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"StaGsGcal	thinking	will	one	day	
be	as	necessary	for	efficient	
ciGzenship	as	the	ability	to	read	
and	write."	H.	G.	Wells	



Objectives	
✺ Hypothesis	test	

✺ Maximum	Likelihood	EsGmaGon		



A	hypothesis	
✺ Ms.	Smith’s	vote	percentage	is	55%	

	This	is	what	we	want	to	test,	oVen	called	null	
hypothesis	H0	

✺  Should	we	reject	this	hypothesis	given	the	
poll	data?	

51%	



Fraction	of	“less	extreme”	samples		
✺  Assuming	the	hypothesis	H0	is	true	

✺  Define	a	test	staGsGc		

✺  Since	N>30,	we	assume	x	comes	from	a	standard	
normal	

✺  So,	the	fracGon	of	“less	extreme”	samples	is:			

x =
(sample mean)− (hypothesized value)

standard error

f =
1

√

2π

∫ |x|

−|x|

exp(−
u2

2
)du



Rejection	region	of	null	hypothesis	H0	
✺  Assuming	the	hypothesis	H0	is	true	

✺  Define	a	test	staGsGc		

✺  Since	N>30,	assume	x	comes	from	a	standard	normal		
RejecGon	region	

	(2α)	
	

x =
(sample mean)− (hypothesized value)

standard error

												

Credit:		
J.	Orloff	et	al	
			



P-value:	Rejection	region-	“The	extreme	
fraction”	
✺  It	is	convenGonal	to	report	the	p-value	of	a	

hypothesis	test	
	
	

RejecGon	region	
	(2α)	

	

												

By	convenGon:	
2α	=	0.05	
That	is:	

If	p	<	0.05,	reject	H0	

p = 1− f = 1−
1

√

2π

∫ |x|

−|x|

exp(−
u2

2
)du



p-value:	election	polling	
✺  H0:	Ms.	Smith’s	vote	percentage	is	55%	

✺  The	sample	mean	is	51%	and	stderr	is	1.44%	

✺  The	test	staGsGc	

✺  And	the	p-value	for	the	test	is:		

✺  So	we	reject	the	hypothesis		

x =
51− 55

1.44
= −2.7778

< 0.05p = 1−
1

√

2π

∫
2.7778

−2.7778

exp(−
u2

2
)du = 0.00547



Hypothesis	test	if	N	<	30	
✺  Q:	what	distribuGon	should	we	use	to	test	the	

hypothesis	of	sample	mean	if	N<30?	
A.  Normal	distribuGon	
B.  t-distribuGon	with	degree	=30	
C.  t-distribuGon	with	degree	=	N	
D.  t-distribuGon	with	degree	=	N-1	



The	use	and	misuse	of	p-value	
✺  p-value	use	in	scienGfic	pracGce	
✺  Usually	used	to	reject	the	null	hypothesis	that	the	

data	is	random	noise	
✺  Common	pracGce	is	p	<	0.05	is	considered	significant	

evidence	for	something	interesGng	

✺  CauGon	about	p-value	hacking	
✺  RejecGng	the	null	hypothesis	doesn’t	mean	the	

alternaGve	is	true	
✺  P	<	0.05	is	arbitrary	and	oVen	is	not	enough	for	

controlling	false	posiGve	phenomenon	



Be	wary	of	one	tailed	p-values	

✺  The	one	tailed	p-value	should	only	be	considered	
when	the	realized	sample	mean	or	differences	will	for	
sure	fall	only	to	one	size	of	the	distribuGon.	

✺  SomeGmes	scienGst	are	tempted	to	use	one	tailed	
test	because	it’ll	give	smaller	p-val.	But	this	is	bad	
staGsGcs!	



Maximum	likelihood	estimation	



The	parameter	estimation	problem	

✺  Suppose	we	have	a	dataset	that	we	know	comes	from	
a	distribuGon	(ie.	Binomial,	Geometric,	or	Poisson,	etc.)	

✺  What	is	the	best	esGmate	of	the	parameters	(θ	or	θs)	
of	the	distribuGon?	

✺  Examples:	
✺  For	binomial	and	geometric	distribuGon,	θ	=	p	(probability	of	

success)	
✺  For	Poisson	and	exponenGal	distribuGons,	θ	=	λ	(intensity)	
✺  For	normal	distribuGons,	θ	could	be	μ	or	σ2.	

	



Motivation:	Poisson	example	

✺  Suppose	we	have	data	on	the	number	of	babies	
born	each	hour	in	a	large	hospital	

✺  	We	can	assume	the	data	comes	from	a	Poisson	
distribuGon	

✺  What	is	your	best	esGmate	of	the	intensity	λ?	

Credit:	David	Varodayan	

hour	 1	 2	 …	 N	

#	of	babies	 k1	 k2	 …	 kN	
	



Maximum	likelihood	estimation	(MLE)	

✺  We	write	the	probability	of	seeing	the	data	D	
given	parameter	θ		

✺  The	likelihood	func1on										is	not	a	
probability	distribuGon	

✺  The	maximum	likelihood	es1mate	(MLE)	of	
θ	is		

	

L(θ) = P (D|θ)

L(θ)

θ̂ = arg max
θ

L(θ)



Why	is	L(θ)	not	a	probability	distribution?	

A.		It	doesn’t	give	the	probability	of	all	the	
possible	θ	values.		

B.	Don’t	know	whether	the	sum	or	integral	of											
for	all	possible	θ	values	is	one	or	not.		

C.	Both.	

L(θ)



Likelihood	function:	Binomial	example	

✺  Suppose	we	have	a	coin	with	unknown	
probability	of	coming	up	heads	

✺  We	toss	it	N	Gmes	and	observe	k	heads	

✺  We	know	that	this	data	comes	from	a	binomial	
distribuGon	

✺  What	is	the	likelihood	funcGon																											?	

	

L(θ) = P (D|θ)



Likelihood	function:	binomial	example	

✺  Suppose	we	have	a	coin	with	unknown	
probability	of	coming	up	heads	

✺  We	toss	it	N	Gmes	and	observe	k	heads	

✺  We	know	that	this	data	comes	from	a	binomial	
distribuGon	

✺  What	is	the	likelihood	funcGon																											?	

	

L(θ) = P (D|θ)

L(θ) =

(

N

k

)

θ
k(1− θ)N−k



MLE	derivation:	binomial	example	

L(θ) =

(

N

k

)

θ
k(1− θ)N−k

θ̂ = arg max
θ

L(θ)In	order	to	find:	
	
We	set:		 dL(θ)

dθ
= 0



MLE	derivation:	binomial	example	

L(θ) =

(

N

k

)

θ
k(1− θ)N−k



MLE	derivation:	binomial	example	

L(θ) =

(

N

k

)

θ
k(1− θ)N−k

d

dθ
L(θ) =

(

N

k

)

(kθk−1(1− θ)N−k
− θ

k(N − k)(1− θ)N−k−1) = 0



MLE	derivation:	binomial	example	

L(θ) =

(

N

k

)

θ
k(1− θ)N−k

d

dθ
L(θ) =

(

N

k

)

(kθk−1(1− θ)N−k
− θ

k(N − k)(1− θ)N−k−1) = 0

kθ
k−1(1− θ)N−k = θ

k(N − k)(1− θ)N−k−1



MLE	derivation:	binomial	example	

L(θ) =

(

N

k

)

θ
k(1− θ)N−k

d

dθ
L(θ) =

(

N

k

)

(kθk−1(1− θ)N−k
− θ

k(N − k)(1− θ)N−k−1) = 0

kθ
k−1(1− θ)N−k = θ

k(N − k)(1− θ)N−k−1

k − kθ = Nθ − kθ



MLE	derivation:	binomial	example	

L(θ) =

(

N

k

)

θ
k(1− θ)N−k

d

dθ
L(θ) =

(

N

k

)

(kθk−1(1− θ)N−k
− θ

k(N − k)(1− θ)N−k−1) = 0

kθ
k−1(1− θ)N−k = θ

k(N − k)(1− θ)N−k−1

k − kθ = Nθ − kθ

θ̂ =
k

N
The	MLE	of	p	



Likelihood	function:	geometric	example	

✺  Suppose	we	have	a	die	with	unknown	probability	
of	coming	up	six	

✺  We	roll	it	and	it	comes	up	six	for	the	first	Gme	on	
the	kth	roll	

✺  We	know	that	this	data	comes	from	a	geometric	
distribuGon	

✺  What	is	the	likelihood	funcGon																											?	
Assume	θ	is	p.	

	

L(θ) = P (D|θ)



MLE	derivation:	geometric	example	

L(θ) = (1− θ)k−1
θ



MLE	derivation:	geometric	example	

L(θ) = (1− θ)k−1
θ

d

dθ
L(θ) = (1− θ)k−1

− (k − 1)(1− θ)k−2
θ = 0



MLE	derivation:	geometric	example	

L(θ) = (1− θ)k−1
θ

(1− θ)k−1 = (k − 1)(1− θ)k−2
θ

d

dθ
L(θ) = (1− θ)k−1

− (k − 1)(1− θ)k−2
θ = 0



MLE	derivation:	geometric	example	

L(θ) = (1− θ)k−1
θ

(1− θ)k−1 = (k − 1)(1− θ)k−2
θ

d

dθ
L(θ) = (1− θ)k−1

− (k − 1)(1− θ)k−2
θ = 0

1− θ = kθ − θ



MLE	derivation:	geometric	example	

L(θ) = (1− θ)k−1
θ

(1− θ)k−1 = (k − 1)(1− θ)k−2
θ

d

dθ
L(θ) = (1− θ)k−1

− (k − 1)(1− θ)k−2
θ = 0

1− θ = kθ − θ

θ̂ =
1

k
The	MLE	of	p	



MLE	with	data	from	IID	trials	

✺  If	the	dataset																		comes	from	IID	trials	

✺  Each	xi		is	one	observed	result	from	an	IID	trial	

D = {x}

L(θ) = P (D|θ) =
∏

xi∈D

P (xi|θ)



Q:	MLE	with	data	from	IID	trials	

✺  If	the	dataset																		comes	from	IID	trials	

✺  Why	is	the	above	funcGon	defined	by	the	product?	

	A.	IID	samples	are	independent	

	B.	Each	trial	has	idenGcal	probability	funcGon	

	C.	Both.	

D = {x}

L(θ) = P (D|θ) =
∏

xi∈D

P (xi|θ)



MLE	with	data	from	IID	trials	

✺  If	the	dataset																		comes	from	IID	trials	

✺  The	likelihood	funcGon	is	hard	to	differenGate	in	
general,	except	for	the	binomial	and	geometric	
cases.	

✺  Clever	trick:	take	the	(natural)	log	

D = {x}

L(θ) = P (D|θ) =
∏

xi∈D

P (xi|θ)



Log-likelihood	function	

✺  Since	log	is	a	strictly	increasing	funcGon	

	

✺  So	we	can	aim	to	maximize	the	log-likelihood	
func1on	

✺  The	log-likelihood	funcGon	is	usually	much	easier	
to	differenGate	

θ̂ = arg max
θ

L(θ) = arg max
θ

logL(θ)

logL(θ) = logP (D|θ) = log
∏

xi∈D

P (xi|θ) =
∑

xi∈D

logP (xi|θ)



Log-likelihood	function:	Poisson	example	

✺  Suppose	we	have	data	on	the	number	of	babies	
born	each	hour	in	a	large	hospital	

✺  	We	can	assume	the	data	comes	from	a	Poisson	
distribuGon	λ	

✺  What	is	the	log	likelihood	funcGon																					?	

hour	 1	 2	 …	 N	

#	of	babies	 k1	 k2	 …	 kN	
	

LogL(θ)



Log-likelihood	function:	Poisson	example	

L(θ) =
N∏

i=1

e−θθki

ki!

log L(θ) = log (
N∏

i=1

e−θθki

ki!
) =

N∑

i=1

log(
e−θθki

ki!
)

=
N∑

i=1

(−θ + ki logθ − log ki!)



MLE	:	Poisson	example	

LogL(θ) =
N∑

i=1

(−θ + ki logθ − log ki!)



MLE	:	Poisson	example	

d

dθ
log L(θ) = 0 ⇒

N∑

i=1

(−1 +
ki

θ
− 0) = 0

LogL(θ) =
N∑

i=1

(−θ + ki logθ − log ki!)



MLE	:	Poisson	example	

d

dθ
log L(θ) = 0 ⇒

N∑

i=1

(−1 +
ki

θ
− 0) = 0

−N +

∑
N

i
ki

θ
= 0

LogL(θ) =
N∑

i=1

(−θ + ki logθ − log ki!)



MLE	:	Poisson	example	

d

dθ
log L(θ) = 0 ⇒

N∑

i=1

(−1 +
ki

θ
− 0) = 0

−N +

∑
N

i
ki

θ
= 0

θ̂ =

∑
N

i
ki

N

The	MLE	of	λ	

LogL(θ) =
N∑

i=1

(−θ + ki logθ − log ki!)



MLE	for	normal	distribution	

✺  Suppose	we	model	the	dataset																		as	
normally	distributed		

✺  What	should	be	the	likelihood	funcGon?	Is	the	
method	of	modeling	the	same	as	for	the	Poisson	
distribuGon?	

	A.			Yes								B.	No	

D = {x}



MLE	for	normal	distribution	

✺  Suppose	we	model	the	dataset																		as	
normally	distributed		

✺  What	should	be	the	likelihood	funcGon?	Is	the	
method	of	modeling	the	same	as	for	the	Poisson	
distribuGon?	Yes	and	No.	The	idea	is	similar	but	
the	normal	distribuGon	is	conGnuous,	we	need	to	
use	the	probability	density	instead.	

D = {x}



MLE	for	normal	distribution	

✺  Suppose	we	model	the	dataset																		as	
normally	distributed		

✺  The	likelihood	funcGon	of	a	normal	distribuGon:	

D = {x}

L(µ, σ) =
n∏

i=1

1
√

2πσ
exp(−

(xi − µ)2

2σ2
)



MLE	for	normal	distribution	

✺  Suppose	we	model	the	dataset																		as	
normally	distributed		

✺  There	are	two	parameters	to	esGmate:	μ	and	σ	
✺  If	we	fix	σ	and	set	θ=	μ	
		
✺  If	we	fix	μ	and	set	θ=	σ	

θ̂ =
1

N

N∑

i=1

xi

θ̂ =

√

√

√

√

1

N

N
∑

i=1

(xi − µ)2

D = {x}



Drawbacks	of	MLE	

✺  Maximizing	some	likelihood	or	log-likelihood	
funcGon	is	mathemaGcally	hard	

✺  	If	there	are	very	few	data	items,	the	MLE	
esGmate	maybe	very	unreliable	
✺  If	we	observe	3	heads	in	10	coin	tosses,	should	we	

accept	that	p(heads)=	0.3	?	
✺  If	we	observe	0	heads	in	2	coin	tosses,	should	we	

accept	that	p(heads)=	0	?	



Confidence	intervals	for	MLE	estimates	

✺  An	MLE	parameter	esGmate						depends	on	the	
data	that	was	observed	

✺  We	can	construct	a	confidence	interval	for					using	
the	parametric	bootstrap	
✺  Use	the	distribuGon	with	parameter							to	generate	

a	large	number	of	bootstrap	samples	
✺  From	each	“syntheGc”	dataset,	re-esGmate	the	

parameter	using	MLE	
✺  Use	the	histogram	of	these	re-esGmates	to	

construct	a	confidence	interval	

θ̂

θ̂

θ̂



Assignments	

✺ Finish	Chapter	7	of	the	textbook	

✺ Next	Gme:		Maximum	likelihood	
esGmate,	Bayesian	inference	

	



Additional	References	

✺  Robert	V.	Hogg,	Elliot	A.	Tanis	and	Dale	L.	
Zimmerman.	“Probability	and	StaGsGcal	
Inference”		

✺ Morris	H.	Degroot	and	Mark	J.	Schervish	
"Probability	and	StaGsGcs”	



Chi-square	distribution	
✺  If									are	independent	variables	of	standard	normal	

distribuGon,	
																									
	
	
	

Z
′

i
s

has	a	Chi-square	distribuGon	with	degree	of	freedom	
m	,		X ∼ χ2(m)

✺  We	can	test	the	goodness	of	fit	for	a	model	using	a	
staGsGc	C	against	this	distribuGon,	where		

																									
	
	
	

C =
m∑

i=1

(fo(εi)− ft(εi))2

ft(εi)

X = Z
2

1
+ Z

2

2
+ ...+ Z

2

m
=

m∑

i=1

Z
2

i



Independence	analysis	using	Chi-square	

✺  Given	the	two	way	table,	test	whether	the	
column	and	row	are	independent	

Boy	 Girl	 Total	

Grades	 117	 130	 247	

Popular	 50	 91	 141	

Sports	 60	 30	 90	

Total	 227	 251	 478	



Independence	analysis	using	Chi-square	

✺  The	theoreGcal	expected	values	if	
independent	

Boy	 Girl	 Total	

Grades	 117.29916	 129.70084	 247	

Popular	 66.96025	 74.03975	 141	

Sports	 42.74059	 47.25941	 90	

Total	 227	 251	 478	



The	degree	of	the	chi-square	distribution	
for	the	two	way	table	
✺  The	degree	of	freedom	for	the	chi-square	

distribuGon	for	a	r	by	c	table	is	

		(r-1)	×	(c-1)		where	r>1	and	c>1	

✺  	Because	the	degree	df	=	n-1-p	

	 	 	 									=	rc	-1-	(r-1)	-	(c-1)		

	 	 	 									=	(r-1)	×(c-1)	

	 	 	 									=	2	
	

	 		
	

See	textbook	Pg	171-172	

n	is	the	number	of	cells	of	
data;	
p	is	the	number	of	
unknown	parameters	



Chi-square	test	for	the	popular	kid	data	

✺  The	Chi-staGsGc	:	21.455	

✺  P-value:	2.193e-05	

✺  It’s	very	unlikely	the	two	categories	are	
independent	

chisq.test(data_BG)	
	

	Pearson's	Chi-squared	test	
	
data:		data_BG	
X-squared	=	21.455,	df	=	2,	p-value	=	2.193e-05	



Q.	What	is	the	degree	of	freedom	for	this?	

✺  The	following	2-way	table	for	chi-square	test	
has	a	degree	of	freedom	equal	to:	
	
	
	
	
	

	A. 	20 	 	B.		9	
					C. 	12 	 	D.		4 		
	



Chi-square	test	is	very	versatile	
✺  Chi-square	test	is	so	versaGle	that	it	can	
be	uGlized	in	many	ways	either	for	
discrete	data	or	conGnuous	data	via	
intervals	

✺  Please	check	out	the	worked-out	
examples	in	the	textbook	and	read	more	
about	its	applicaGons.	



We	are	interested	in	comparing	
sample	means	
✺  Are	the	average	

daily	body	
temperature	of	the	
two	beavers	the	
same?	

✺  We	need	to	model	
the	difference	
between	two	
sample	means	

	
	
	

vs.	

																									



How	do	we	model	the	difference	
between	two	samples	means?	
✺ We	know	when	the	sample	size	N	is	large,	
the	sample	mean	random	variable	
approaches	normal	*.	

✺  So	our	problem	became	finding	the	model	
of	the	difference	between	two	normally	
distributed	random	variables.	

*	Assume	the	daily	temperature	at	different	1mes	are	independent.	



Background:	sum	of	independent	normals		

✺ We	know	

✺  The	sum	of	X1	and	X2	is	sGll	normal	(proof	
omi}ed,	ref.	…)	

X1 ∼ normal(µ1, σ
2

1
)

X2 ∼ normal(µ2, σ
2

2
)

X1 +X2 ∼ normal(µ1 + µ2, σ
2

1
+ σ2

2
)																												?	



Background:	sum	of	independent	normals		

✺ We	know	

✺  So	

✺  By	the	linearity	of	expected	value	and	the	
sum	rule	of	variance	of	the	sum	of	two	
independent	random	variables.	

X1 ∼ normal(µ1, σ
2

1
)

X2 ∼ normal(µ2, σ
2

2
)

X1 +X2 ∼ normal(µ1 + µ2, σ
2

1
+ σ2

2
)



Background:	sum	of	independent	normals		

✺ We	know		

✺  So	

✺  By	properGes:		

X1 ∼ normal(µ1, σ
2

1
)

X2 ∼ normal(µ2, σ
2

2
)

X1 +X2 ∼ normal(µ1 + µ2, σ
2

1
+ σ2

2
)

E[X1 +X2] = E[X1] + E[X2]

var[X1 +X2] = var[X1] + var[X2]



Difference	of	independent	normals		

✺ We	know	

✺  The	difference	of	X1	and	X2	is	sGll	normal	
(proof	omi}ed)	

X1 ∼ normal(µ1, σ
2

1
)

X2 ∼ normal(µ2, σ
2

2
)

X1 −X2 ∼ ?	



Difference	of	independent	normals		

✺ We	know	

✺  So	

✺  By	the	linearity	of	expected	value	and	the	sum	
rule	of	variance	of	the	sum	of	two	independent	
random	variables	and	the	scaling	property	of	
variance.	

X1 ∼ normal(µ1, σ
2

1
)

X2 ∼ normal(µ2, σ
2

2
)

X1 −X2 ∼ normal(µ1 − µ2, σ
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Now	we	are	ready	to	check	the	
differences	between	sample	means	
✺  Because	sample	means	are	roughly	normal	
when	N	is	large.	

		

X1 −X2 ∼ normal(µ1 − µ2, σ
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**	



The	difference	between	two	sample	means	

✺  Suppose	we	draw	samples	from	two	populaGons																
														and	 		

✺  From	a	sample	of	size	kx	from							,	we	get	sample	
mean		

✺  From	a	sample	of	size	ky from								,	we	get	sample	
mean	

{x}

{y}{x}

{y}
X

(kx)

Y
(ky)



The	difference	between	two	sample	means	

D = X
(kx)

− Y
(ky)✺  Define	random	variable																																		

as	the	difference	between	the	sample	
means	

✺  If	we	hypothesize	that	popmean({x})	=	
popmean({y}),	then	

E[D] = E[X(kx)]− E[Y (ky)] = 0



Standard	error	of	the	difference	between	two	
sample	means	
✺  Recall	the	standard	error	is	roughly	the	

standard	deviaGon	of	a	sample	mean	

✺  By	the	property	of	variance	of	the	difference	
between	two	independent	normals	

var[D]
.
= stderr({x})2 + stderr({y})2

std[D]
.
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.
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+

stdunbiased({y})2

ky

= stderr[D]



P-value	for	testing	the	equality	of	two	
means	
✺  Define	the	test	staGsGc	

✺  If	kx  ≥ 30 and If	ky  ≥ 30	

g =
mean({x})−mean({y})

stderr(D)

p = 1− f = 1−
1

√

2π

∫ |g|

−|g|

exp(−
u2

2
)du



P-value:	Rejection	region-	“The	extreme	
fraction”	
✺  It	is	convenGonal	to	report	the	p-value	of	a	

hypothesis	test	
	
	

✺  Since	N>30,	x	should	come	from	a	standard	normal		
RejecGon	region	

	(2α)	
	

												

By	convenGon:	
2α	=	0.05	
That	is:	

If	p	<	0.05,	reject	H0	

p = 1− f = 1−
1

√

2π

∫ |g|

−|g|

exp(−
u2

2
)du



Comparing	the	body	temperatures	of	two	
beavers	
✺  kx  = 114 and ky  = 100	

✺  Mean({x})	=	36.86219	

✺  Mean({y})	=	37.5967	

✺  stderr({x})	=	

✺  stderr({y})	=	

✺  	stderr(D)	=	
	 						=		0.04821181	

✺  		

{x}	

{y}	stdunbiased({x})√
114

stdunbiased({y})√
100

√

stderr({x})2 + stderr({y})2



Comparing	the	body	temperatures	of	two	
beavers	
✺  Hypothesis	H0:	the	mean	temperatures	of	the	

two	beavers	are	the	same	

✺  The	test	staGsGc	g	=																																	=	-15.235		
		

✺  So	we	can	reject	the	hypothesis	that	the	mean	
temperatures	are	the	same		

36.86219− 37.5967

0.04821181

p = 1− f = 1−
1

√

2π

∫
15.235

−15.235

exp(−
u2

2
)du

p ≃ 0



What	if	N	<	30?	

✺  There	are	general	soluGons	for	either	N	>=	30	or	N	<	
30	if	the	data	sets	are	random	samples	from	normal	
distributed	data.	
✺  The	difference	between	sample	means	can	be	

either	modeled	as	t-distribuGon	with	degree	(kx
+ky-2)	when	their	populaGon	standard	deviaGons	
are	the	same	

✺  Or	the	difference	between	sample	means	can	be	
approximated	with	t-distribuGon	with	other	proper	
degree	of	freedom.	

✺  There	are	build	in	t-test	procedures	in	Python,	R	
	



Compare	the	two	mean	temperatures	of	
two	beavers	with	t.test		
✺  Hypothesis	H0:	the	mean	temperatures	of	the	

two	beavers	are	the	same	

	

✺  p	<	2.2e-16	,	also	reject	the	hypothesis	
		



See	you	next	time	

See 
You! 


