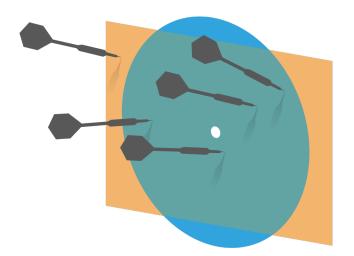
Probability and Statistics for Computer Science



"In statistics we apply probability to draw conclusions from data." ---Prof. J. Orloff

Credit: wikipedia

Hongye Liu, Teaching Assistant Prof, CS361, UIUC, 3.16.2021

Last time

Sample mean

Confidence interval

% t-distribution (I)

Objectives

Review Sample mean, Cl

% t-distribution (II)

Bootstrap simulation

Review with Questions X i) Why is sample mean a random variable? ans: No z) Is $E[x^{(N)}] = mean(\{x\})? + \{x\}$ is some = popmean realized data of size N, drawn from the population {X} with replacement. 3) What is the distribution of X^(N)? $E[X^{(N)}], var[X^{(N)}]?$ 4) What are - popuar = popmean

$$i \oint N \rightarrow \infty \qquad \chi^{(N)} \sim N_{ormal}(\mathcal{M}, \mathcal{S}) \xrightarrow{\text{preasure}}_{j \in \{x\}} \mathcal{M} = \tilde{E}[\chi^{(N)}] = p_{opmean} \mathcal{M} = \mathcal{S} = std[\chi^{(N)}] = \frac{p_{opsted}}{\sqrt{N}}$$

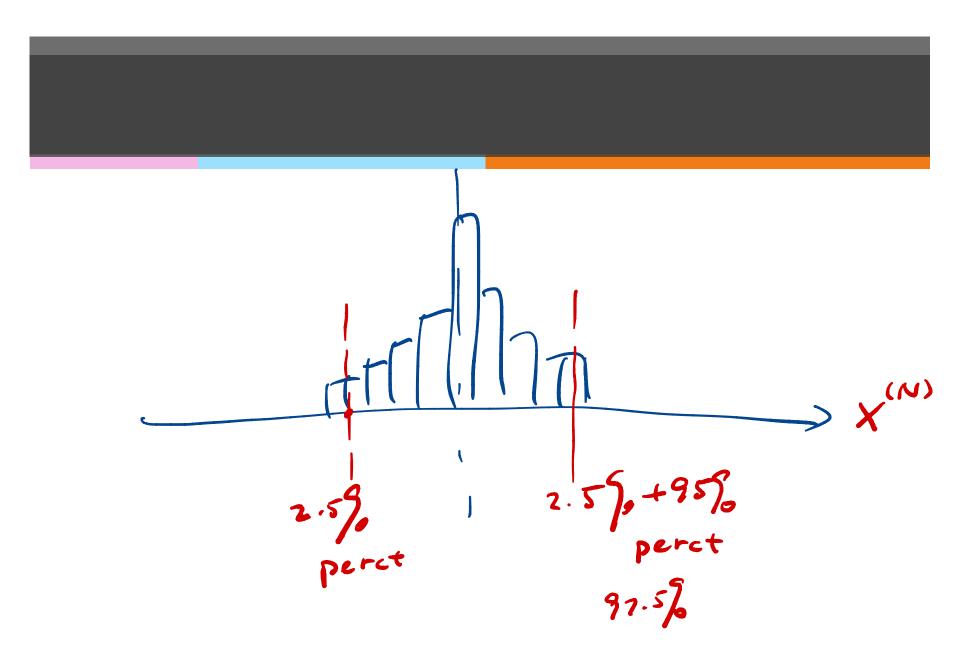
$$if X^{(i)} is from a Normal like population,
$$T = \frac{mean(\{x\}) - popmean}{Stderr(\{x\})} \sim t \ d:str:but; on
 stderr(\{x\}) \qquad with DOF
 N-1
$$X^{(N)} = mean(\{x\}) \qquad id. X^{(i)}$$$$$$

A tale of two statisticians

 $\{X\} = \{1, 2, 3, \dots, 12\} \quad Np = 12$ The task: use only a subset of $\{X\}$: $\{x\} \quad with \quad N = 5 \quad \text{to estimate the}$ $popmean(\{X\}) \quad with \quad some \quad confidence$ report.

A tale of two statisticians

$$\begin{cases} X_{j}^{2} = \{1, 2, 3, -- 1/2\} & N_{p} = 12 \\ i d X^{(j)} \\ i d X^{(j)} \\ \{x^{b}\} = \{1, 4, 5, 7, 11\} \\ \{x^{b}\} = \{1, 1, 4, 5, 7, 11\} \\ i x^{b}\} = \{1, 1, 4, 5, 7, 11\} \\ i x^{b}\} = \{4, 5, 7, 7, 13\} \\ i x^{b}\} = \{4, 5, 7, 7, 13\} \\ i x^{b}\} = \{5, 5, 5, 5, 5, 5, 5\} \\ f \\ + N \to \infty \\ X^{(N)} \sim N(\mathcal{U}, \mathcal{G}) \\ \mathcal{U} = E[X^{(N)}] \stackrel{\circ}{=} mean([x]), \\ \mathcal{U} = E[X^{(N)}] \stackrel{\circ}{=} stdevr \\ cfx], \\ f \\ M = X^{(N)} \\ f \\ M \\ X^{(N)} \\ f \\ K \\ M \\ K \\ M$$



review on your

Motivation of sampling: the poll example

	DATES	POLLSTER	SAMPLE		RESULT			NET RESULT		
U.S. Senate Miss.	NOV 25, 2018	C+ Change Research	1,211 LV	Espy	46%	51%	Hyde-Smith	Hyde-Smith	+5	

Source: FiveThirtyEight.com

- * This senate election poll tells us:
 - The sample has 1211 likely voters X from $\{x, y, z\}$ of $y \in [21]$ Ms. Hyde-Smith has realized sample mean equal to 51% ₩
 - 畿 § 1, 0, 1, 0, 0, --- 7
- What is the estimate of the percentage of votes for Hyde-smith?
- How confident is that estimate? ▓

review on y

Expected value of one random sample is the population mean

Since each sample is drawn uniformly from the population

$$E[X^{(1)}] = popmean(\{X\})$$

therefore
$$E[X^{(N)}] = popmean(\{X\})$$

* We say that $X^{(N)}$ is an unbiased estimator of the population mean. $E[x^{(N)}] \approx mean(\{x\})$

review on y

Standard deviation of the sample mean

We can also rewrite another result from the lecture on the weak law of large numbers

$$var[X^{(N)}] = \frac{popvar(\{X\})}{N}$$

The standard deviation of the sample mean

$$std[X^{(N)}] = \frac{popsd(\{X\})}{\sqrt{N}}$$

* But we need the population standard deviation in order to calculate the $std[X^{(N)}]$!

review on your

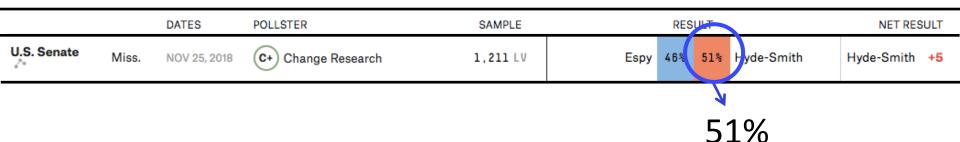
Unbiased estimate of population standard deviation & Stderr

* The unbiased estimate of $popsd({X})$ is defined as

$$stdunbiased(\{x\}) = \sqrt{\frac{1}{N-1} \sum_{x_i \in sample} (x_i - mean(\{x_i\}))^2}$$

YEView on

Standard error: election poll



What is the estimate of the percentage of votes for Hyde-smith?
 51%

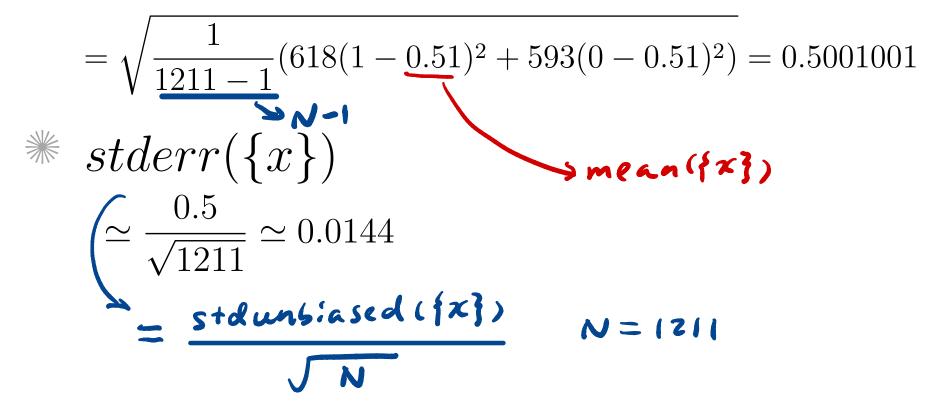
Number of sampled voters who selected Ms. Smith is: 1211(0.51) ≅ 618

Number of sampled voters who didn't selected Ms. Smith was **1211(0.49) ≅ 593**

review on y

Standard error: election poll

 $\# stdunbiased(\{x\})$



review on

Interpreting the standard error

- Sample mean is a random variable and has its own probability distribution, stderr is an estimate of sample mean's standard deviation
- When N is very large, according to the Central Limit Theorem, sample mean is approaching a normal distribution with

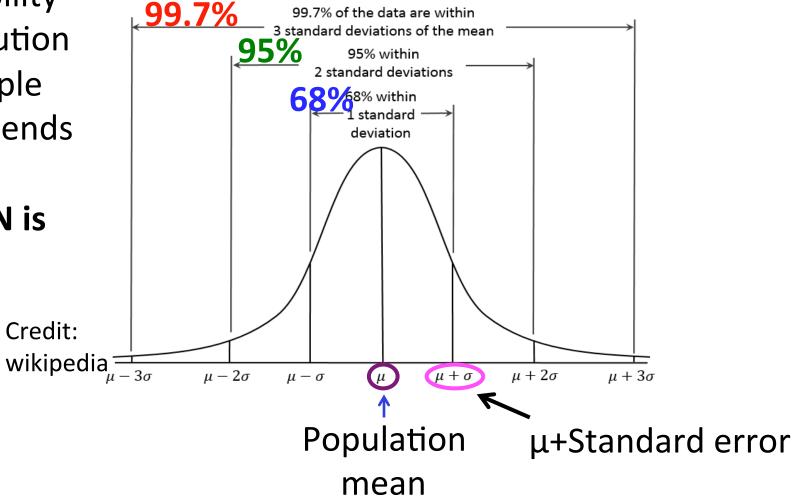
$$\mu = popmean(\{X\}) ; \ \sigma = \frac{popsd(\{X\})}{\sqrt{N}} \stackrel{\text{\tiny \ef{abs}}}{=} stderr(\{x\})$$

 $stderr(\{x\}) = \frac{stdunbiased(\{x\})}{\sqrt{N}}$

review on

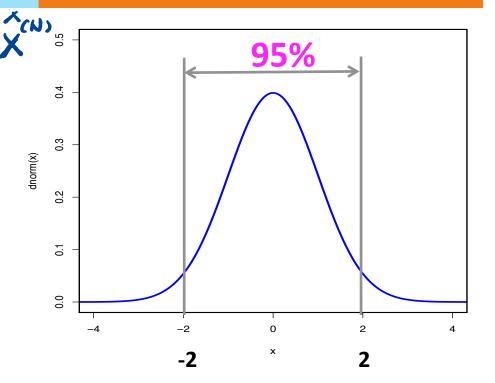
Interpreting the standard error

Probability distribution of sample mean tends normal when N is large



Confidence intervals

- Confidence interval ...
 For a population mean
 is defined by fraction
- Given a percentage, find how many units of strerr it covers.



For 95% of the realized sample means, the population mean lies in [sample mean-2 stderr, sample mean+2 stderr]

review on

Confidence intervals when N is large

* For about 68% of realized sample means

 $mean(\{x\}) - stderr(\{x\}) \leq popmean(\{X\}) \leq mean(\{x\}) + stderr(\{x\})$

For about 95% of realized sample means

 $mean(\{x\}) - 2stderr(\{x\}) \leq popmean(\{X\}) \leq mean(\{x\}) + 2stderr(\{x\})$

* For about 99.7% of realized sample means

 $mean(\{x\}) - 3stderr(\{x\}) \leq popmean(\{X\}) \leq mean(\{x\}) + 3stderr(\{x\}) + 3stderr(\{x\}) \leq mean(\{x\}) + 3stderr(\{x\}) + 3$

review on

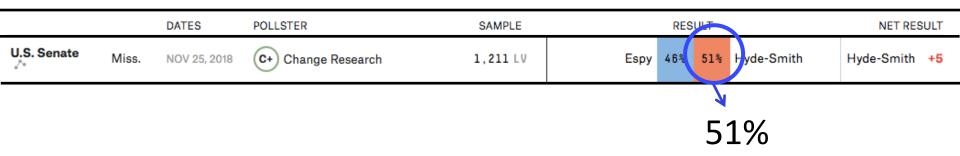
Q. Confidence intervals

What is the 68% confidence interval for a population mean?

- A. [sample mean-2stderr, sample mean+2stderr]
 B. [sample mean-stderr, sample mean+stderr]
 C. [sample mean-std_sample mean+std]
- C. [sample mean-std, sample mean+std]

Y CU.ew on

Standard error: election poll



₩ We estimate the population mean as 51% with stderr 1.44%

** The 95% confidence interval is [51%-2×1.44%, 51%+2×1.44%]= [48.12%, 53.88%]

Y CU.ew on

Q.

A store staff mixed their fuji and gala apples and they were individually wrapped, so they are indistinguishable. if I pick 30 apples and found 21 fuji , what is my 95% confidence interval to estimate the popmean is 70% for fuji? (hint: strerr > 0.05)

A.[0.7-0.17, 0.7+0.17] B. [0.7-0.056, 0.7+0.056]

review on

What if N is small? When is N large enough?

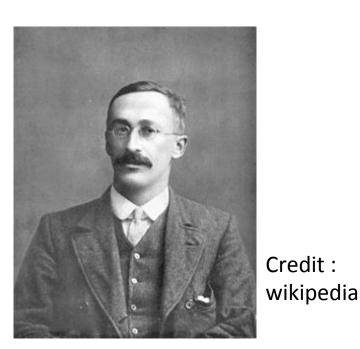
If samples are taken from normal distributed ▓ population, the following variable is a random variable whose distribution is Student's tdistribution with N-1 degree of freedom $T = \frac{mean(\{x\}) - popmean(\{X\})}{stderr(\{x\})} \approx \text{Stor}(\{x\})$

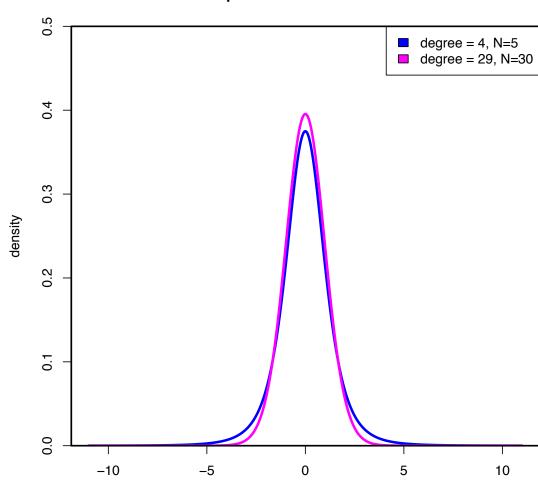
Degree of freedom is **N**-1 due to this constraint: $\sum_{i} (x_i - mean(\{x\})) = 0$

review on your own

t-distribution is a family of distri. with different degrees of freedom

t-distribution with N=5 and N=30





pdf of t – distribution

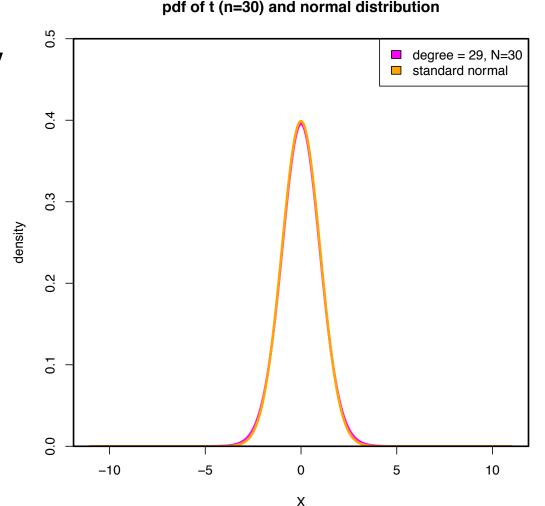
William Sealy Gosset 1876-1937

review on

When N=30, t-distribution is almost Normal

t-distribution looks very similar to normal when N=30.

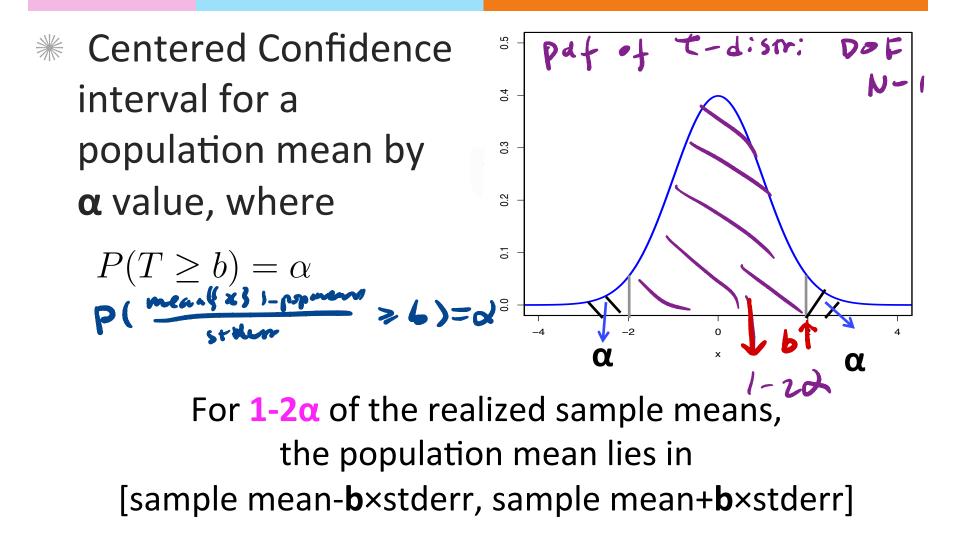
So N=30 is a rule of thumb to decide N is large or not



Confidence intervals when N< 30

If the sample size N< 30, we should use tdistribution with its parameter (the degrees of freedom) set to N-1

Centered Confidence intervals



$$P\left(\frac{\text{mean}(1x_{j}) - p \circ p \text{mean}}{\text{stderr}(1x_{j})}\right) \ge b\right)$$

= $P\left(p \circ p \text{mean} \le \text{mean}(1x_{j}) + b \cdot \text{stderr}(1x_{j})\right)$

$$P\left(\begin{array}{c} \frac{mean(ix_{j}) - p p mean}{s + derr(ix_{j})} \leq -b\right)$$

$$= P\left(p p mean \geq mean(ix_{j}) - b \cdot s + derr(ix_{j})\right)$$

$$d = 5 \int_{0}^{0} \rightarrow 1 - z d = 9 \int_{0}^{0}$$

* The 95% confidence interval for a population mean is equivalent to what 1-2 α interval?

A.
$$\alpha = 0.05$$
 I - $zd = 95$
B. $\alpha = 0.025$
C. $\alpha = 0.1$

Sample statistic

* A statistic is a function of a dataset

* For example, the mean or median of a dataset is a statistic

Sample statistic

- Is a statistic of the data set that is formed by the realized sample
- % For example, the realized sample mean

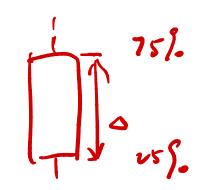
Q. Is this a sample statistic?

* The largest integer that is smaller than or equal to the mean of a sample

B. No.

Q. Is this a sample statistic?

- * The interquartile range of a sample
 - A. Yes
 - B. No.



Confidence intervals for other sample statistics

- Sample statistic such as median and others are also interesting for drawing conclusion about the population
- It's often difficult to derive the analytical expression in terms of stderr for the corresponding random variable
- So we can use simulation...

Bootstrap for confidence interval of other sample statistics

 Bootstrap is a method to construct confidence interval for *any*^{*} sample statistics using resampling of the sample data set

Bootstrapping is essentially uniform random sampling with replacement on the sample of size N

Bootstrap for confidence interval of other sample statistics

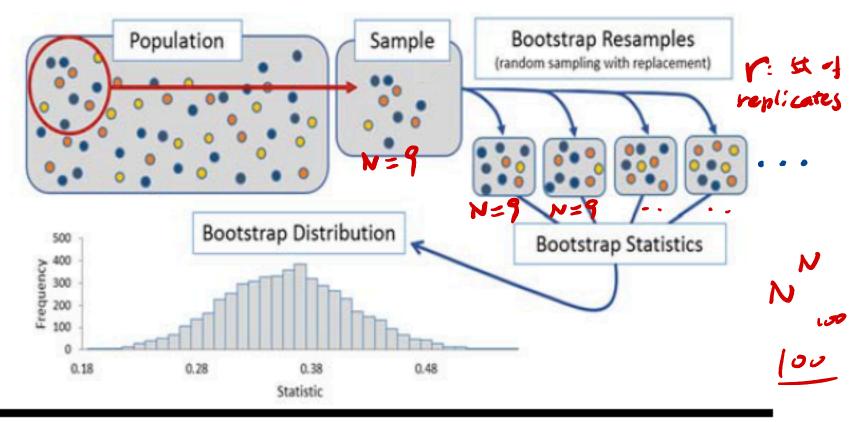


Figure 1. Summary of Bootstrapping Process

Credit: E S. Banjanovic and J. W. Osborne, 2016, PAREonline

Example of Bootstrap for confidence interval of sample median

- * The realized sample of student attendance {12,10,9,8,10,11,12,7,5,10}, N=10, median=10
- Generate a random index uniformly from [1,10] that correspond to the 10 numbers in the sample, ie. if index=6, the bootstrap sample's number will be 11.
- * Repeat the process 10 times to get one bootstrap sample

Bootstrap replicate	Sample median	
$\{11, 11, 12, 10, 10, 10, 12, 10, 7, 10\}$	10	x ^{b1}]

Example of Bootstrap for confidence interval of sample median

** The realized sample of student attendance {12,10,9,8,10,11,12,7,5,10}, N=10, median=10

Bootstrap replicate	Sample median	
$\{11, 11, 12, 10, 10, 10, 12, 10, 7, 10\}$	10	٤ ٦
{7, 10, 10, 10, 9, 7, 9, 10, 12, 10}	10 🥻	z ^{sn} }
{9, 7, 10, 8, 5, 10, 7, 10, 12, 8}	8.5	1
•••		•

Q. How many possible bootstrap replicates?

* A. 10^{10} B.10! C. e^{10} 3! 2!

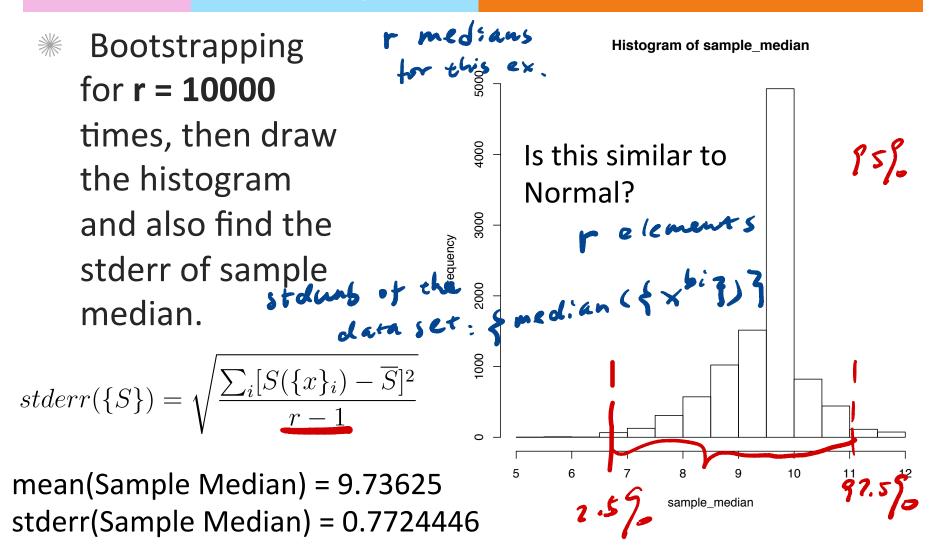
Bootstrap replicate	Sample median
$\{11, 11, 12, 10, 10, 10, 12, 10, 7, 10\}$	10
{7, 10, 10, 10, 9, 7, 9, 10, 12, 10}	10
{9, 7, 10, 8, 5, 10, 7, 10, 12, 8}	8.5
•••	•••

Example of Bootstrap for confidence interval of sample median

Do the bootstrapping for r = 10000 times, then draw the histogram and also find the stderr of sample median)

Bootstrap replicate	Sample median
$\{11, 11, 12, 10, 10, 10, 12, 10, 7, 10\}$	10
{7, 10, 10, 10, 9, 7, 9, 10, 12, 10}	10
{9, 7, 10, 8, 5, 10, 7, 10, 12, 8}	8.5
	•••

Example of Bootstrap for confidence interval of sample median



Errors in Bootstrapping

* The distribution simulated from bootstrapping is called empirical distribution. It is not the true population distribution. There is a statistical error.

10

- * The number of bootstrapping replicates may not be enough. There is a numerical error.
- When the statistic is not a well behaving one, such as maximum or minimum of a data set, the bootstrap method may fail to simulate the true distribution.

CEO salary example with larger N = 59

* The realized sample of CEO salary N=59, median=350 K

⊮ r = 10000

mean(Sample Median) = 348.0378 stderr(Sample Median) = 27.30539

Histogram of the Bootstrap sample medians 3000 2500 2000 requency 1500 1000 200 0 250 300 350 400 450 500 550

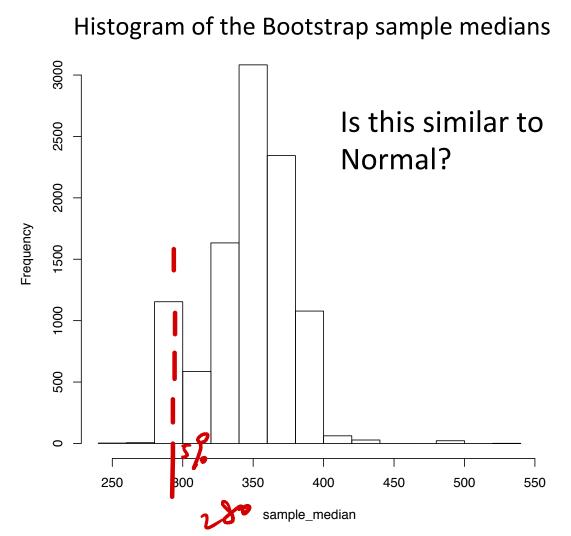
sample_median

CEO salary example with larger N = 59

* The realized sample of CEO salary N=59, median=350 K

⊮ r = 10000

mean(Sample Median) = 348.0378 stderr(Sample Median) = 27.30539



Checking whether it's normal by Normal Q-Q plot

 Q-Q compares a distribution with normal by matching the kth smallest quantile value pairs and plot as a point in the graph

Linear means similar to normal!



▓

Checking whether it's normal by Normal Q-Q plot

- Q-Q compares a distribution with normal by matching the kth smallest quantile value pairs and plot as a point in the graph
 - Linear means similar to normal!

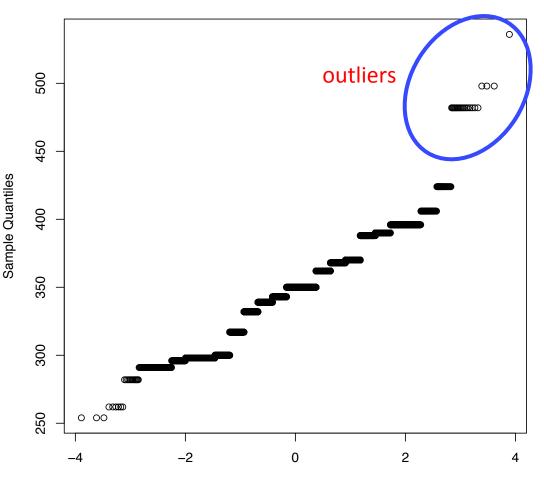
▓



CEO salary sample median's Q-Q plot

- Q-Q plot of CEO salary's bootstrap sample medians
- It's roughly linear so it's close to normal.
 - We can use the
 normal distribution
 to construct the
 confidence intervals

CEO Bootstap Sample Median Q–Q Plot



Theoretical Quantiles

CEO salary sample median's Q-Q plot

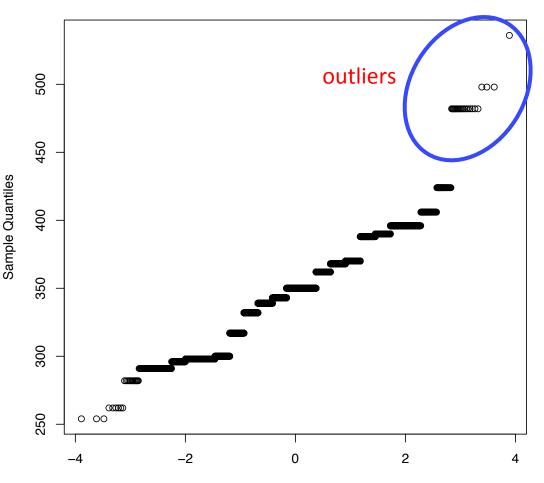
95% confidence interval for the median CEO salary from the bootstrap simulation

348.0378± 2×27.30539

ى

= [293.427, 402.6486]

CEO Bootstap Sample Median Q–Q Plot



Theoretical Quantiles

Assignments

* Read Chapter 7 of the textbook

- Week 8 module on Compass
- * Next time: hypothesis testing

Additional References

- * Charles M. Grinstead and J. Laurie Snell "Introduction to Probability"
- Morris H. Degroot and Mark J. Schervish "Probability and Statistics"

See you next time

See you!

