# Probability and Statistics for Computer Science

Can we call e the exciting e?

$$e = \lim_{n \to \infty} \left( 1 + \frac{1}{n} \right)^n$$

Credit: wikipedia

Hongye Liu, Teaching Assistant Prof, CS361, UIUC, 3.2.2021

#### What is the number?

 $e^{x} = \sum_{k=0}^{\infty} a_{k} x^{k}$  $a_k = ? \frac{1}{k!}$  $f(x) = \sum_{n=0}^{\infty} \frac{f^n(x)}{n!} x^n$ e=1  $(e^{x})' = e^{x}$ 

## What is the number?



## How many empty slots?

Mashing N items to k slots  $(N \ge k)$ collisions are allowed, and will be handled by linked list. What is the expected number of empty slots? Xi = { | slot i remains empty after bashing  $\sum_{\substack{k \in S \\ \text{trials are not indpt}}} P(X_{i} = 1) = ? \underset{\substack{k \in S \\ i = i}}{E[X_{i}]} = ? \underset{\substack{k \in S \\ i = i}}{E[X_{i}]} = ? \underset{\substack{k \in S \\ i = i}}{E[X_{i}]} = \sum_{\substack{k \in S \\ i = i}}{E[X_{i}]} = \sum_{\substack{k$ 

## Last time

# The classic discrete distributions Bernoulli Binomial X=K Geometric \_\_\_\_H, TH, TTH Continous Random Variable =(1-p)p $E[x] = \frac{1-1}{2}$ $Var[x] = \frac{1-1}{2}$

## Objectives

- **Poisson** distribution
- \* Continuous random variable; uniform distribution
- \* Exponential distribution T L Interval (ie. thome)

## Motivation for Poisson Distri.

COVID incidences in a time interval,

and many other real world applications.

## Motivation for a model called Poisson Distribution

- What's the probability of the number of incoming customers (k) in an hour?
- It's widely applicable in physics



and engineering both for modeling of time and space.

DeGroot

Simeon D. Poisson Credit: wikipedia P\$ 287-288 (1781-1840)

### **Poisson Distribution**

Simeon D. Poisson

1781-184

\* A discrete random variable X is called **Poisson** with intensity  $\lambda$  ( $\lambda$ >0) if  $\sum_{k=0}^{\infty} P(X = k) = \frac{e^{-\lambda}\lambda^k}{k!}$ 

for integer  $k \ge 0$ 

 $\lambda$  is the **average rate** of the event's occurrence

#### **Poisson Distribution**

\* Poisson distribution is a valid pdf for  $\sum_{i=0}^{\infty} \frac{\lambda^i}{i!} = e^{\lambda}$  $\sum_{k=0}^{\infty} P(X=k)$  $e^{-\lambda}k = k!$  $P(X = k) = \frac{e^{-\lambda}\lambda^k}{\pi}$ for integer  $k \ge 0$ 

Simeon D. Poisson (1781-1840)  $\lambda$  is the average rate of the event's occurrence

#### **Poisson Distribution**

Simeon D. Poisson

(1781-184

ollon

#### \* Poisson distribution is a valid pdf for



$$P(X = k) = \frac{e^{-\lambda}\lambda^k}{k!}$$
 for integer  $k \ge 0$ 

 $\lambda$  is the average rate of the event's occurrence

## **Expectations of Poisson Distribution**

\* The expected value and the variance are wonderfully the same! That is λ

$$P(X = k) = \frac{e^{-\lambda}\lambda^k}{k!}$$

for integer  $k \geq 0$ 

 $E[X] = \lambda$  $var[X] = \lambda$ 



 $E[X] = \sum z P(z)$ X  $= \sum k P(x=k)$ K e ak 90 Σ K! K=0 e-2 K-1 2 7  $= \tilde{\Sigma} k$ K=1 / (K-1)! K 7 N - 5 (K-1)! 15=1 = 7

 $Var[X] = E[X^2] - (E[X])^{2}$  $E[x^{2}] = \sum x^{2} P(x)$  $= \tilde{\Sigma} k^2 e^{-\lambda} k^k$  $= \sum_{k=1}^{\infty} k^{2} e^{-\lambda} \lambda^{k-2} \pi^{2}$ K=2 K(K-1) (1K-2)! + ZKen K! K=0  $= \lambda$ 

### Examples of Poisson Distribution

- # How many calls does a call center get in an hour?
- How many mutations occur per 100k nucleotides in an DNA strand?
- How many independent incidents occur in an interval?

$$P(X = k) = \frac{e^{-\lambda}\lambda^k}{k!}$$

for integer  $k \ge 0$ 

### Poisson Distribution: call center

If a call center receives 10 calls per hour on average, what is the probability that it receives 15 calls in a given hour?

P (X=k)=

What is P(k=15)?



Credit: wikipedia

## Q. Poisson Distribution: call center

If a call center receives 4 calls per hour on average.

What is intensity  $\mathbf{\lambda}$  here for an hour?

A. 1 B. 4 C. 8



Credit: wikipedia

### Q. Poisson Distribution: call center

If a call center receives 4 0.40 calls per hour on average. 0.35 What is probability the 0.30 center receives 0 calls in (x 0.25 × 0.20 × 0.20 an hour? e<sup>-4</sup> 0.15 0.10 R 0.5 0.05 0.05 C. 0.00 P(X=o)=e



Credit: wikipedia

#### Q. Poisson Distribution: call center

⋇

Given a call center receives 10 calls per hour on average, 0.40 what is the intensity  $\lambda$  of the  $\lambda = 1$ 0.35 distribution for calls in **Two**  $\lambda = 4$ 0.30 hours?  $\lambda = 10$ (¥ 0.25 ≝ 0.20  $\lambda = 20$ 0.15 N=5 if interval 0.10 0.05 0.00 5 10 15 20 k Credit: wikipedia

## Example of a continuous random variable

#### \* The spinner



\* The sample space for all outcomes is not countable

Spinner example

(0×00)



$$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} = \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \end{array} \end{array} \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array} = \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array}$$

## Probability density function (pdf)

- \* For a continuous random variable X, the probability that X=x is essentially zero for all (or most) x, so we can't define P(X = x)
- \*\* Instead, we define the **probability density function** (pdf) over an infinitesimally small interval dx,  $p(x)dx = P(X \in [x, x + dx])$ \*\* For a < b $\int_{a}^{b} p(x)dx = P(X \in [a, b])$

## Probability of continuous RU



## Properties of the probability density function

# p(x) resembles the probability function of discrete random variables in that  $p(x) \ge 0$  for all x س \* The probability of X taking all possible values is 1.  $P(\mathcal{R})=1$  $\int_{-\infty}^{\infty} p(x)dx = 1$ 

#### Area under the pdf curve



## Properties of the probability density function

- \*\* p(x) differs from the probability distribution function for a discrete random variable in that
  - \*\* p(x) is not the probability that X = x\*\* p(x) can exceed 1



## Probability density function: spinner

\* Suppose the spinner has equal chance stopping at any position. What's the pdf of the angle  $\theta$  of the spin position?

 $2\pi$ 

$$p(\theta) = \begin{cases} c & if \ \theta \in (0, 2\pi] \\ 0 & otherwise \end{cases}$$

For this function to be a pdf,

Then 
$$\int_{-\infty}^{\infty} p(\theta) d\theta = 1$$
 for  $d\theta = 0$ 

## Probability density function: spinner

\* What the probability that the spin angle  $\theta$  is  $P(0) = \begin{cases} t_{i} & \Theta \in [0, 2i] \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0$ within  $[\frac{\pi}{12}, \frac{\pi}{7}]?$ p( 0 e[ 뀨, 푸] )  $= \int_{\frac{\pi}{2}}^{\frac{\pi}{2}} p(\theta) d\theta$  $=\int_{\Xi}^{\Xi}\frac{1}{1\pi}d\theta = ?$ 

#### Q: Probability density function: spinner

\* What is the constant **c** given the spin angle  $\theta$  has the following pdf?



## Expectation of continuous variables

- \* Expected value of a continuous random variable X $E[X] = \int_{-\infty}^{\infty} x p(x) dx$
- \* Expected value of function of continuous random variable Y = f(X)

$$E[Y] = E[f(X)] = \int_{-\infty}^{\infty} f(x)p(x)dx$$

### Probability density function: spinner

# Given the probability density of the spin angle  $\theta$ 

$$p(\theta) = \begin{cases} \frac{1}{2\pi} & if \ \theta \in (0, 2\pi] \\ 0 & otherwise \end{cases}$$

\* The expected value of spin angle is

$$E[\theta] = \int_{-\infty}^{\infty} \theta p(\theta) d\theta = \int_{-\infty}^{\infty} \frac{1}{2\pi} \cdot \Theta \, d\Theta$$
$$= \frac{1}{2\pi} \cdot \frac{\Theta}{2} \int_{-\infty}^{2\pi} \frac{1}{2\pi} \cdot \Theta \, d\Theta$$

## Properties of expectation of continuous random variables

\* The linearity of expected value is true for continuous random variables.



\* And the other properties that we derived for variance and covariance also hold for continuous random variable

#### Q.

#### Suppose a continuous variable has pdf

$$p(x) = \begin{cases} 2(1-x) & x \in [0,1] \\ 0 & otherwise \end{cases}$$

What is E[X]?

A. 1/2 B. 1/3 C. 1/4

D. 1 E. 2/3  $E[X] = \int_{-\infty}^{\infty} xp(x)dx$ 

## Continuous uniform distribution

\*\* A continuous random variable X is uniform if p(x)



### Continuous uniform distribution

- - $E[X] = \frac{a+b}{2} \& var[X] = \frac{(b-a)^2}{12}$

 $var[x] = E[x^{2}] - (E[x])^{2}$  $= \int_{a}^{b} \frac{1}{b-a} \cdot x^{2} dx = \frac{1}{b-a} \int_{a}^{b} \frac{x}{a} dx - (E(x))^{2} \\ -(E(x))^{2} = \frac{1}{b-a} \int_{a}^{b} \frac{x^{3}}{a} \int_{a}^{b} -(E(x))^{2} \\ = \frac{1}{b-a} \int_{a}^{b} \frac{x^{3}}{a} \int_{a}^{b} -(E(x))^{2} \\ = \frac{1}{b-a} \int_{a}^{b} \frac{x^{3}}{a} \int_{a}^{b} \frac{x^{3}}{$ 

### Continuous uniform distribution

 Examples: 1) A dart's position thrown on the target 2) Often associated with random sampling

## Cumulative distribution of continuous uniform distribution

Cumulative distribution function (CDF) D:screte  $P(X \le x) = \int_{-\infty}^{x} p(x) dx$  vs.  $P(X \le x)$ =  $\sum_{x} P(X = x)$ of a uniform random variable X is: pdf is the CDF derivative  $\frac{1}{b-a} + p(x)$ of CDF<sub>1</sub>  $\mathbf{O}$ а Xa h

## **Exponential distribution**

- CommonModel forwaiting time
- Massociated
  with the
  Poisson
  distribution
  with the
  same λ

$$p(x) = \lambda e^{-\lambda x} \quad for \ x \ge 0$$



Credit: wikipedia

#### Additional References

- \* Charles M. Grinstead and J. Laurie Snell "Introduction to Probability"
- Morris H. Degroot and Mark J. Schervish "Probability and Statistics"

#### See you next time

See You!

