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"StaGsGcal	thinking	will	one	day	
be	as	necessary	for	efficient	
ciGzenship	as	the	ability	to	read	
and	write."	H.	G.	Wells	
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Objectives	
� Hypothesis	test	

� Maximum	Likelihood	EsGmaGon		



A	hypothesis	
� Ms.	Smith’s	vote	percentage	is	55%	

	This	is	what	we	want	to	test,	oVen	called	null	
hypothesis	H0	

�  Should	we	reject	this	hypothesis	given	the	
poll	data?	

51%	
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Rejection	region	of	null	hypothesis	H0	
�  Assuming	the	hypothesis	H0	is	true	

�  Define	a	test	staGsGc		

�  Since	N>30,	assume	x	comes	from	a	standard	normal		
RejecGon	region	

	(2α)	
	

x =
(sample mean)− (hypothesized value)

standard error
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Fraction	of	“less	extreme”	statistic	
�  Assuming	the	hypothesis	H0	is	true	

�  Define	a	staGsGc	for	the	test	

�  Since	N>30,	we	assume	x	comes	from	a	standard	
normal	

�  So,	the	fracGon	of	“less	extreme”	staGsGc	is:			

x =
(sample mean)− (hypothesized value)

standard error
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P-value:	Rejection	region-	“The	extreme	
fraction”	
�  It	is	convenGonal	to	report	the	p-value	of	a	

hypothesis	test	
	
	

RejecGon	region	
	(2α)	

	

												

By	convenGon:	
2α	=	0.05	
That	is:	

If	p	<	0.05,	reject	H0	

p = 1− f = 1−
1
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p-value:	election	polling	
�  H0:	Ms.	Smith’s	vote	percentage	is	55%	

�  The	sample	mean	is	51%	and	stderr	is	1.44%	

�  The	test	staGsGc	

�  And	the	p-value	for	the	test	is:		

�  So	we	reject	the	hypothesis		

x =
51− 55

1.44
= −2.7778

< 0.05p = 1−
1

√

2π

∫
2.7778

−2.7778

exp(−
u2

2
)du = 0.00547



Hypothesis	test	if	N	<	30	
�  Q:	what	distribuGon	should	we	use	to	test	the	

hypothesis	of	sample	mean	if	N<30?	
A.  Normal	distribuGon	
B.  t-distribuGon	with	degree	=30	
C.  t-distribuGon	with	degree	=	N	
D.  t-distribuGon	with	degree	=	N-1	a



The	use	and	misuse	of	p-value	
�  p-value	use	in	scienGfic	pracGce	
�  Usually	used	to	reject	the	null	hypothesis	that	the	

data	is	random	noise	
�  Common	pracGce	is	p	<	0.05	is	considered	significant	

evidence	for	something	interesGng	

�  CauGon	about	p-value	hacking	
�  RejecGng	the	null	hypothesis	doesn’t	mean	the	

alternaGve	is	true	
�  P	<	0.05	is	arbitrary	and	oVen	is	not	enough	for	

controlling	false	posiGve	phenomenon	



The	parameter	estimation	problem	

�  Suppose	we	have	a	dataset	that	we	know	comes	from	
a	distribuGon	(ie.	Binomial,	Geometric,	or	Poisson,	etc.)	

�  What	is	the	best	esGmate	of	the	parameters	(θ	or	θs)	
of	the	distribuGon?	

�  Examples:	
�  For	binomial	and	geometric	distribuGon,	θ	=	p	(probability	of	

success)	

�  For	Poisson	and	exponenGal	distribuGons,	θ	=	λ	(intensity)	
�  For	normal	distribuGons,	θ	could	be	μ	or	σ2.	

	



Maximum	likelihood	estimation	
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Motivation:	Poisson	example	

�  Suppose	we	have	data	on	the	number	of	babies	
born	each	hour	in	a	large	hospital	

�  	We	can	assume	the	data	comes	from	a	Poisson	
distribuGon	

�  What	is	your	best	esGmate	of	the	intensity	λ?	

Credit:	David	Varodayan	

hour	 1	 2	 …	 N	

#	of	babies	 k1	 k2	 …	 kN	
	

a



Maximum	likelihood	estimation	(MLE)	

�  We	write	the	probability	of	seeing	the	data	D	
given	parameter	θ		

�  The	likelihood	func1on										is	not	a	
probability	distribuGon	

�  The	maximum	likelihood	es1mate	(MLE)	of	
θ	is		

	

L(θ) = P (D|θ)

L(θ)

θ̂ = arg max
θ

L(θ)

0



Why	is	L(θ)	not	a	probability	distribution?	

A.		It	doesn’t	give	the	probability	of	all	the	
possible	θ	values.		

B.	Don’t	know	whether	the	sum	or	integral	of											
for	all	possible	θ	values	is	one	or	not.		

C.	Both.	

L(θ)

a



Likelihood	function:	binomial	example	

�  Suppose	we	have	a	coin	with	unknown	
probability	of	coming	up	heads	

�  We	toss	it	N	Gmes	and	observe	k	heads	

�  We	know	that	this	data	comes	from	a	binomial	
distribuGon	

�  What	is	the	likelihood	funcGon																											?	

	

L(θ) = P (D|θ)

L(θ) =

(

N

k

)

θ
k(1− θ)N−k

= prob of"

head



Likelihood	function:	binomial	example	

�  Suppose	we	have	a	coin	with	unknown	probability	of	θ	
coming	up	heads	

�  We	toss	it	10	&mes	and		

							observe	7	heads	

�  The	likelihood	func&on	is:	

�  The	MLE	is																											

	

P (D|θ) =

(

10

7

)

θ
7(1− θ)3
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MLE	derivation:	binomial	example	

L(θ) =

(

N

k

)

θ
k(1− θ)N−k

θ̂ = arg max
θ

L(θ)In	order	to	find:	
	
We	set:		 dL(θ)

dθ
= 0



MLE	derivation:	binomial	example	

L(θ) =

(

N

k

)

θ
k(1− θ)N−k

d

dθ
L(θ) =

(

N

k

)

(kθk−1(1− θ)N−k
− θ

k(N − k)(1− θ)N−k−1) = 0

kθ
k−1(1− θ)N−k = θ

k(N − k)(1− θ)N−k−1

k − kθ = Nθ − kθ

θ̂ =
k

N
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Likelihood	function:	geometric	example	

�  Suppose	we	have	a	die	with	unknown	probability	
of	coming	up	six	

�  We	roll	it	and	it	comes	up	six	for	the	first	Gme	on	
the	kth	roll	

�  We	know	that	this	data	comes	from	a	geometric	
distribuGon	

�  What	is	the	likelihood	funcGon																											?	
Assume	θ	is	p.	

	

L(θ) = P (D|θ)



MLE	derivation:	geometric	example	

L(θ) = (1− θ)k−1
θ

PI DIO)
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MLE	derivation:	geometric	example	

L(θ) = (1− θ)k−1
θ

(1− θ)k−1 = (k − 1)(1− θ)k−2
θ

d

dθ
L(θ) = (1− θ)k−1

− (k − 1)(1− θ)k−2
θ = 0

1− θ = kθ − θ

θ̂ =
1

k
The	MLE	of	p	



MLE	with	data	from	IID	trials	

�  If	the	dataset																		comes	from	IID	trials	

�  Each	xi		is	one	observed	result	from	an	IID	trial	

D = {x}

L(θ) = P (D|θ) =
∏

xi∈D

P (xi|θ)



MLE	with	data	from	IID	trials	

�  If	the	dataset																		comes	from	IID	trials	

�  The	likelihood	funcGon	is	hard	to	differenGate	in	
general,	except	for	the	binomial	and	geometric	
cases.	

�  Clever	trick:	take	the	(natural)	log	

D = {x}

L(θ) = P (D|θ) =
∏

xi∈D

P (xi|θ)
log a* b
=Logatlogb



Log-likelihood	function	

�  Since	log	is	a	strictly	increasing	funcGon	

	

�  So	we	can	aim	to	maximize	the	log-likelihood	
func1on	

�  The	log-likelihood	funcGon	is	usually	much	easier	
to	differenGate	

θ̂ = arg max
θ

L(θ) = arg max
θ

logL(θ)

logL(θ) = logP (D|θ) = log
∏

xi∈D

P (xi|θ) =
∑

xi∈D

logP (xi|θ)



Log-likelihood	function:	Poisson	example	

�  Suppose	we	have	data	on	the	number	of	babies	
born	each	hour	in	a	large	hospital	

�  	We	can	assume	the	data	comes	from	a	Poisson	
distribuGon	λ	

�  What	is	the	log	likelihood	funcGon																					?	

hour	 1	 2	 …	 N	

#	of	babies	 k1	 k2	 …	 kN	
	

LogL(θ)



Log-likelihood	function:	Poisson	example	

L(θ) =
N∏

i=1

e−θθki

ki!

log L(θ) = log (
N∏

i=1

e−θθki

ki!
) =

N∑

i=1

log(
e−θθki

ki!
)

=
N∑

i=1

(−θ + ki logθ − log ki!)
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MLE	:	Poisson	example	

d

dθ
log L(θ) = 0 ⇒

N∑

i=1

(−1 +
ki

θ
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−N +
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MLE	for	normal	distribution	

�  Suppose	we	model	the	dataset																		as	
normally	distributed		

�  What	should	be	the	likelihood	funcGon?	Is	the	
method	of	modeling	the	same	as	for	the	Poisson	
distribuGon?	

	A.			Yes								B.	No	

D = {x}

N cu . 6)

Ki : height
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MLE	for	normal	distribution	

�  Suppose	we	model	the	dataset																		as	
normally	distributed		

�  What	should	be	the	likelihood	funcGon?	Is	the	
method	of	modeling	the	same	as	for	the	Poisson	
distribuGon?	Yes	and	No.	The	idea	is	similar	but	
the	normal	distribuGon	is	conGnuous,	we	need	to	
use	the	probability	density	instead.	

D = {x}



MLE	for	normal	distribution	

�  Suppose	we	model	the	dataset																		as	
normally	distributed		

�  The	likelihood	funcGon	of	a	normal	distribuGon:	

D = {x}

L(µ, σ) =
n∏

i=1

1
√

2πσ
exp(−

(xi − µ)2

2σ2
)

↳g 40) =
,

log e
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MLE	for	normal	distribution	

�  Suppose	we	model	the	dataset																		as	
normally	distributed		

�  There	are	two	parameters	to	esGmate:	μ	and	σ	
�  If	we	fix	σ	and	set	θ=	μ	
		
�  If	we	fix	μ	and	set	θ=	σ	

θ̂ =
1

N

N∑

i=1

xi

θ̂ =

√

√

√

√

1

N

N
∑

i=1

(xi − µ)2

D = {x}



Drawbacks	of	MLE	

�  Maximizing	some	likelihood	or	log-likelihood	
funcGon	is	mathemaGcally	hard	

�  	If	there	are	very	few	data	items,	the	MLE	
esGmate	maybe	very	unreliable	
�  If	we	observe	3	heads	in	10	coin	tosses,	should	we	

accept	that	p(heads)=	0.3	?	

�  If	we	observe	0	heads	in	2	coin	tosses,	should	we	
accept	that	p(heads)=	0	?	



Confidence	intervals	for	MLE	estimates	

�  An	MLE	parameter	esGmate						depends	on	the	
data	that	was	observed	

�  We	can	construct	a	confidence	interval	for					using	
the	parametric	bootstrap	
�  Use	the	distribuGon	with	parameter							to	generate	

a	large	number	of	bootstrap	samples	
�  From	each	“syntheGc”	dataset,	re-esGmate	the	

parameter	using	MLE	
�  Use	the	histogram	of	these	re-esGmates	to	

construct	a	confidence	interval	

θ̂

θ̂

θ̂



Assignments	

� Finish	Chapter	7	of	the	textbook	

� Next	Gme:		Maximum	likelihood	
esGmate,	Bayesian	inference	

	



Additional	References	

✺  Robert	V.	Hogg,	Elliot	A.	Tanis	and	Dale	L.	
Zimmerman.	“Probability	and	StaGsGcal	
Inference”		

� Morris	H.	Degroot	and	Mark	J.	Schervish	
"Probability	and	StaGsGcs”	



See	you	next	time	

See 
You! 


