Probability and Statistics **1** for Computer Science

"A major use of probability in statistical inference is the updating of probabilities when certain events are observed" – Prof. M.H. **DeGroot**

Credit: wikipedia

Hongye Liu, Teaching Assistant Prof, CS361, UIUC, 9.10.2021

Counting: how many ways?

if we put ⁷ hats ^c indistinguishable) on ⁷ people out of ¹⁰ people randomly ?

Warm up: which is larger?

P(ANB) or P(AIB) $P(B) < 1$ A) PLANB) $P(A|B)$ B) $\begin{array}{c}\nC \\
\bigcap\n\end{array}\n\quad \text{None} \\
\text{P(A1B)} = \frac{\text{P(A1B)}}{\text{D1B}}\n\end{array}$

Last time

* More probability calculation using counting Conditional probability Mutiplication rule;

Objectives

✺Conditional Probability

- ✺ Bayes rule
- ✺ Total probability
- ✺ Independence

Conditional Probability

✺The probability of *A* given *B*

 $P(A|B) = \frac{P(A \cap B)}{P(B)}$ $\overline{P(B)}$

 $P(B) \neq 0$

The line-crossed area is the new sample space for conditional P(A| B)

Joint Probability Calculation

$\Rightarrow P(A \cap B) = P(A|B)P(B)$

Joint Probability Calculation

$\Rightarrow P(A \cap B) = P(A|B)P(B)$

 $P(\text{sup } \cap \text{mea}) = P(\text{sup } \cap \text{mea}) =$ $P(meat|soup)P(soup)$ $= 0.5 \times 0.8 = 0.4$ P(B)prior $(B) = ? 1 - P(A|B)$ soup $\left(\begin{array}{cc} 3 & \text{fish} \\ 2 & \text{fish} \end{array}\right) = ?$ c- PCAND) A: meat $B:$ soup

Joint Probability Calculation

Symmetry of joint event in terms of conditional prob.

$$
P(A|B) = \frac{P(A \cap B)}{P(B)} \quad P(B) \neq 0
$$

$\Rightarrow P(A \cap B) = P(A|B)P(B)$ $\Rightarrow P(B \cap A) = P(B|A)P(A)$

Symmetry of joint event in terms of conditional prob.

\therefore Bn A = An B
 $P(B \cap A) = P(A \cap B)$ $B \cap A = A \cap B$

 $P(A|B)P(B) = P(B|A)P(A)$

The famous **Bayes** rule

 $P(A|B)P(B) = P(B|A)P(A)$ \Rightarrow $P(A|B) = \frac{P(B|A)P(A)}{P(B)}$ PLAIR) $\overline{P(B)}$ $P(A|D) = P(D|A) P(A)$ '☒☒☒¥ o Thomas Bayes (1701-1761)

The famous **Bayes** rule

$P(A|B)P(B) = P(B|A)P(A)$ \Rightarrow $P(A|B) = \frac{P(B|A)P(A)}{P(B)}$ PLAIR) $\overline{P(B)}$

Thomas Bayes (1701-1761)

Bayes rule: lemon cars

There are two car factories, A and B, that supply the same dealer. Factory A produced 1000 cars, of which 10 were lemons. Factory B produced 2 cars and both were lemons. You $\frac{1}{5}$ bought a car that turned out to be a *(emon.)* What is the probability that it came from *Factory*? $P(ENED) = ? = P$ Fec B P (EA) Ea). Pc(2)

Bayes rule: lemon cars

There are two car factories, A and B, that supply the same dealer. Factory A produced 1000 cars, of which 10 were lemons. Factory B produced 2 cars and both were lemons. You bought a car that turned out to be a lemon. What is the probability that it came from factory B? ,
6
6

 $\frac{c}{12}$

 $P(B|L) = \frac{P(L|B)P(B)}{P(L)}$

Bayes rule: lemon cars

Given the above information, what is the probability that it came from factory A?

 $P(A|L) = ?$

Total probability:

to workout 800 Sunny to work out 30^o Raing H Summy / R Rainny = 3 pcRaing Nowt) $P(\text{sumN} \text{aux}) P(\text{work out}) = ?$ $(751\times 50), +1570\times 307)$

 $A \rightarrow$ sunny $\overline{\mathcal{R}}$ A \rightarrow rainy $p(B|A) =$ ρ (31_A^e)= $P(A)=$ $p(A^c)$ =

$P(B) = P(A \cap B) + P(A^{c} \cap B)$ $= P(B|A)P(A) + P(B|A^c)$ $P(A^C)$

Total probability:

Total probability

$P(B) = P(A_1 \cap B) + P(A_2 \cap B) + P(A_3 \cap B)$ $= P(B|A_i)P(A_i) + P(B|A_i)P(A_i)$ $+P(B|A_3)P(A_3)$

Total probability general form

 $A_{\boldsymbol{\delta}}$, Ak are disjoint $A_j \cap A_k = \emptyset$
 $j \neq k$

Total probability:

P (meat) = ? $0.8 \times 0.5 + 0.2 \times 0.3$ p (sowp | meat) = ? p (soup neat) P (soup n'inear)
P (mear) 0.8×0.5 0.8x0.5to.2x0.3

Bayes rule using total prob.

 $P(B|A_j) P(A_j)$ $P(A_i|B) =$ $\mathsf{15}$) $P(B|A_i) P(A_i)$ Σ PCBIA; p(A;) $A_i \cap A_j = \phi$ -disjoint if こも

Bayes rule: rare disease test

probability 0.001. What is $P(D|T)$, the probability There is a blood test for a rare disease. The frequency of the disease is 1/100,000. If one has it, the test confirms it with probability 0.95. If one doesn't have, the test gives false positive with of having disease given a positive test result?

> $P(D|T) = \frac{P(T|D)P(D)}{P(T)}$ $\overline{P(T)}$ = (D) $P(T|D)P(D) + P(T|D^c)P$ Using total prob. $P(T|D)P(P)$

Bayes rule: rare disease test

There is a blood test for a rare disease. The frequency of the disease is 1/100,000. If one has it, the test confirms it with probability 0.95. If one doesn't have, the test gives false positive with probability 0.001. What is $P(D|T)$, the probability of having disease given a positive test result? 0.95×10000 $P(D|T) = \frac{P(T|D)P(D)}{P(T|D)P(D) + P(T|D^c)P(D^c)}$ 0.95×10^{-4} + $e^{-0.00}$ (1- $P(0)$)

$$
P^{\perp D}|T| < |S|
$$

Independence

✺One definition:

$P(A|B) = P(A)$ or $P(B|A) = P(B)$

Whether A happened doesn't change the probability of B and vice versa

Independence: example

* Suppose that we have a fair coin and it is tossed twice. let A be the event "the first toss is a head" and B the event "the two outcomes are the same." A: $H*$ B: $HH T T$
P(A(B) = PLA) $P(A|B) = \frac{P(A \cap B) P(HH)}{P(B)} = \frac{P(A \cap B)}{P(B)P(HH, T1)}$ $=\frac{1}{2}$ $P(A) = \frac{1}{2}$ $P(A|B) = P(A)$ * These two events are independent!

Independence

✺Alternative definition

$$
\Rightarrow [P(A \cap B) = P(A)P(B)]
$$

۰

Testing Independence:

✺ Suppose you draw one card from a standard deck of cards. E_1 is the event that the card is a King, Queen or Jack. E_2 is the event the card is a Heart. Are E_1 and E_2 independent? v one card from a
cards. E₁ is the ever
King, Queen or Jack
ard is a Heart. Are I Yes $P(E|nEv)$ = $D(E,)$ = $DLE\nu)$ =

Pairwise independence is not mutual independence in larger context

$$
A = A_1 \cup A_2; P(A)
$$

$$
B = A_1 \cup A_3; P(B)
$$

 $C = A_1 \cup A_4$; $P(C)$

*P(ABC) is the shorthand for $P(A \cap B \cap C)$

 $\sqrt{2}$

$$
P(A_1) = P(A_2) = P(A_3) = P(A_4) = 1/4
$$

$$
P(AIB) = P(A.) = \frac{1}{4} < \frac{P(A)P(B)}{2}
$$

\n
$$
P(AIB) = P(A.) = \frac{1}{4}
$$

\n
$$
P(BIB) = P(A.) = \frac{1}{4}
$$

\n
$$
P(AIBIO) = P(A)P(B)P(C)
$$

\n
$$
= \frac{1}{8}
$$

\n
$$
1 \text{ for } P(AIBIO)
$$

Mutual independence

✺Mutual independence of a collection of events $A_1, A_2, A_3...A_n$ is :

f events
$$
A_1, A_2, A_3...A_n
$$
 is:
\n
$$
P(\bigoplus_i [A_iA_k...A_j]) = P(A_i)
$$
\n
$$
j, k, ...p \neq i
$$

✺It's very strong independence!

Probability using the property of Independence: Airline overbooking (1)

✺ An airline has a flight with 6 seats. They always sell 7 tickets for this flight. If ticket holders show up independently with probability \mathbf{p} , what is the probability that the flight is overbooked ? 0

⁷ showed up

$$
P(A_{1}A A v B) - P(A_{2}) = p^{2}
$$

=
$$
P(A_{1})P(A_{2}) - P(A_{1})
$$

Probability using the property of Independence: Airline overbooking (2)

✺ An airline has a flight with 6 seats. They always sell 8 tickets for this flight. If ticket holders show up independently with probability **p**, what is the probability that exactly 6 people showed up? tickets showed up?
 $\frac{2}{1}$ $\frac{2}{1}$ $\frac{3}{1}$ $\frac{4}{1}$ $\frac{5}{1}$ $\frac{6}{1}$

Z

P(6 people showed up) = $(\begin{matrix} 8\\ 6 \end{matrix})$ p^b (ιp) $P(A_1 \cap A_2 \cap A_3 \cap A_4 \cap A_5 \cap A_6$ $N_A^c \cap A_s^c$ \cdot 6)

Probability using the property of Independence: Airline overbooking (3)

 $*$ An airline has a flight with 6 seats. They always sell 8 tickets for this flight. If ticket holders show up independently with probability **p**, what is the probability that the flight is overbooked?

 P (overbooked) =

$$
\sum_{u=7}^{8} {8 \choose u} p^{u} (-p)^{8-u}
$$

Assignments

✺ Module week3 on Canvas

✺ Next time: Random variable

Additional References

- ✺ Charles M. Grinstead and J. Laurie Snell "Introduction to Probability"
- ✺ Morris H. Degroot and Mark J. Schervish "Probability and Statistics"

See you next time

See You!

