the probability that it came from

factory B? “
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Bayes rule: lemon cars

Given the above information, what is the
probability that it came from factory A?

P(A|L) =?



Total probability:
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Total probability:
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Total probability
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Total probability general form
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Total probability:
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Bayes rule using total prob.
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Bayes rule: rare disease test

There is a blood test for a rare disease. The

frequency of the disease is 1/100,000. If one has it,
the test confirms it with probability 0.95. If one
doesn't have, the test gives false positive with

probability 0.001. What is P(D|T), the probability
of having disease given a positive test result?

P(T|D)P(D)
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Bayes rule: rare disease test

There is a blood test for a rare disease. The

frequency of the disease is 1/100,000. If one has it,
the test confirms it with probability 0.95. If one
doesn't have, the test gives false positive with
probability 0.001. What is P(D|T), the probability
of having disease given a positive test result?

1
P(D|T) = P(T|D)P(D) 0 T5Y 79, =
P(T|D)P(D) + P(T|D¢
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One definition:

P(A|B) = P(A) or
P(B|A) = P(B)

Whether A happened doesn’t change
the probability of B and vice versa



Independence: example

Suppose that we have a fair coin and it is
tossed twice. let A be the event “the
first toss is a head” and B the event “the
two outcomes are the same.”
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These two events are independent!



Independence

Alternative definition

P(A|B) = P(A)
i (];4(;;9 ) _ peay

=|P(AN B) = P(A)P(B)]




Testing Independence:

Suppose you draw one card from a
standard deck of cards. E, is the event
that the card is a King, Queen or Jack. E,
is the event the card is a Heart. Are E, and

E, independent? 3 Me s
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Pairwise independence is not mutual
independence in larger context
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Mutual independence

Mutual independence of a collection
of events A;, A, As... A, is:

P(IE,Ar-. Ay = P(A)
' Jyky.p 7
It’s very strong independence!



Probability using the property of

Independence: Airline overbooking (1)

An airline has a flight with 6 seats. They
always sell 7 tickets for this flight. If ticket
holders show up independently with

probabilit\@, what is the probability that
the flight is overbooked ?
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Probability using the property of

Independence: Airline overbooking (2)

An airline has a flight with 6 seats. They
always sell 8 tickets for this flight. If ticket
holders show up independently with

probability p, what is the probability th@
exactly 6 people showed up
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Probability using the property of

Independence: Airline overbooking (3)

An airline has a flight with 6 seats. They
always sell 8 tickets for this flight. If ticket
holders show up independently with
probability p, what is the probability that
the flight is overbooked ?
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Module week3 on Canvas

Next time: Random variable



Additional References

Charles M. Grinstead and J. Laurie Snell
"Introduction to Probability”

Morris H. Degroot and Mark J. Schervish
"Probability and Statistics”



See you next time




