

"The eternal mystery of the world is its comprehensibility ... The fact that it is comprehensible is a miracle." – Albert Einstein

Credit: wikipedia

Objectives

- ** Welcome/Orientation
 - ****** Expectations in mixed-mode lectures
- ****** Big picture of the contents
- ** Lecture 1 Data Visualization & Summary (I)

What to expect in the lecture?

Mixed-mode of teaching

Activities using **Poll Everywhere** and **Canvas group**

What to expect in the lecture? (AL2)

- ** AL2 online students' Video and Audio will be both muted during the lecture unless permitted by the instructor for questions.
- ** You can use the chatbox or Canvas "chat" to ask questions or write comments.
- ** Questions will be collected by the assistant for answers or summary.

What to expect in the lecture? (AL1)

- ** **AL1** in-person students should not log into Zoom.
- ** You can use Canvas "chat" to ask questions or write comments. You can also raise hands to ask questions.
- ** Questions from Canvas will be collected by the assistant for answers or summary.
- * Wear face covering in the classroom

Vision (PCA)

- ** Passion for learning
- **** Compassion for each other**
- **** Authentic understanding**

How to succeed in this course?

- ** Factors that will hinder you from success
- ****** Factors that will help you succeed

Avoid these that could cause failure

- ** Academic integrity infraction by all means!
- * Missing homeworks, project or quizzes
- ** Late/Poor homeworks or project
- ****** Insufficient viewing of the contents
- ** Poor time management & Procrastination
- ** Too many challenging classes at the same time
- ** Not motivated/not interested in the topic

Factors that will help you succeed

- # Be engaged/motivated,
- **Do not hesitate to ask** for help.
- **Be Active** in class participation
- Do as much practice as possible, not just the homework and project.
- ** Participate in the optional teamwork
- Clear your doubts/misconceptions asap (every lecture/discussion is important)

Interactions are important!

- ** Try to go to office hours as much as possible
- ** Try to meet or talk to the instructor as least once personally
- ** You are encouraged to join the teamwork (extra points opportunities)
- ** Show compassion via community service

Graded Teamwork

Extra Points

Quizzes

Course materials

****** Canvas Course Site

https://canvas.illinois.edu/courses/13954

****** Public Website

https://courses.grainger.illinois.edu/CS361/fa2021/

Lecture videos and ClassTranscribe

- ** Lecture and discussion will be recorded and accessible at https://mediaspace.illinois.edu/
- ClassTranscribe provides transcripts for these videos
 - https://classtranscribe.illinois.edu/home
- ** The Zoom recording links and the specific links of the above two channels are all on Canvas

Ed policy and Gradescope submission

- Students are expected to follow the guidelines on how to use Ed (linked to the syllabus) in this course
- Students are expected to follow the guidelines of homework submissions (linked to the syllabus and on Canvas) in this course

Big picture of the content

- ** Probability and Statistics in action
- ** What does this course teach?

Textbook: Forsyth, D. A. "Probability and Statistics for Computer Science," Springer (2018)

** Why are there 4 sections? How are they related?

This field really started with gaming

** We are familiar with flipping a coin or throwing a dice, the result is uncertain!

Head Or Tail?

Which side is front?

Life is uncertain so aim for longterm average

** We repeat a lot of experiments and see if there is regularity

Head Or Tail?

Which side is front?

Throwing a lot of "coins" for many times in one touch

****** Galton board, the Bead Machine

https://www.youtube.com/watch?v=Kq7e6cj2nDw

Probability and Statistics Experiment in action

Simulation of random draw of a picture on computer

** It's the same as
throwing a 4-sided die.

What does this course teach?

- ** Describing Datasets
 - Summary & visualization
- ****** Probability
- ** Inference Statistical Inference
- ** Tools Machine Learning tools

Describing datasets (Summary & visualization)

Descriptive & Graphical

Figure 2-4. Monthly normal mean temperatures for four locations in the US. Data source: NOAA.

Summarization of 4 locations' annual mean temperature by month

Probability

**** Mathematical**

Romeo and Juliet have a date

Each arrives with a delay btw 0 and 1 hour. The first to arrive leaves after 1/4 hour. All pairs of delays are equally likely.

What's the probability that they will meet?

Probability

**** Mathematical**

How many slots are empty on average for a simple hashing table?

Inference

**** Analytical**

Tools (Machine learning)

**** Algorithmical**

High-dimensional or complex shaped data sets need tools! Humans are limited in 2-3D.

Machine learning is Highly desired!
Often depends on Statistics.

Why these 4 sections?

- ** Summary & visualization
 Graphical
- ** Probability
 Mathematical
- ** Inference Statistical Inference
 Analytical
- ** Tools Machine Learning tools Algorithmical

Why these 4 sections?

- ** The common thread is **Data**.
- ** We are doing computer science and so

are like these yellow fish

What is special of Data? For Data?

Why these 4 sections?

- ** Real world data is often high dimensional and complex
- ** These 4 parts of knowledge or techniques are inseparably/organically connected in many real world applications.

What do we emphasize?

- *Mathematical principle
- **Critical thinking
- ****Working with real world data**

LECTURE 1

Q. What do you feel about it when we speak of data visualization?

Example 1: Black hole

Constructed image using data collected from many different telescopes' view of the same object

This project received a 3million-dollar award

Credit: NASA

Example 2: Four seasons by Vivaldi

Pitch is shown by the distance from center;
Length of the note is the size of dot
Instrument is shown by the color's shade

https://medium.com/future-today/off-the-staff-an-experiment-in-visualizing-notes-from-music-scores-58f6ee9f0cef

Example 3: Word cloud

Frequency of words of a document in novel visual presentation

Example 4: GIS map

Color scaled dots show the lead level in water in an area in Michigan

Lecture I: Data Visualization & Summary

** Datasets {x} – a set of N items x_i, i=1...N, each of which is a tuple

Proteins ----

Cell ID	CD45	CD3e	CD19	CD11b	Ki67
1	7.10543765	1.99490875	2.13073358	7.82894178	2.57289058
2	6.5957055	4.65342077	1.62918585	0.88137359	0.88137359
3	6.81991147	1.76259579	4.63429706	2.74452653	0.88137359
4	6.90112651	1.41502227	4.54593607	0.88137359	0.88137359
5	6.75571436	2.87597714	2.18671075	6.72464322	0.91192661
6	7.39538689	2.55285118	4.55845203	1.57273629	0.88137359
7	6.50181654	0.9030504	0.88137359	6.55459538	1.61883699
8	6.60986569	2.1753298	1.52779681	6.44086205	1.5347653
9	6.97651408	2.38246511	1.90249637	3.41580053	1.85303806
10	7.14397512	3.36924119	9.23325502	4.79035059	0.88137359
			22		

Each row is a tuple

Lecture I: Data Visualization & Summary

** Convention: columns are the features; the number of features is dimension.

Proteins ----

Cell ID	CD45	CD3e	CD19	CD11b	Ki67
1	7.10543765	1.99490875	2.13073358	7.82894178	2.57289058
2	6.5957055	4.65342077	1.62918585	0.88137359	0.88137359
3	6.81991147	1.76259579	4.63429706	2.74452653	0.88137359
4	6.90112651	1.41502227	4.54593607	0.88137359	0.88137359
5	6.75571436	2.87597714	2.18671075	6.72464322	0.91192661
6	7.39538689	2.55285118	4.55845203	1.57273629	0.88137359
7	6.50181654	0.9030504	0.88137359	6.55459538	1.61883699
8	6.60986569	2.1753298	1.52779681	6.44086205	1.5347653
9	6.97651408	2.38246511	1.90249637	3.41580053	1.85303806
10	7.14397512	3.36924119	9.23325502	4.79035059	0.88137359
			22		

Each row is a tuple with dimension =5

Data types

****** Categorical

**** Ordinal**

****** Continuous

Data types

- ** Categorical
 Smoker or non-Smoker, Female or Male etc.
- ** Ordinal
 Satisfaction (Not satisfied, satisfied, very satisfied)
- ** Continuous (any real number within a range)
 Temperature

Q. Which of the following data is not categorical?

- A. Number of enrolled students in a class
- B. Weight of apples in a grocery store
- C. Instruments played by an orchestra
- D. Type of chemical reagents in a lab
- E. A & B

Simple Visualization of Data

- ****** General principles
- ****** Bar chart
- * Histogram
- ****** Conditional histogram

Simple Visualization of Data

- ****** General principles
 - Must not mislead or distort;
 - Aesthetically pleasing;
 - Clear, Attractive, Convincing;
 - Show message/significance.

Simple Visualization of Data

****** Bar chart

A set of bars that are organized by categorical or ordinal feature

Data: "mtcars"

An example of good, ugly, bad, wrong

Dr. Wilke illustrated the difference between good, ugly, bad and wrong visualization

Figure 1-1. Examples of ugly, bad, and wrong

C. Wilke "Fundamentals of Data Visualization"

Assignments

- ** Finish the Orientation module on Canvas
- ****** Submit HW0 to Gradescope to test it
- Start week1 module on Canvas
- ** Start discussion #1 on Python

Additional References

- ** Charles M. Grinstead and J. Laurie Snell "Introduction to Probability"
- ** Morris H. Degroot and Mark J. Schervish "Probability and Statistics"

See you next time

See you!

