
ì	Probability	and	Statistics	
for	Computer	Science		

Who	discovered	this?	
	

Hongye	Liu,	Teaching	Assistant	Prof,	CS361,	UIUC,	02.25.2020	

Credit:	wikipedia	

e = lim
n→∞

(

1 +
1

n

)

n



Last	time	

✺ Random	Variable		
✺ Review	
✺ The	weak	law	of	large	numbers	



Proof	of	Weak	law	of	large	numbers	

✺  Apply	Chebyshev’s	inequality	

✺  SubsPtute																												and		E[X] = E[X] var[X] =
var[X]

N

P (|X− E[X]| ≥ ϵ) ≤
var[X]

Nϵ2

P (|X− E[X]| ≥ ϵ) ≤
var[X]

ϵ2

lim
N→∞

P (|X− E[X]| ≥ ϵ) = 0

N → ∞

0	



Applications	of	the	Weak	law	of	
large	numbers	
✺  The	law	of	large	numbers	jus$fies	using	

simula$ons	(instead	of	calculaPon)		to	esPmate	
the	expected	values	of	random	variables		

✺  The	law	of	large	numbers	also	jus$fies	using	
histogram	of	large	random	samples	to	
approximate	the	probability	distribuPon	
funcPon											,	see	proof	on	
Pg.	353	of	the	textbook	by	DeGroot,	et	al.	

lim
N→∞

P (|X− E[X]| ≥ ϵ) = 0

P (x)



Histogram	of	large	random	IID	samples	
approximates	the	probability	distribution	

✺  The	law	of	large	numbers	jusPfies	using	
histograms	to	approximate	the	probability	
distribuPon.	Given	N	IID	random	variables	X1, 
…, XN	
✺  According	to	the	law	of	large	numbers 

✺  As	we	know	for	indicator	funcPon	
	E[Yi] = P (c1 ≤ Xi < c2)= P (c1 ≤ X < c2)

Y =

∑
N

i=1
Yi

N

N → ∞
E[Yi]



Probability	using	the	property	of	
Independence:	Airline	overbooking		

✺  An	airline	has	a	flight	with	s	seats.	They	
always	sell	t	(t>s)	Pckets	for	this	flight.	If	
Pcket	holders	show	up	independently	
with	probability	p,	what	is	the	probability	
that	the	flight	is	overbooked	?	

P(	overbooked)		=
t∑

u=s+1

C(t, u)pu(1− p)t−u



Simulation	of	airline	overbooking	

✺  An	airline	has	a	flight	with	7	seats.	They	
always	sell	12	Pckets	for	this	flight.	If	Pcket	
holders	show	up	independently	with	
probability	p,	esPmate	the	following	values		
✺  Expected	value	of	the	number	of	Pcket	

holders	who	show	up	
✺  Probability	that	the	flight	being	overbooked	
✺  Expected	value	of	the	number	of	Pcket	

holders	who	can’t	fly	due	to	the	flight	is	
overbooked.	



Conditional	expectation	

✺  Expected	value	of	X	condiPoned	on	event	A:	

✺  Expected	value	of	the	number	of	Pcketholders	
not	flying	

E[X|A] =
∑

x∈D(X)

xP (X = x|A)

t
∑

u=s+1

(u− s)

(

t

u

)

p
u(1− p)t−u

∑

t

v=s+1

(

t

v

)

pv(1− p)t−v
E[NF |overbooked] =



Simulate	the	arrival	

✺  Expected	value	of	the	number	of	Pcket	
holders	who	show	up	
nt=100000,	t=	12,	s=7,	p=0.1,	0.2,	…	1.0	

.	

.	

.	

…		
Num	of	trials		(nt)	

N
um

	o
f	P

ck
et
s	(
t)
	

We	generate	a	matrix	of	
random	numbers	from	
uniform	distribuPon	in	
[0,1],		
Any	number	<	p	is	
considered	an	arrival	



Simulate	the	arrival	

✺  Expected	value	of	the	number	of	Pcket	
holders	who	show	up	
nt=100000,	t=	12,	
	s=7,	p=0.1,	0.2,	…	1.0	
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Simulate	the	expected	probability	of	
overbooking	
✺  Expected	probability	of	the	flight	being	

overbooked	

✺  Expected	probability	is	equal	to	the	expected	
value	of	indicator	func:on.	Whenever	we	
have	Num	of	arrival	>	Num	of	seats,	we	mark	it	
with	an	indicator	funcPon.	Then	esPmate	with	
the	sample	mean	of	indicator	funcPons.	

	

t=	12,	s=7,	p=0.1,	0.2,	…	1.0	



Simulate	the	expected	probability	of	
overbooking	
✺  Expected	

probability	of	the	
flight	being	
overbooked	

	
nt=100000,	
t=	12,	s=7,		
p=0.1,	0.2,	…	1.0	

● ● ●

●

●

●

●

●

● ●

0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Expected probability of flight being overbooked

Probability of arrival (p)

Ex
pe

ct
ed

 v
al

ue



Simulate	the	expected	value	of	the	number	of	
grounded	ticket	holders	given	overbooked	

✺  Expected	value	of	
the	number	of	Pcket	
holders	who	can’t	
fly	due	to	the	flight	
being	overbooked	

Nt=200000,	
t=	12,	s=7,		
p=0.1,	0.2,	…	1.0	
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Objectives	

✺ Important	known	discrete	
probability	distribuPons	

✺ ConPnuous	Random	Variable		

	
	



The	classic	discrete	distributions		

✺ Bernoulli		
✺ Binomial	

✺ Geometric	

✺ Discrete	uniform	



Bernoulli	distribution	
✺  A	random	variable	X	is	Bernoulli	if	it	takes	on	two	

values	0	and	1	such	that	P(X=1)	=	p,	P(X=0)=1-p	

	
		

Credit:	wikipedia	

E[X] = p

var[X] = p(1− p)

Jacob	Bernoulli	(1654-1705)	



Bernoulli	distribution	
✺  Examples	
✺  Tossing	a	biased	(or	fair)	coin	
✺  Making	a	free	throw	
✺  Rolling	a	six-sided	die	and	checking	if	it	shows	6	
✺  Any	indicator	func:on	of	a	random	variable	



Binomial	distribution	
✺  The	Galton	Board	

✺  Remember	the	airline	problem?	

hgp://www.randomservices.org/
random/apps/
GaltonBoardExperiment.html	



Binomial	distribution	

Credit:	Prof.	Grinstead	

P	=	0.5	



Binomial	distribution	
✺  A	discrete	random	variable	X	is	binomial	if	

✺  Examples	
✺  If	we	roll	a	six-sided	die	N	Pmes,	how	many	sixes	we	will	

see	
✺  If	I	agempt	N	free	throws,	how	many	points	will	I	score	
✺  What	is	the	sum	of	N	independent	and	iden:cally	

distributed	Bernoulli	trials?	

P (X = k) =

(

N

k

)

pk(1− p)N−k for integer 0 ≤ k ≤ N

E[X] = Np & var[X] = Np(1− p)with	



Expectations	of	Binomial	distribution	

✺  A	discrete	random	variable	X	is	binomial	if	
P (X = k) =

(

N

k

)

pk(1− p)N−k for integer 0 ≤ k ≤ N

E[X] = Np & var[X] = Np(1− p)with	



Binomial	distribution:	die	example	

✺  Let	X	be	the	number	of	sixes	in	36	rolls	of	a	
fair	six-sided	die.	What	is	P(X=k)	for	k	=5,	6,	7	

✺  Calculate	E[X]	and	var[X]	



Geometric	distribution	
✺  A	discrete	random	variable	X	is	geometric	if		

✺  Expected	value	and	variance	

P (X = k) = (1− p)k−1p k ≥ 1

E[X] =
1

p
& var[X] =

1− p

p2

H,	TH,	TTH,	TTTH,	TTTTH,	TTTTTH,…	



Geometric	distribution	

P (X = k) = (1− p)k−1p k ≥ 1

Credit:	Prof.	Grinstead	

P=	0.5	 P=	0.2	



Geometric	distribution	
✺ Examples:	
✺  How	many	rolls	of	a	six-sided	die	will	it	take	to	

see	the	first	6?	
✺  How	many	Bernoulli	trials	must	be	done	before	

the	first	1?	
✺  How	many	experiments	needed	to	have	the	first	

success?	
✺  Plays	an	important	role	in	the	theory	of	queues	



Derivation	of	geometric	expected	
value	

	

E[X] =
∞∑

k=1

k(1− p)k−1p

= p

∞∑

k=1

k(1− p)k−1

=
p

1− p

∞∑

k=1

k(1− p)k =
1

p

																																
	
	
														
	
		
	
	
	



Derivation	of	geometric	expected	
value	

	

E[X] =
∞∑

k=1

k(1− p)k−1p

= p

∞∑

k=1

k(1− p)k−1

=
p

1− p

∞∑

k=1

k(1− p)k =
1

p

																																
	
	
														
	
		
	
	
	



Derivation	of	geometric	expected	
value	

	

E[X] =
∞∑

k=1

k(1− p)k−1p

= p

∞∑

k=1

k(1− p)k−1

=
p

1− p

∞∑

k=1

k(1− p)k



Derivation	of	geometric	expected	
value	

	
✺  For	we	have	
	this	power	series:		

E[X] =
∞∑

k=1

k(1− p)k−1p

= p

∞∑

k=1

k(1− p)k−1

=
p

1− p

∞∑

k=1

k(1− p)k



Derivation	of	geometric	expected	
value	

	
✺  For	we	have	
	this	power	series:		

∞∑

n=1

nx
n =

x

(1− x)2
; |x| < 1

E[X] =
∞∑

k=1

k(1− p)k−1p

= p

∞∑

k=1

k(1− p)k−1

=
p

1− p

∞∑

k=1

k(1− p)k



Derivation	of	geometric	expected	
value	

	
✺  For	we	have	
	this	power	series:		

∞∑

n=1

nx
n =

x

(1− x)2
; |x| < 1

E[X] =
∞∑

k=1

k(1− p)k−1p

= p

∞∑

k=1

k(1− p)k−1

=
p

1− p

∞∑

k=1

k(1− p)k

x = 1− p



Derivation	of	geometric	expected	
value	

	
✺  For	we	have	
	this	power	series:		

∞∑

n=1

nx
n =

x

(1− x)2
; |x| < 1

E[X] =
∞∑

k=1

k(1− p)k−1p

= p

∞∑

k=1

k(1− p)k−1

=
p

1− p

∞∑

k=1

k(1− p)k =
1

p
x	



Derivation	of	the	power	series	

	

∞∑

n=1

nx
n =

x

(1− x)2
; |x| < 1

S(x)

x
=

∞∑
n=1

nx
n−1

∫
x

0

S(t)

t
=

∞∑
n=1

x
n = x ·

1

1− x
=

x

1− x

S(x)

x
= (

x

1− x
)
′

S(x) =
x

(1− x)2

Proof:																																					;	

S(x) =

∞∑

n=0

x
n =

1

1− x
; |x| < 1



Geometric	distribution:	die	example	

✺  Let	X	be	the	number	of	rolls	of	a	fair	six-sided	
die	needed	to	see	the	first	6.	What	is														
for	k	=	1,	2?	

✺  Calculate	E[X]	and	var[X]	

P (X = k)

E[X] =
1

p
& var[X] =

1− p

p2



Betting	brainteaser	

✺  What	would	you	rather	bet	on?	
✺  How	many	rolls	of	a	fair	six-sided	die	will	it	

take	to	see	the	first	6?	
✺  How	many	sixes	will	appear	in	36	rolls	of	a	fair	

six-sided	die?	

✺  Why?	



Multinomial	distribution	
✺  A	discrete	random	variable	X	is	MulPnomial	if	

✺  The	event	of	throwing	N	Pmes	the	k-sided	die	
to	see	the	probability	of	gekng	n1	X1,	n2	X2,	n3	
X3…nk	Xk	

P (X1 = n1, X2 = n2, ..., Xk = nk) =
N !

n1!n2!...nk!
pn1

1
pn2

2
...pnk

k

where N = n1 + n2 + ...+ nk



Multinomial	distribution	
✺  A	discrete	random	variable	X	is	MulPnomial	if	

✺  The	event	of	throwing	k-sided	die	to	see	the	
probability	of	gekng	n1	X1,	n2	X2,	n3	X3…	

P (X1 = n1, X2 = n2, ..., Xk = nk) =
N !

n1!n2!...nk!
pn1

1
pn2

2
...pnk

k

where N = n1 + n2 + ...+ nk

8!

3!2!1!1!1!

I	 L	
ILLINOIS?	



Multinomial	distribution	
✺ Examples	
✺  If	we	roll	a	six-sided	die	N	Pmes,	how	many	

of	each	value	will	we	see?	
✺  What	are	the	counts	of	N	independent	and	

idenPcal	distributed	trials?	
✺  This	is	very	widely	used	in	genePcs	



Multinomial	distribution:	die	example	

✺ What	is	the	probability	of	seeing	1	
one,	2	twos,	3	threes,	4	fours,	5	fives	
and	0	sixes	in	15	rolls	of	a	fair	six-
sided	die?	



Discrete	uniform	distribution	
✺  A	discrete	random	variable	X	is	uniform	if	it	
takes	k	different	values	and		
	 	 		

✺  For	example:	
✺  Rolling	a	fair	k-sided	die	
✺  Tossing	a	fair	coin	(k=2)	

P (X = xi) =
1

k
For	all	xi	that	X	can	take	



Discrete	uniform	distribution	
✺  ExpectaPon	of	a	discrete	random	variable	X	that		

takes	k	different	values	uniformly	

✺  Variance	of	a	uniformly	distributed	random	
variable	X	.	

E[X] =
1

k

k∑

i=1

xi

var[X] =
1

k

k∑

i=1

(xi − E[X])2



Example	of	a	continuous	random	
variable	
✺ The	spinner	

✺ The	sample	space	for	all	outcomes	is	
not	countable	

	

0	

θ	 θ ∈ (0, 2π]



Probability	density	function	(pdf)	

✺  For	a	conPnuous	random	variable	X,	the	
probability	that	X=x	is	essenPally	zero	for	all	
(or	most)	x,	so	we	can’t	define		

✺  Instead,	we	define	the	probability	density	
func:on	(pdf)	over	an	infinitesimally	small	
interval	dx, 

✺  For a < b 
	

	

	

p(x)dx = P (X ∈ [x, x+ dx])∫
b

a

p(x)dx = P (X ∈ [a, b])

P (X = x)



Properties	of	the	probability	density	
function		
✺  									resembles	the	probability	funcPon	
of	discrete	random	variables	in	that	
✺  																										for	all	x 
✺  The	probability	of	X 	taking	all	possible	
values	is	1.	

	

	

p(x)

p(x) ≥ 0

∫
∞

−∞

p(x)dx = 1



Properties	of		the	probability	density	
function		
✺  									differs	from	the	probability	
distribuPon	funcPon	for	a	discrete	
random	variable	in	that	
✺  												is	not	the	probability	that	X	=	x		
✺  												can	exceed	1	

	

	

p(x)

p(x)

p(x)



Probability	density	function:	spinner	

✺  Suppose	the	spinner	has	equal	chance	
stopping	at	any	posiPon.	What’s	the	pdf	of	the	
angle	θ	of	the	spin	posiPon?										

✺  	For	this	funcPon	to	be	a	pdf,	
Then		

θ 2π	

c	

0	

p(θ) =

{

c if θ ∈ (0, 2π]
0 otherwise

∫
∞

−∞

p(θ)dθ = 1



Probability	density	function:	spinner	

✺  What	the	probability	that	the	spin	angle	θ	is	
within	[											]?										π

12
,
π

7



Q:	Probability	density	function:	spinner	

✺  What	is	the	constant	c	given	the	spin	angle	θ	
has	the	following	pdf?	

θ 2π	0	

p(θ)

π	

c	

A.	1	
B.	1/π	
C.	2/π	
D.	4/π	
E.	1/2π	



Expectation	of	continuous	
variables	
✺  Expected	value	of	a	conPnuous	random	
variable	X 

 

✺  Expected	value	of	funcPon	of	conPnuous	
random	variable	

	

E[X] =

∫
∞

−∞

xp(x)dx

E[Y ] = E[f(X)] =

∫
∞

−∞

f(x)p(x)dx

Y = f(X)

x	

weight	



Probability	density	function:	spinner	

✺  Given	the	probability	density	of	the	spin	angle	θ											

✺  The	expected	value	of	spin	angle	is		

p(θ) =

{

1

2π
if θ ∈ (0, 2π]

0 otherwise

E[θ] =

∫
∞

−∞

θp(θ)dθ



Properties	of	expectation	of	
continuous	random	variables	
✺  The	linearity	of	expected	value	is	true	for	
conPnuous	random	variables. 

 

✺  And	the	other	properPes	that	we	derived	
for	variance	and	covariance	also	hold	for	
conPnuous	random	variable	

	

∑ ∫



Q.	

✺  Suppose	a	conPnuous	variable	has	pdf	

	

What	is	E[X]?		

A.	1/2 			B.	1/3 				C.	1/4			 		

D.	1 					 			E.	2/3	

	

p(x) =

{

2(1− x) x ∈ [0, 1]
0 otherwise

E[X] =

∫
∞

−∞

xp(x)dx



Variance	of	a	continuous	variable	



Assignments	

✺ Work	on	Week5	material	

✺ Next	Pme:		more	classic	known	
probability	distribuPons	

	



Additional	References	

✺  Charles	M.	Grinstead	and	J.	Laurie	Snell	
"IntroducPon	to	Probability”		

✺ Morris	H.	Degroot	and	Mark	J.	Schervish	
"Probability	and	StaPsPcs”	



See	you	next	time	

See 
 You! 


