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Poisson distribution

Continuous random variable; uniform
distribution

Exponential distribution
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Motivation for a model called

Poisson Distribution

What’s the probability of the number of
incoming customers (k) in an hour?

It’s W|dely applicable in physics
and engineering both for
modeling of time and space.
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Poisson Distribution

A discrete random variable X is called
Poisson W|th |nten5|ty A (A>0) if
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Poisson Distribution
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for integer k£ > O

A is the average rate of
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Poisson Distribution

Poisson distribution is a valid pdf for
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Expectations of Poisson Distribution

& The expected value and the variance are
wonderfully the same! Thatis A
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Examples of Poisson Distribution

How many calls does a call center get in an hour?

How many mutations occur per 100k
nucleotides in an DNA strand?

How many independent incidents occur in an
interval?
e~ M\
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Poisson Distribution: call center

: (‘nes atre on sh ow
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Q. Poisson Distribution: call center

If a call center receives 4
calls per hour on average.

0.40—

0.35}

What is intensity A here 0.30}

for an hour? ~ 0.25}

A1 x 0.20}
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Q. Poisson Distribution: call center

If a call center receives 4

calls per hour on average. 9401
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What is probability the 0.30f
center receives 0 calls in ~ 0.25}
an hour? x 0.20}
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Q. Poisson Distribution: call center

Given a call center receives
10 calls per hour on average, 0.40 . r . .
what is the intensity A of the (.35}
distribution for callsin Two g 3¢l
hours?
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Example of a continuous random

variable
The spinner

The sample space for all outcomes is
not countable
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Probability density function (pdf)

For a continuous random variable X, the
probability that X=x is essentially zero for all
(or most) x, so we can’t define P(X = x)

Instead, we define the probability density
function (pdf) over an infinitesimally small

interval dx, p(x)dx = P(X € |z, x + dx|)

/ p(x)dr = P(X € |a,b])

Fora<b
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Properties of the probability density

function

p(x) resembles the probability function
of discrete random variables in that

¥ p(x) >0 forallx
% The probability of X taking all possible
values is 1. PCy2) =

/mp@Mmzl
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Area uwnder the pdf curve
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Properties of the probability density

function

p(z) differs from the probability
distribution function for a discrete
random variable in that

¥ p(x) isnotthe probability that X =x
¥ p(x) canexceed1 pexs




Probability density function: spinner

Suppose the spinner has equal chance
stopping at any position. What’s the pdf of the
angle 0 of the spin position? aren =

p(0) = {c if 6 € (0,2r]

0 otherwise

For this functionto bea pdf, <= ;_';.‘

Then o0 f.
/ p@)do=1 [T cdo=1
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Probability density function: spinner

What the probability that the spin angle 0 is
within [ = ; ]? — (L g€l )
2



Q: Probability density function: spinner

What is the constant ¢ given the spin angle 6
has the following pdf?
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Expectation of continuous variables

Expected value of a continuous random

variable X weight
/ I[p daz

Expected value of functlon of continuous
random variable Y = f(X

BlY] = / f(a




Probability density function: spinner

Given the probability density of the spin angle 0

p(6) — {% if 6 € (0,2n]

Te——

0 otherwise



Properties of expectation of

continuous random variables

The linearity of expected value is true for
continuous random variables.

>
And the other properties that we derived

for variance and covariance also hold for
continuous random variable
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Suppose a continuous variable has pdf

2(1 —2) x€]0,1]

p(r) = <\ 0 otherwise
What is E[X]?
A.1/2 B.1/3 C.1/4
D.1 E.2/3 OO
EX]| = / rp(x)dx



Continuous uniform distribution

A continuous random variable Xis
uniform if




Continuous uniform distribution
IS

A continuous random variable

uniform if 1 4Pl
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Continuous uniform distribution

A continuous random variable Xis

uniform if 1 gl
b—aT
ﬁ for x € |a, b m
p(r) = 0 otherwise 0 a
b X
a+b ~ (b—a)’
E|\X]| = ; & wvarlX| = T

Examples: 1) A dart’s position thrown on the
target 2) Often associated with random sampling



Cumulative distribution of

continuous uniform distribution

b

Cumulative distribution function (CDF) = o:serete

T vs. P(X<x)
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Exponential distribution

p(x) =Xe ™™ for x>0

Common
Model for
waiting time
Associated
with the
Poisson
distribution

with the
same A

probability density
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Additional References

Charles M. Grinstead and J. Laurie Snell
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Morris H. Degroot and Mark J. Schervish
"Probability and Statistics”



See you next time




