Probability and Statistics 2

for Computer Science

"Statistical thinking will one day
be as necessary for efficient
citizenship as the ability to read
and write." H. G. Wells

Credit: wikipedia
-]
Hongye Liu, Teaching Assistant Prof, CS361, UIUC, 3.18.2021
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Hypothesis test

Maximum Likelihood Estimation



A hypothesis

Sianp le

Ms. Smith’s vote percentage is 55% 9= ‘9’
This is what we want to test, often called null

hypothesis H, H,: perct ¥ 5‘7.,
L
: DATES POLLSTER SAMPLE RES NET RESULT I
l:l_.-s.Senate Miss. NOV 25, 2018 @ChangeR eeeeee h 1,211 LV Espy 45@de-8mith Hyde-Smith +5
51%

Should we reject this hypothesis given the
poll data?



Rejection region of null hypothesis H,

Assuming the hypothesis H, is true fopmean = Vo

-

Define a test stahsh&““{.,‘],

(sample mean) — (hypothesized value)
standard error §+vdere ($%3)
Since N>30, assume x comes from a standard normal
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Rejection region
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Credit:
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Fraction of “less extreme” statistic

Assuming the hypothesis H, is true e v, 5 ]

Define a statistic for the test é"}"" t e, w, 30}

mcant$z]) = 2o

(sample mean) — (hypothesized value)*™ >~

aj p—
standard error

Since N>30, we assume x comes from a standard
normal

So, the fraction of “less extreme” statistic is:
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P-value: Rejection region- "The extreme

]
p=1—f —1——/ exp(—
V21 J g

4 By convention: )
2a = 0.05
That is:

If p <0.05, reject Hy

Rejection region
(20)
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p-value: election polling

Ho. Ms. Smith’s vote percentage is 55%

The sample mean is 51% and stderr is 1.44%

The test statistic z = 511;455 — 27778

And the p-value for the test is:

2.7778

— 1 - — exp(— du = 0.00547 < 0.05
V2T J 27778

So we reject the hypothe5|s




Hypothesis test if N < 30

Q: what distribution should we use to test the
hypothesis of sample mean if N<30?

A. Normal distribution

B. t-distribution with degree =30

C. t-distribution with degree =N
@ t-distribution with degree = N-1




The use and misuse of p-value

p-value use in scientific practice

* Usually used to reject the null hypothesis that the
data is random noise

% Common practice is p < 0.05 is considered significant
evidence for something interesting

Caution about p-value hacking

% Rejecting the null hypothesis doesn’t mean the
alternative is true

% P <0.05is arbitrary and often is not enough for
controlling false positive phenomenon



The parameter estimation problem

Suppose we have a dataset that we know comes from
a distribution (ie. Binomial, Geometric, or Poisson, etc.)

What is the best estimate of the parameters (0 or 0s)
of the distribution?

Examples:

% For binomial and geometric distribution, 8 = p (probability of
success)

% For Poisson and exponential distributions, 8 = A (intensity)
% For normal distributions, 8 could be u or ¢



Maximum likelihood estimation
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Motivation: Poisson example

Suppose we have data on the number of babies

born each hour in a large hospital A
hour 1 2 N
# of babies k; k, ky,

We can assume the data comes from a Poisson
distribution

What is your best estimate of the intensity A?

Credit: David Varodayan



Maximum likelihood estimation (MLE)

We write the probability of seeing the data D
given parameter 0

[ L(6) = P(D|6) J

The likelihood function L () is‘not‘a
probability distribution

The maximum likelihood estimate (MLE) of

Ols [é = arg max L(@)J

v




Why is L(0) not a probability distribution?

A. It doesn’t give the probability of all the
possible O values.

B. Don’t know whether the sum or integral of L(6)
for all possible 0 values is one or not.

@oth.



Likelihood function: binomial example

Suppose we have a coin with unknown
probability of coming up heads

We toss it N times and observe k heads

We know that this data comes from a binomial
distribution

What is the likelihood function L(6) = P(D|6) ?
@ )

- PMB. ”}
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Likelihood function: binomial example

Suppose we have a coin with unknown probability of 6
coming up heads

Likelihood L(O)

We toss it 10 times and

D: N=S(9
observe 7 heads k=7 \

The likelihood function is:

10
P = (7)ea-op ¢ o
The MLE is NN

0=0.7 L ( 0) s NOT o

a distre.



MLE derivation: binomial example

(L(H) — (5) P8 (1 — 9)N " N

\. J

In order to find: QA = arg max L(G))

v
We set: dL(6)

= ()
dé




MLE derivation: binomial example
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Likelihood function: geometric example

Suppose we have a die with unknown probability
of coming up six

We roll it and it comes up six for the first time on
the kth roll

We know that this data comes from a geometric
distribution

What is the likelihood function L(#) = P(D|6) ?
Assume 0 is p.



MLE derivation: geometric example




MLE derivation: geometric example




MLE with data from IID trials

If the dataset D = {x} comes from IID trials

L(0) = P(D|0) = | | P(x:16)

T, €D

Each x; is one observed result from an IID trial



MLE with data from IID trials

If the dataset D = {x} comes from IID trials

L(0) = P(D|9) = przw

T, €D 97’ axb

-.91:744'(97 b
The likelihood function is hard to differentiate in
general, except for the binomial and geometric

CdSes.

Clever trick: take the (natural) log



Log-likelihood function

Since log is a strictly increasing function

0 = arg max L(#) =arg max logL(6) “L
So we can aim to maximize the log-likelihood
function
logL(0) = logP(D|0) = log | | P(x:]0) = )  logP(x;]6)

x, €D x; €D

The log-likelihood function is usually much easier
to differentiate



Log-likelihood function: Poisson example

Suppose we have data on the number of babies
born each hour in a large hospital

hour 1 2 N

# of babies k; k, ky,

We can assume the data comes from a Poisson
distribution A

What is the log likelihood function LogL(#) ?



Log-likelihood function: Poisson example

= (=0 +k; logh — log k)

1=1



MLE : Poisson example

N
LogL(0) = Z(—é’ + k; logh — log k;!)
i=1
il() L(#) =0 iZ(—leE—O)—O
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MLE for normal distribution

Suppose we model the dataset D = {z} as
normally distributed A/ (w.s)

What should be the likelihood function? Is the
method of modeling the same as for the Poisson

distribution? Lo : haig
74 oWL
A. Yes  B.No f 2.3 Stmlend
o d
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MLE for normal distribution

Suppose we model the dataset D = {z} as
normally distributed

What should be the likelihood function? Is the
method of modeling the same as for the Poisson
distribution? Yes and No. The idea is similar but
the normal distribution is continuous, we need to

use the probability density instead.



MLE for normal distribution

Suppose we model the dataset D = {z} as
normally distributed

The likelihood function of a normal distribution:
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MLE for normal distribution

Suppose we model the dataset D = {z} as
normally distributed

There are two parameters to estimate: u and o

* IfwefixoandsetO=u 1 N
=23
Nz'=1

% If we fixgandsetO=0

A 1
p— . — 2
(9 \ N 1=1 (xz Iu)

-




Drawbacks of MLE

Maximizing some likelihood or log-likelihood
function is mathematically hard

If there are very few data items, the MLE
estimate maybe very unreliable

% If we observe 3 heads in 10 coin tosses, should we
accept that p(heads)=0.3 ?

% If we observe O heads in 2 coin tosses, should we
accept that p(heads)=0"7?



Confidence intervals for MLE estimates

An MLE parameter estimate é depends on the
data that was observed

We can construct a confidence interval for §) using
the parametric bootstrap

% Use the distribution with parameter é to generate
a large number of bootstrap samples

% From each “synthetic” dataset, re-estimate the
parameter using MLE

% Use the histogram of these re-estimates to
construct a confidence interval



Finish Chapter 7 of the textbook

Next time: Maximum likelihood
estimate, Bayesian inference



Additional References

Robert V. Hogg, Elliot A. Tanis and Dale L.
Zimmerman. “Probability and Statistical
Inference”

Morris H. Degroot and Mark J. Schervish
"Probability and Statistics”



See you next time




