"The eternal mystery of the world is its comprehensibility ... The fact that it is comprehensible is a miracle." – Albert Einstein Credit: wikipedia # Objectives - ** Welcome/Orientation - ****** Expectations in mixed-mode lectures - ****** Big picture of the contents - ** Lecture 1 Data Visualization & Summary (I) ## What to expect in the lecture? Mixed-mode of teaching Activities using **Poll Everywhere** and **Canvas group** ## What to expect in the lecture? (AL2) - ** AL2 online students' Video and Audio will be both muted during the lecture unless permitted by the instructor for questions. - ** You can use the chatbox or Canvas "chat" to ask questions or write comments. - ** Questions will be collected by the assistant for answers or summary. ## What to expect in the lecture? (AL1) - ** **AL1** in-person students should not log into Zoom. - ** You can use Canvas "chat" to ask questions or write comments. You can also raise hands to ask questions. - ** Questions from Canvas will be collected by the assistant for answers or summary. - * Wear face covering in the classroom # Vision (PCA) - ** Passion for learning - **** Compassion for each other** - **** Authentic understanding** ### How to succeed in this course? - ** Factors that will hinder you from success - ****** Factors that will help you succeed #### Avoid these that could cause failure - ** Academic integrity infraction by all means! - * Missing homeworks, project or quizzes - ** Late/Poor homeworks or project - ****** Insufficient viewing of the contents - ** Poor time management & Procrastination - ** Too many challenging classes at the same time - ** Not motivated/not interested in the topic # Factors that will help you succeed - # Be engaged/motivated, - **Do not hesitate to ask** for help. - **Be Active** in class participation - Do as much practice as possible, not just the homework and project. - ** Participate in the optional teamwork - Clear your doubts/misconceptions asap (every lecture/discussion is important) ### Interactions are important! - ** Try to go to office hours as much as possible - ** Try to meet or talk to the instructor as least once personally - ** You are encouraged to join the teamwork (extra points opportunities) - ** Show compassion via community service ### Graded Teamwork ### Extra Points ## Quizzes ### Course materials ****** Canvas Course Site https://canvas.illinois.edu/courses/13954 ****** Public Website https://courses.grainger.illinois.edu/CS361/fa2021/ ### Lecture videos and ClassTranscribe - ** Lecture and discussion will be recorded and accessible at https://mediaspace.illinois.edu/ - ClassTranscribe provides transcripts for these videos - https://classtranscribe.illinois.edu/home - ** The Zoom recording links and the specific links of the above two channels are all on Canvas ## Ed policy and Gradescope submission - Students are expected to follow the guidelines on how to use Ed (linked to the syllabus) in this course - Students are expected to follow the guidelines of homework submissions (linked to the syllabus and on Canvas) in this course # Big picture of the content - ** Probability and Statistics in action - ** What does this course teach? Textbook: Forsyth, D. A. "Probability and Statistics for Computer Science," Springer (2018) ** Why are there 4 sections? How are they related? # This field really started with gaming ** We are familiar with flipping a coin or throwing a dice, the result is uncertain! Head Or Tail? Which side is front? ## Life is uncertain so aim for longterm average ** We repeat a lot of experiments and see if there is regularity Head Or Tail? Which side is front? # Throwing a lot of "coins" for many times in one touch ****** Galton board, the Bead Machine https://www.youtube.com/watch?v=Kq7e6cj2nDw # Probability and Statistics Experiment in action # Simulation of random draw of a picture on computer ** It's the same as throwing a 4-sided die. ## What does this course teach? - ** Describing Datasets - Summary & visualization - ****** Probability - ** Inference Statistical Inference - ** Tools Machine Learning tools # Describing datasets (Summary & visualization) ### Descriptive & Graphical Figure 2-4. Monthly normal mean temperatures for four locations in the US. Data source: NOAA. Summarization of 4 locations' annual mean temperature by month # Probability #### **** Mathematical** ### Romeo and Juliet have a date Each arrives with a delay btw 0 and 1 hour. The first to arrive leaves after 1/4 hour. All pairs of delays are equally likely. What's the probability that they will meet? ## Probability #### **** Mathematical** How many slots are empty on average for a simple hashing table? # Inference ### **** Analytical** # Tools (Machine learning) ### **** Algorithmical** High-dimensional or complex shaped data sets need tools! Humans are limited in 2-3D. Machine learning is Highly desired! Often depends on Statistics. # Why these 4 sections? - ** Summary & visualization Graphical - ** Probability Mathematical - ** Inference Statistical Inference Analytical - ** Tools Machine Learning tools Algorithmical # Why these 4 sections? - ** The common thread is **Data**. - ** We are doing computer science and so are like these yellow fish ## What is special of Data? For Data? # Why these 4 sections? - ** Real world data is often high dimensional and complex - ** These 4 parts of knowledge or techniques are inseparably/organically connected in many real world applications. # What do we emphasize? - *Mathematical principle - **Critical thinking - ****Working with real world data** ### LECTURE 1 Q. What do you feel about it when we speak of data visualization? ## Example 1: Black hole Constructed image using data collected from many different telescopes' view of the same object This project received a 3million-dollar award Credit: NASA ## Example 2: Four seasons by Vivaldi Pitch is shown by the distance from center; Length of the note is the size of dot Instrument is shown by the color's shade https://medium.com/future-today/off-the-staff-an-experiment-in-visualizing-notes-from-music-scores-58f6ee9f0cef ### Example 3: Word cloud Frequency of words of a document in novel visual presentation #### Example 4: GIS map Color scaled dots show the lead level in water in an area in Michigan # Lecture I: Data Visualization & Summary ** Datasets {x} – a set of N items x_i, i=1...N, each of which is a tuple #### Proteins ---- | Cell ID | CD45 | CD3e | CD19 | CD11b | Ki67 | |---------|------------|------------|------------|------------|------------| | 1 | 7.10543765 | 1.99490875 | 2.13073358 | 7.82894178 | 2.57289058 | | 2 | 6.5957055 | 4.65342077 | 1.62918585 | 0.88137359 | 0.88137359 | | 3 | 6.81991147 | 1.76259579 | 4.63429706 | 2.74452653 | 0.88137359 | | 4 | 6.90112651 | 1.41502227 | 4.54593607 | 0.88137359 | 0.88137359 | | 5 | 6.75571436 | 2.87597714 | 2.18671075 | 6.72464322 | 0.91192661 | | 6 | 7.39538689 | 2.55285118 | 4.55845203 | 1.57273629 | 0.88137359 | | 7 | 6.50181654 | 0.9030504 | 0.88137359 | 6.55459538 | 1.61883699 | | 8 | 6.60986569 | 2.1753298 | 1.52779681 | 6.44086205 | 1.5347653 | | 9 | 6.97651408 | 2.38246511 | 1.90249637 | 3.41580053 | 1.85303806 | | 10 | 7.14397512 | 3.36924119 | 9.23325502 | 4.79035059 | 0.88137359 | | | | | 22 | | | Each row is a tuple # Lecture I: Data Visualization & Summary ** Convention: columns are the features; the number of features is dimension. #### Proteins ---- | Cell ID | CD45 | CD3e | CD19 | CD11b | Ki67 | |---------|------------|------------|------------|------------|------------| | 1 | 7.10543765 | 1.99490875 | 2.13073358 | 7.82894178 | 2.57289058 | | 2 | 6.5957055 | 4.65342077 | 1.62918585 | 0.88137359 | 0.88137359 | | 3 | 6.81991147 | 1.76259579 | 4.63429706 | 2.74452653 | 0.88137359 | | 4 | 6.90112651 | 1.41502227 | 4.54593607 | 0.88137359 | 0.88137359 | | 5 | 6.75571436 | 2.87597714 | 2.18671075 | 6.72464322 | 0.91192661 | | 6 | 7.39538689 | 2.55285118 | 4.55845203 | 1.57273629 | 0.88137359 | | 7 | 6.50181654 | 0.9030504 | 0.88137359 | 6.55459538 | 1.61883699 | | 8 | 6.60986569 | 2.1753298 | 1.52779681 | 6.44086205 | 1.5347653 | | 9 | 6.97651408 | 2.38246511 | 1.90249637 | 3.41580053 | 1.85303806 | | 10 | 7.14397512 | 3.36924119 | 9.23325502 | 4.79035059 | 0.88137359 | | | | | 22 | | | Each row is a tuple with dimension =5 ### Data types ****** Categorical **** Ordinal** ****** Continuous #### Data types - ** Categorical Smoker or non-Smoker, Female or Male etc. - ** Ordinal Satisfaction (Not satisfied, satisfied, very satisfied) - ** Continuous (any real number within a range) Temperature ## Q. Which of the following data is not categorical? - A. Number of enrolled students in a class - B. Weight of apples in a grocery store - C. Instruments played by an orchestra - D. Type of chemical reagents in a lab - E. A & B ### Simple Visualization of Data - ****** General principles - ****** Bar chart - * Histogram - ****** Conditional histogram ## Simple Visualization of Data - ****** General principles - Must not mislead or distort; - Aesthetically pleasing; - Clear, Attractive, Convincing; - Show message/significance. #### Simple Visualization of Data #### ****** Bar chart A set of bars that are organized by categorical or ordinal feature Data: "mtcars" ## An example of good, ugly, bad, wrong Dr. Wilke illustrated the difference between good, ugly, bad and wrong visualization Figure 1-1. Examples of ugly, bad, and wrong C. Wilke "Fundamentals of Data Visualization" #### Assignments - ** Finish the Orientation module on Canvas - ****** Submit HW0 to Gradescope to test it - Start week1 module on Canvas - ** Start discussion #1 on Python #### Additional References - ** Charles M. Grinstead and J. Laurie Snell "Introduction to Probability" - ** Morris H. Degroot and Mark J. Schervish "Probability and Statistics" #### See you next time ## See you!