Probability and Statistics for Computer Science

Can we call e the exciting e?

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n$$

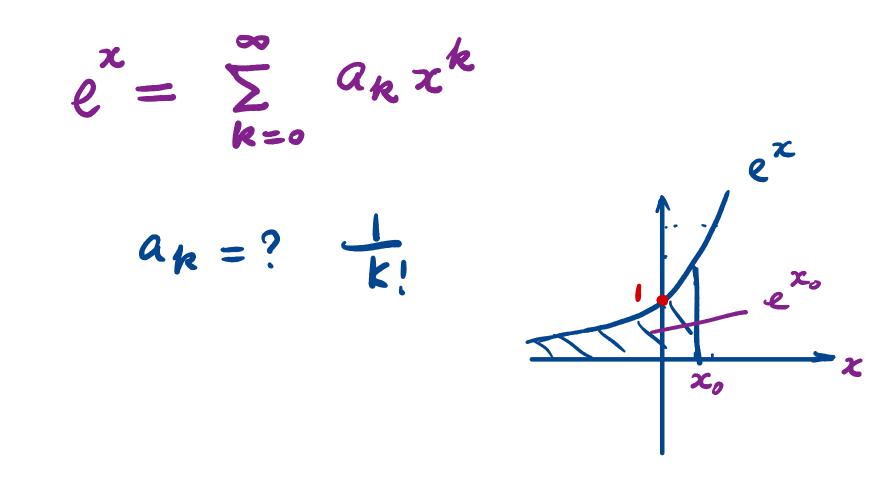
Credit: wikipedia

Hongye Liu, Teaching Assistant Prof, CS361, UIUC, 3.2.2021

What is the number?

 $e^{x} = \sum_{k=0}^{\infty} a_{k} x^{k}$ $a_k = ? \frac{1}{k!}$ $f(x) = \sum_{n=0}^{\infty} \frac{f^n(x)}{n!} x^n$ e=1 $(e^{x})' = e^{x}$

What is the number?



How many empty slots?

Mashing N items to k slots $(N \ge k)$ collisions are allowed, and will be handled by linked list. What is the expected number of empty slots? Xi = { | slot i remains empty after bashing $\sum_{\substack{k \in S \\ \text{trials are not indpt}}} P(X_{i} = 1) = ? \underset{\substack{k \in S \\ i = i}}{E[X_{i}]} = ? \underset{\substack{k \in S \\ i = i}}{E[X_{i}]} = ? \underset{\substack{k \in S \\ i = i}}{E[X_{i}]} = \sum_{\substack{k \in S \\ i = i}}{E[X_{i}]} = \sum_{\substack{k$

Last time

The classic discrete distributions Bernoulli Binomial X=K Geometric ____H, TH, TTH Continous Random Variable =(1-p)p $E[x] = \frac{1-1}{2}$ $Var[x] = \frac{1-1}{2}$

Objectives

- **Poisson** distribution
- * Continuous random variable; uniform distribution
- * Exponential distribution T L Interval (ie. thome)

Motivation for Poisson Distri.

COVID incidences in a time interval,

and many other real world applications.

Motivation for a model called Poisson Distribution

- What's the probability of the number of incoming customers (k) in an hour?
- It's widely applicable in physics

and engineering both for modeling of time and space.

DeGroot

Simeon D. Poisson Credit: wikipedia P\$ 287-288 (1781-1840)

Poisson Distribution

Simeon D. Poisson

1781-184

* A discrete random variable X is called **Poisson** with intensity λ (λ >0) if $\sum_{k=0}^{\infty} P(X = k) = \frac{e^{-\lambda}\lambda^k}{k!}$

for integer $k \ge 0$

 λ is the **average rate** of the event's occurrence

Poisson Distribution

* Poisson distribution is a valid pdf for $\sum_{i=0}^{\infty} \frac{\lambda^i}{i!} = e^{\lambda}$ $\sum_{k=0}^{\infty} P(X=k)$ $e^{-\lambda}k = k!$ $P(X = k) = \frac{e^{-\lambda}\lambda^k}{\pi}$ for integer $k \ge 0$

Simeon D. Poisson (1781-1840) λ is the average rate of the event's occurrence

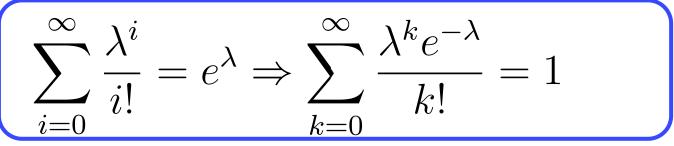
Poisson Distribution

Simeon D. Poisson

(1781-184

ollon

* Poisson distribution is a valid pdf for



$$P(X = k) = \frac{e^{-\lambda}\lambda^k}{k!}$$
 for integer $k \ge 0$

 λ is the average rate of the event's occurrence

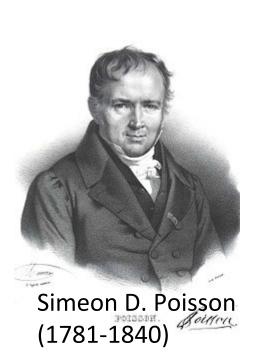
Expectations of Poisson Distribution

* The expected value and the variance are wonderfully the same! That is λ

$$P(X = k) = \frac{e^{-\lambda}\lambda^k}{k!}$$

for integer $k \geq 0$

 $E[X] = \lambda$ $var[X] = \lambda$



 $E[X] = \sum z P(z)$ X $= \sum k P(x=k)$ K e ak 90 Σ K! K=0 e-2 K-1 2 7 $= \tilde{\Sigma} k$ K=1 / (K-1)! K 7 N - 5 (K-1)! 15=1 = 7

 $Var[X] = E[X^2] - (E[X])^{2}$ $E[x^{2}] = \sum x^{2} P(x)$ $= \tilde{\Sigma} k^2 e^{-\lambda} k^k$ $= \sum_{k=1}^{\infty} k^{2} e^{-\lambda} \lambda^{k-2} \pi^{2}$ K=2 K(K-1) (1K-2)! + ZKen K! K=0 $= \lambda$

Examples of Poisson Distribution

- # How many calls does a call center get in an hour?
- How many mutations occur per 100k nucleotides in an DNA strand?
- How many independent incidents occur in an interval?

$$P(X = k) = \frac{e^{-\lambda}\lambda^k}{k!}$$

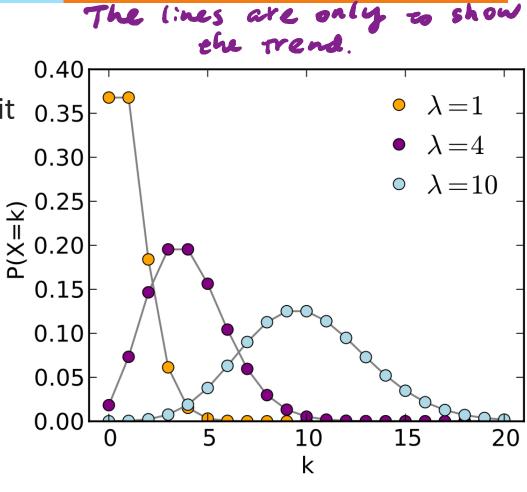
for integer $k \ge 0$

Poisson Distribution: call center

If a call center receives 10 calls per hour on average, what is the probability that it receives 15 calls in a given hour?

P (X=k)=

What is P(k=15)?



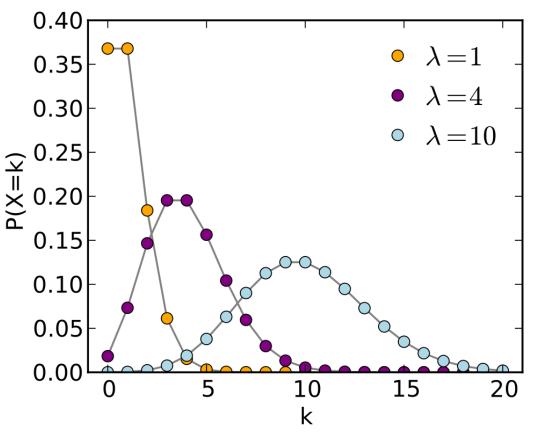
Credit: wikipedia

Q. Poisson Distribution: call center

If a call center receives 4 calls per hour on average.

What is intensity $\mathbf{\lambda}$ here for an hour?

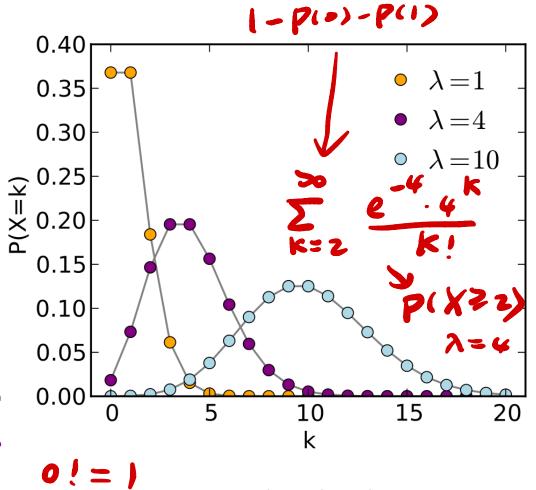
A. 1 B. 4 C. 8



Credit: wikipedia

Q. Poisson Distribution: call center

If a call center receives 4 0.40 calls per hour on average. 0.35 What is probability the 0.30 center receives 0 calls in (x 0.25 × 0.20 × 0.20 an hour? e⁻⁴ 0.15 0.10 R 0.5 0.05 0.05 C. 0.00 P(X=o)=e



Credit: wikipedia

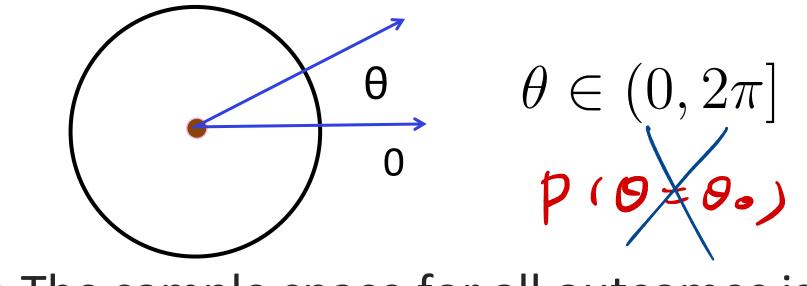
Q. Poisson Distribution: call center

⋇

Given a call center receives 10 calls per hour on average, 0.40 what is the intensity λ of the $\lambda = 1$ 0.35 distribution for calls in **Two** $\lambda = 4$ 0.30 hours? $\lambda = 10$ (¥ 0.25 ≝ 0.20 $\lambda = 20$ 0.15 N=5 if interval 0.10 0.05 0.00 5 10 15 20 k Credit: wikipedia

Example of a continuous random variable

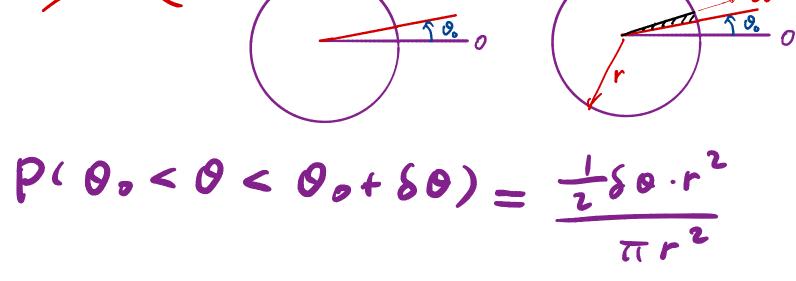
* The spinner



* The sample space for all outcomes is not countable

Spinner example

(0×00)

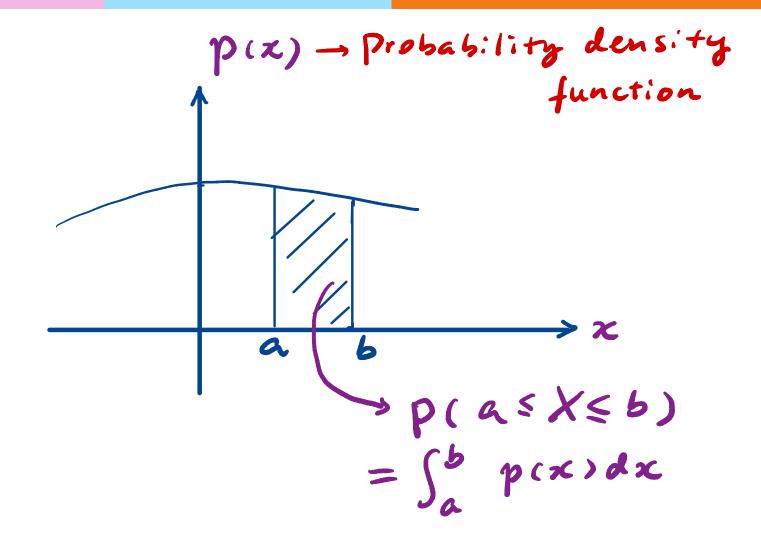


$$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} = \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \end{array} \end{array} \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array} = \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array}$$

Probability density function (pdf)

- * For a continuous random variable X, the probability that X=x is essentially zero for all (or most) x, so we can't define P(X = x)
- ** Instead, we define the **probability density function** (pdf) over an infinitesimally small interval dx, $p(x)dx = P(X \in [x, x + dx])$ ** For a < b $\int_{a}^{b} p(x)dx = P(X \in [a, b])$

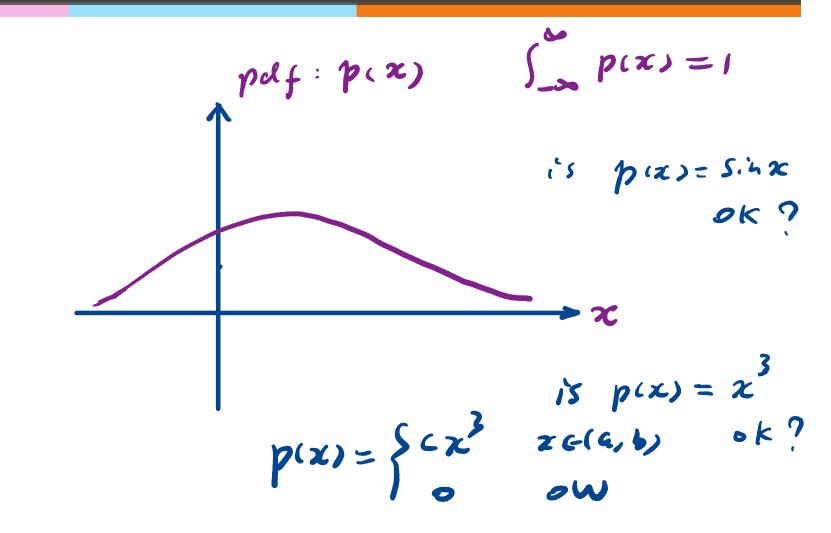
Probability of continuous RU



Properties of the probability density function

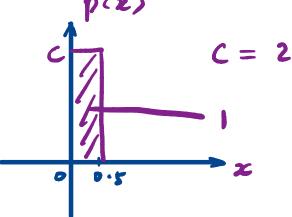
p(x) resembles the probability function of discrete random variables in that $p(x) \ge 0$ for all x س * The probability of X taking all possible values is 1. $P(\mathcal{R})=1$ $\int_{-\infty}^{\infty} p(x)dx = 1$

Area under the pdf curve



Properties of the probability density function

- ** p(x) differs from the probability distribution function for a discrete random variable in that
 - ** p(x) is not the probability that X = x** p(x) can exceed 1



Probability density function: spinner

* Suppose the spinner has equal chance stopping at any position. What's the pdf of the angle θ of the spin position?

 2π

$$p(\theta) = \begin{cases} c & if \ \theta \in (0, 2\pi] \\ 0 & otherwise \end{cases}$$

For this function to be a pdf,

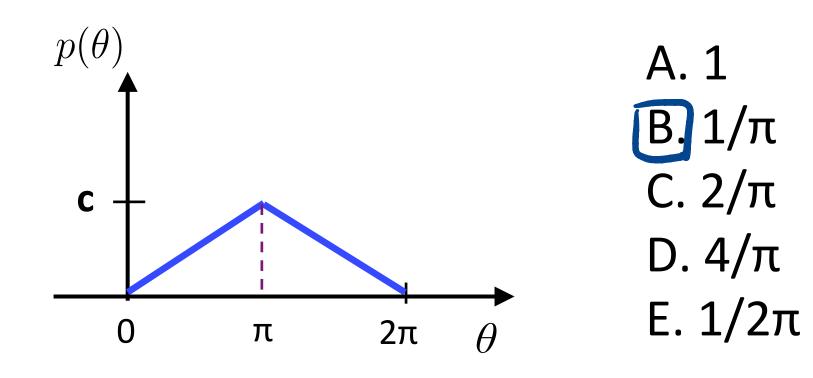
Then
$$\int_{-\infty}^{\infty} p(\theta) d\theta = 1$$
 for $d\theta = 0$

Probability density function: spinner

* What the probability that the spin angle θ is $P(0) = \begin{cases} t_{i} & \Theta \in [0, 2i] \\ 0 & 0$ within $[\frac{\pi}{12}, \frac{\pi}{7}]?$ p(0 e[뀨, 푸]) $= \int_{\frac{\pi}{2}}^{\frac{\pi}{2}} p(\theta) d\theta$ $=\int_{\Xi}^{\Xi}\frac{1}{1\pi}d\theta = ?$

Q: Probability density function: spinner

* What is the constant **c** given the spin angle θ has the following pdf?



Expectation of continuous variables

- * Expected value of a continuous random variable X $E[X] = \int_{-\infty}^{\infty} x p(x) dx$
- * Expected value of function of continuous random variable Y = f(X)

$$E[Y] = E[f(X)] = \int_{-\infty}^{\infty} f(x)p(x)dx$$

Probability density function: spinner

Given the probability density of the spin angle θ

$$p(\theta) = \begin{cases} \frac{1}{2\pi} & if \ \theta \in (0, 2\pi] \\ 0 & otherwise \end{cases}$$

* The expected value of spin angle is

$$E[\theta] = \int_{-\infty}^{\infty} \theta p(\theta) d\theta = \int_{-\infty}^{\infty} \frac{1}{2\pi} \cdot \Theta \, d\Theta$$
$$= \frac{1}{2\pi} \cdot \frac{\Theta}{2} \int_{-\infty}^{2\pi} \frac{1}{2\pi} \cdot \Theta \, d\Theta$$

Properties of expectation of continuous random variables

* The linearity of expected value is true for continuous random variables.

* And the other properties that we derived for variance and covariance also hold for continuous random variable

Q.

Suppose a continuous variable has pdf

$$p(x) = \begin{cases} 2(1-x) & x \in [0,1] \\ 0 & otherwise \end{cases}$$

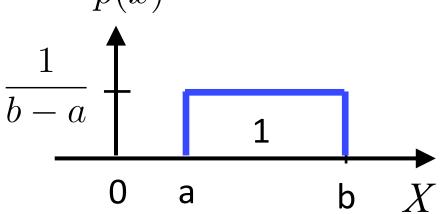
What is E[X]?

A. 1/2 B. 1/3 C. 1/4

D. 1 E. 2/3 $E[X] = \int_{-\infty}^{\infty} xp(x)dx$

Continuous uniform distribution

** A continuous random variable X is uniform if p(x)



Continuous uniform distribution

- - $E[X] = \frac{a+b}{2} \& var[X] = \frac{(b-a)^2}{12}$

 $var[x] = E[x^{2}] - (E[x])^{2}$ $= \int_{a}^{b} \frac{1}{b-a} \cdot x^{2} dx = \frac{1}{b-a} \int_{a}^{b} \frac{x}{a} dx - (E(x))^{2} \\ -(E(x))^{2} = \frac{1}{b-a} \int_{a}^{b} \frac{x^{3}}{a} \int_{a}^{b} -(E(x))^{2} \\ = \frac{1}{b-a} \int_{a}^{b} \frac{x^{3}}{a} \int_{a}^{b} -(E(x))^{2} \\ = \frac{1}{b-a} \int_{a}^{b} \frac{x^{3}}{a} \int_{a}^{b} \frac{x^{3}}{$

Continuous uniform distribution

 Examples: 1) A dart's position thrown on the target 2) Often associated with random sampling

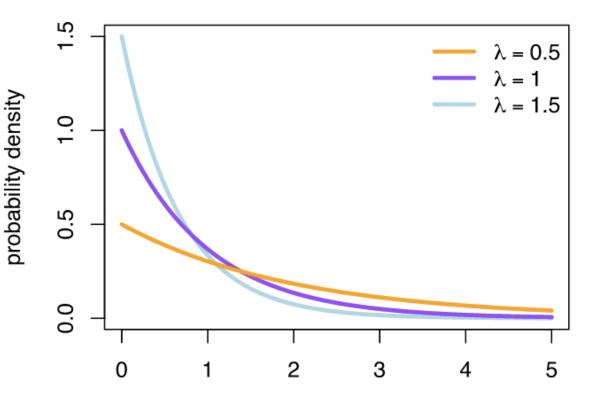
Cumulative distribution of continuous uniform distribution

Cumulative distribution function (CDF) D:screte $P(X \le x) = \int_{-\infty}^{x} p(x) dx$ vs. $P(X \le x)$ = $\sum_{x} P(X = x)$ of a uniform random variable X is: pdf is the CDF derivative $\frac{1}{b-a} + p(x)$ of CDF₁ \mathbf{O} а Xa h

Exponential distribution

- CommonModel forwaiting time
- Massociated
 with the
 Poisson
 distribution
 with the
 same λ

$$p(x) = \lambda e^{-\lambda x} \quad for \ x \ge 0$$



Credit: wikipedia

Additional References

- * Charles M. Grinstead and J. Laurie Snell "Introduction to Probability"
- Morris H. Degroot and Mark J. Schervish "Probability and Statistics"

See you next time

See You!

