**Probability and Statistics
for Computer Science**

Can we call e the exciting e ?

$$
e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n
$$

Credit: wikipedia

Hongye Liu, Teaching Assistant Prof, CS361, UIUC, 3.2.2021

What is the number?

 $e^{\alpha} = \sum_{k=0}^{\infty} a_k x^k$ $a_k = ? \frac{1}{k!}$ $f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x)}{n!} x^{n}$ e^{\degree} = 1 $(e^{x})' = e^{x}$

What is the number?

Howmany empty slots?

Hashing N items to k slots (N>k)
collisions are allowed, and will be handled by Linked List. What is the expected number of empty slots? $X_i = \begin{cases} 1 & \text{slot } i \text{ remains empty after} \\ 0 & \text{otherwise} \end{cases}$ $X_{\epsilon_1}, \dots, X_{\epsilon_k}$

NOT a Binomial for $E[X_{\epsilon_3}] = ?$

Trials are not indpt $E[X_{\epsilon_3}] = ?$
 $X_{\epsilon_3} = \sum_{k=1}^{N} X_k = \sum_{k=1}^{N} (1 - \frac{1}{K})^N$

Last time

The classic discrete distributions Bernoulli
Binomial X=K
Geometric ->H, TH, TTH
Continous Random Variable 2(1-p)p $E[x] = \frac{1}{p}$ \mathbf{v}_{α} , \mathbf{v}_{α}

Objectives

- **Example 18 Poisson distribution**
- * Continuous random variable; uniform distribution
- **Exponential distribution** Interval $Cie.$

Motivation for Poisson Distri.

(OVID incidences in ^a time interval, and many other real world

applications.

Motivation for a model called Poisson Distribution

- **What's the probability of the number of incoming customers (k)** in an hour?
- $*$ It's widely applicable in physics

and engineering both for modeling of time and space.

De Groot

Simeon D. Poisson Credit: wikipedia P8 287-288 (1781-1840)

Poisson Distribution

K=o

Simeon D. Poisson

(1781-184

 $*$ A discrete random variable X is called **Poisson** with intensity **λ** (λ>0) if $\sum p(x=k)$ sity
=
=

 $P(X = k) = \frac{e^{-\lambda} \lambda^k}{k!}$ $\overline{k!}$

for integer $k \geq 0$

 λ is the average rate of the event′ s occurrence \overline{a}

Poisson Distribution

Simeon D. Poisson

(1781-184

Poisson distribution is a valid pdf for 22 $P(X = k) = \frac{e^{-\lambda}\lambda^k}{\lambda^k}$ \sum ∞ $i=0$ λ^i $\overline{i!}$ $=e^{\lambda}$ k=0 $\frac{2}{\pi}$ $k=0$ $P(X=k)$
 ≈ 2 **'** $\frac{1}{2}$ is a valid pdf for
 $\sum_{n=0}^{\infty} P(X=k)$ $F = \frac{1}{k!}$ valid pdf for

P(X=k)
 $\frac{e^{-\lambda}x}{k}$ = 1
 $\frac{e^{-\lambda}x}{k}$ = 1 $K =$

 $\overline{k!}$ for integer $k \geq 0$

 λ is the average rate of the event′ s occurrence

Poisson Distribution

Simeon D. Poisson

(1781-184

EXELEXE: Poisson distribution is a valid pdf for

$$
P(X = k) = \frac{e^{-\lambda} \lambda^k}{k!}
$$

for integer $k \ge 0$

 λ is the average rate of the event′ s occurrence

Expectations of Poisson Distribution

 $*$ The expected value and the variance are wonderfully the same! That is λ

$$
P(X = k) = \frac{e^{-\lambda} \lambda^k}{k!}
$$

for integer $k \geq 0$

 $E[X] = \lambda$ $var[X] = \lambda$

 $E[X] = \sum x P(x)$ $\boldsymbol{\chi}$ $=$ Σ k $P(x=k)$ $\mathbf k$ $\boldsymbol{\mathcal{P}}$ e a KI $K = 0$ $e^{-\lambda}a^{k-1}$ $=$ $\frac{8}{2}$ k $k=1$ $\sqrt{6}$ $(k-1)!$ 27 $\boldsymbol{\lambda}$ $=$ \sum $(k-1)!$ 1521 $=$ λ

 $var[X] = E[X^2] - (E[X])^2$ $E[X^2] = \sum x^2 P^{12}$ $= \frac{8}{2}k^{2} \frac{e^{-\lambda} \lambda^{k}}{k!}$ $=\sum_{n=1}^{\infty}k^{2}e^{-\lambda x^{k-2}}.2^{2}$ $K=2K(K-1)(K-2)$ $+2k^{2}$ $k!$ Kz_o $=$ λ

Examples of Poisson Distribution

- $*$ How many calls does a call center get in an hour?
- $*$ How many mutations occur per 100k nucleotides in an DNA strand?
- **EXECUTE:** How many **independent** incidents occur in an interval?

$$
P(X = k) = \frac{e^{-\lambda}\lambda^k}{k!}
$$

for integer $k \geq 0$

Poisson Distribution: call center

 $\lambda^{\mathcal{K}}$

10,015 $\frac{2}{10}$
 $\frac{1}{15}$

 $*$ If a call center receives 10 calls per hour on average, what is the probability that it receives 15 calls in a given hour?

= e

-

**What is
$$
\lambda
$$
 here?** 10

 $\quad \ \ \, \mathbb{W}$ What is P(k=15)? $e^{-\lambda}$

 $p(x=k)=$

Credit: wikipedia

Q. Poisson Distribution: call center

If a call center receives 4 calls per hour on average.

What is intensity **λ** here for an hour?

A. 1
B. 4 $\overline{4}$ C. 8

Credit: wikipedia

Q. Poisson Distribution: call center

If a call center receives 4 $. p(a) - p(1)$ 0.40 calls per hour on average. $\lambda = 1$ 0.35 What is probability the $\lambda = 4$ 0.30 center receives 0 calls in $\frac{2}{10}$ 0.25
 \times 0.20 an hour? e^{-4} 0.15 0.10 0.5 B. 0.05 $C. 0.05$ 0.00 5 10 15 $P(X=a) =$ k Credit: wikipedia

 $\lambda = 10$

20

Q. Poisson Distribution: call center

2. Poisson Distri
Given a call center receives
10 calls per hour on average,
what is the intensity λ of the
distribution for calls in Two
nours?
 $\lambda = 20$
 $\lambda = 5$ if interver $*$ Given a call center receives LO calls per hour on average,
what is the intensity λ of the
distribution for calls in Two
nours?
 $\lambda = 20$
 $\lambda = 5$ if interver 10 calls per hour on average, 0.40 what is the intensity **λ** of the $\lambda = 1$ 0.35 distribution for calls in **Two** $\lambda = 4$ 0.30 hours? $\lambda = 10$ 0.25 λ = 20 0.20 0.15 $\lambda = 5$ if interval sterver 0.10 0.05 0.00 5 10 15 k Credit: wikipedia

20

Example of a continuous random variable

$*$ The spinner

KETHE Sample space for all outcomes is not countable

Spinner example

Probability density function (pdf)

- $*$ For a continuous random variable X, the probability that $X=x$ is essentially zero for all (or most) x, so we can't define $P(X = x)$
- **EXECTE:** Instead, we define the **probability density function** (pdf) over an infinitesimally small interval dx, $p(x)dx = P(X \in [x, x + dx])$ $\frac{1}{2}$ For $a < b$ \int_0^b \overline{a} $p(x)dx = P(X \in [a, b])$

Probability of continuous RU

Properties of the probability density function

 $\mathscr{F}(\mathfrak{X})$ resembles the probability function of discrete random variables in that

$$
\text{# } p(x) \geq 0 \quad \text{for all } x
$$

 $-\infty$

 $*$ The probability of X taking all possible values is 1. \int^{∞} $P(CZ) = 1$

 $p(x)dx=1$

Area under the pdf curve

Properties of the probability density function

$\mathscr{C}(x)$ differs from the probability distribution function for a discrete random variable in that

 $\mathscr{E} = p(x)$ is not the probability that $X = x$ $\frac{1}{2}$ $p(x)$ can exceed 1 pcx)

Probability density function: spinner

 $*$ Suppose the spinner has equal chance stopping at any position. What's the pdf of the angle θ of the spin position? $area = |$ $M=1$

 C

0

 ϵ =

 $\frac{1}{2\pi}$

2π *θ*

$$
p(\theta) = \begin{cases} c & if \ \theta \in (0, 2\pi] \\ 0 & otherwise \end{cases}
$$

For this function to be a pdf,

Then
$$
\int_{-\infty}^{\infty} p(\theta) d\theta = 1
$$

$$
\int_{0}^{2\pi} c d\theta = 0
$$

Probability density function: spinner

 $*$ What the probability that the spin angle θ is $\n \overline{p(\omega)} = \begin{cases} \frac{1}{kT} & \theta \in [0, 15) \\ 0 & \theta \end{cases}$ within $\left[\begin{array}{c}\pi\\12\end{array},\frac{\pi}{7}\right]$? $P(COC[\frac{7}{11}, \frac{7}{1}])$ $=\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} p(0) d0$ $= \int_{\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1}{\pi} d\theta = 2$

Q: Probability density function: spinner

 \mathscr{W} What is the constant **c** given the spin angle θ has the following pdf?

Expectation of continuous variables

- $*$ Expected value of a continuous random variable *X* $E[X] = \int^{\infty}$ $-\infty$ $x p(x) dx$ *weight*
- **KEXpected value of function of continuous** random variable $Y = f(X)$

$$
E[Y] = E[f(X)] = \int_{-\infty}^{\infty} f(x)p(x)dx
$$

Probability density function: spinner

Given the probability density of the spin angle θ 洣

$$
p(\theta) = \begin{cases} \frac{1}{2\pi} & \text{if } \theta \in (0, 2\pi] \\ 0 & \text{otherwise} \end{cases}
$$

The expected value of spin angle is 洣

$$
E[\theta] = \int_{-\infty}^{\infty} \theta p(\theta) d\theta = \int_{0}^{\infty} \frac{1}{\tan \theta} \cdot \theta \, d\theta
$$

Properties of expectation of continuous random variables

 The linearity of expected value is true for continuous random variables.

 $*$ And the other properties that we derived for variance and covariance also hold for continuous random variable

do it on your own

Q.

Suppose a con-nuous variable has pdf

$$
p(x) = \begin{cases} 2(1-x) & x \in [0,1] \\ 0 & otherwise \end{cases}
$$

What is $E[X]$?

A. $1/2$ B. $1/3$ C. $1/4$

 $D. 1$ E. $2/3$ $E[X] = \int^{\infty}$ $-\infty$ $xp(x)dx$

Continuous uniform distribution

 $*$ A continuous random variable X is uniform if $p(x)$

Continuous uniform distribution

Example 1 A continuous random variable X is $\frac{1}{\sqrt{2}}$ uniform if

$$
p(x) = \begin{cases} \frac{1}{b-a} & \text{for } x \in [a, b] \\ 0 & \text{otherwise} \end{cases}
$$
 0 a b

$$
E[X] = \frac{a+b}{2} \& \text{var}[X] = \frac{(b-a)^2}{12}
$$

$$
var[x] = E[x^{2}] - (E[x])^{2}
$$

= $\int_{a}^{b} \overline{t-a} \cdot x^{2} dx = \frac{1}{b-a} \int_{a}^{b} \frac{x^{2} dx}{3} - (E[x])^{2}$

Continuous uniform distribution

- $*$ A continuous random variable X is uniform if $p(x) = \begin{cases} \frac{1}{b-a} & \text{for } x \in [a, b] \\ 0 & \text{otherwise.} \end{cases}$ 0 otherwise **0** a b X $E[X] = \frac{a+b}{2}$ 2 $& var[X] = \frac{(b-a)^2}{10}$ 12 1 1 $p(x)$ $\overline{b-a}$
- \mathcal{H} Examples: 1) A dart's position thrown on the target 2) Often associated with **random sampling**

Cumulative distribution of continuous uniform distribution

Cumulative distribution function (CDF) of a uniform random variable X is: 0 a \bullet b X 1 1 $\uparrow p(x)$ $\overline{b-a}$ 0 a b X pdf is the CDF $P(X \leq x) = \int^x$ $-\infty$ $p(x)dx$ 1 Discrete us . $P(X \leq x)$ $\frac{2}{x}$ $=\sum_{x} b(x=x)$ -s derivative $\begin{array}{c}\n\hline a \\
\hline\n0\n\end{array}$ \mathscr{L} of CDF 2L

Exponential distribution

- Common Model for waiting time
- Associated with the Poisson distribution with the same **λ**

$$
p(x) = \lambda e^{-\lambda x} \quad \text{for } x \ge 0
$$

Credit: wikipedia

Additional References

- **KET Charles M. Grinstead and J. Laurie Snell** "Introduction to Probability"
- **KERETHER Morris H. Degroot and Mark J. Schervish** "Probability and Statistics"

See you next time

See You!

