Probability and Statistics 2

for Computer Science

"Statistical thinking will one day
be as necessary for efficient
citizenship as the ability to read
and write." H. G. Wells
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Hypothesis test

Maximum Likelihood Estimation



A hypothesis

Ms. Smith’s vote percentage is 55%

This is what we want to test, often called null
hypothesis H,

DATES POLLSTER SAMPLE RES NET RESULT
U.S. Senate Miss.  NOV 25,2018 @ChangeR eeeeee h 1,211 LV Espy | 46 de-Smith Hyde-Smith +5

51%
Should we reject this hypothesis given the
poll data?



Fraction of “less extreme” samples

Assuming the hypothesis H, is true

Define a test statistic

(sample mean) — (hypothesized value)

aj p—
standard error

Since N>30, we assume x comes from a standard
normal

So, the fraction of “less extreme samples is:
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Rejection region of null hypothesis H,

Assuming the hypothesis H, is true

Define a test statistic

(sample mean) — (hypothesized value)

x p—
standard error

Since N>30, assume x comes from a standard normal

Rejection region
(20)

Credit:
J. Orloff et al

? 3
To 0 I

<« reject Hy - don’t reject Hy e reject Hy




P-value: Rejection region- "The extreme

action
% It is conventional to report the p-value of a
hypothesis test

||

p=1—f —1—— exp(—

V21 J g

4 By convention: )
2a = 0.05
That is:

If p <0.05, reject Hy

Rejection region
(20)
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p-value: election polling

Ho. Ms. Smith’s vote percentage is 55%

The sample mean is 51% and stderr is 1.44%

The test statistic z = 511;455 — 27778

And the p-value for the test is:

2.7778

— 1 - — exp(— du = 0.00547 < 0.05
V2T J 27778

So we reject the hypothe5|s




Hypothesis test if N < 30

Q: what distribution should we use to test the
hypothesis of sample mean if N<30?

A. Normal distribution

B. t-distribution with degree =30
C. t-distribution with degree =N
D. t-distribution with degree = N-1




The use and misuse of p-value

p-value use in scientific practice

* Usually used to reject the null hypothesis that the
data is random noise

% Common practice is p < 0.05 is considered significant
evidence for something interesting

Caution about p-value hacking

% Rejecting the null hypothesis doesn’t mean the
alternative is true

% P <0.05is arbitrary and often is not enough for
controlling false positive phenomenon



Be wary of one tailed p-values

The one tailed p-value should only be considered
when the realized sample mean or differences will for
sure fall only to one size of the distribution.

Sometimes scientist are tempted to use one tailed

test because it’ll give smaller p-val. But this is bad
statistics!



Maximum likelihood estimation



The parameter estimation problem

Suppose we have a dataset that we know comes from
a distribution (ie. Binomial, Geometric, or Poisson, etc.)

What is the best estimate of the parameters (0 or 0s)
of the distribution?

Examples:

% For binomial and geometric distribution, 8 = p (probability of
success)

% For Poisson and exponential distributions, 8 = A (intensity)
% For normal distributions, 8 could be u or ¢



Motivation: Poisson example

Suppose we have data on the number of babies
born each hour in a large hospital

hour 1 2 N

# of babies k; k, ky,

We can assume the data comes from a Poisson
distribution

What is your best estimate of the intensity A?

Credit: David Varodayan



Maximum likelihood estimation (MLE)

We write the probability of seeing the data D
given parameter 0

[ L(6) = P(D|6) J

The likelihood function () is not a
probability distribution

The maximum likelihood estimate (MLE) of

Ols [é = arg max L(@)J

v




Why is L(0) not a probability distribution?

A. It doesn’t give the probability of all the
possible O values.

B. Don’t know whether the sum or integral of L(6)
for all possible 0 values is one or not.

C. Both.



Likelihood function: Binomial example

Suppose we have a coin with unknown
probability of coming up heads

We toss it N times and observe k heads

We know that this data comes from a binomial
distribution

What is the likelihood function L(6) = P(D|6) ?



Likelihood function: binomial example

Suppose we have a coin with unknown
probability of coming up heads

We toss it N times and observe k heads

We know that this data comes from a binomial
distribution

What is the likelihood function L(6) = P(D|6) ?

L(9) = (j,j ) P(1_ gk

. J




MLE derivation: binomial example

(L(H) — (5) P8 (1 — 9)N " N

\. J

In order to find: QA = arg max L(G))

v
We set: dL(6)

= ()
dé




MLE derivation: binomial example

rL(e) — (5) P8 (1 — 9)N " \

. J




MLE derivation: binomial example

rL(e) — (5) P8 (1 — 9)N " \

. J

4 ) = (N ) (O*1(1 — 9)N=F — 8 (N — k)(1 — 9)VF=1) = ¢



MLE derivation: binomial example

rL(e) — (5) P8 (1 — 9)N " \

. J

L) = @) (RO (L= )" = 05 (N = k)(1 = 0)" ") = 0

RO (1 — )N F = 9F(N — k)(1 — )N !



MLE derivation: binomial example

rL(e) — (5) P8 (1 — 9)N " \

. J

L) = @) (RO (L= )" = 05 (N = k)(1 = 0)" ") = 0

RO (1 — )N F = 9F(N — k)(1 — )N !
k— kO = N6 — k6



MLE derivation: binomial example

(L(H) — (5) P8 (1 — 9)N " N

\. J

L) = @) (RO (L= )" = 05 (N = k)(1 = 0)" ") = 0

RO (1 — )N F = 9F(N — k)(1 — )N !

k—kO=NO— k0O

( R k )
0 = — The MLE of
N P
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Likelihood function: geometric example

Suppose we have a die with unknown probability
of coming up six

We roll it and it comes up six for the first time on
the kth roll

We know that this data comes from a geometric
distribution

What is the likelihood function L(#) = P(D|6) ?
Assume 0 is p.



MLE derivation: geometric example




MLE derivation: geometric example

d k—1 k—2pn __
ALO) = (1= 0" = (k= 1)1 - 0)* %9 =0



MLE derivation: geometric example




MLE derivation: geometric example




MLE derivation: geometric example




MLE with data from IID trials

If the dataset D = {x} comes from IID trials

L(0) = P(D|0) = | | P(x:16)

T, €D

Each x; is one observed result from an IID trial



Q: MLE with data from IID trials

If the dataset D = {x} comes from IID trials
L(0) = P(D|0) = | | P(x:16)
z;€D
Why is the above function defined by the product?
A. IID samples are independent
B. Each trial has identical probability function
C. Both.



MLE with data from IID trials

If the dataset D = {x} comes from IID trials
L(0) = P(D|0) = | | P(x:16)
T, €D

The likelihood function is hard to differentiate in
general, except for the binomial and geometric
cases.

Clever trick: take the (natural) log



Log-likelihood function

Since log is a strictly increasing function

0 = arg max L(#) =arg max logL(6)
So we can aim to maximize the log-likelihood
function
logL(0) = logP(D|0) = log | | P(x:]0) = )  logP(x;]6)

x, €D x; €D

The log-likelihood function is usually much easier
to differentiate



Log-likelihood function: Poisson example

Suppose we have data on the number of babies
born each hour in a large hospital

hour 1 2 N

# of babies k; k, ky,

We can assume the data comes from a Poisson
distribution A

What is the log likelihood function LogL(#) ?



Log-likelihood function: Poisson example

= (=0 +k; logh — log k)

1=1



MLE : Poisson example

N

LogL(0) = Z(—@ + k; logh — log k;!)

1=1



MLE : Poisson example

N

LogL(0) = Z(—@ + k; logh — log k;!)

] i=1 .
—log L(0) =0 142 _0) =
5109 (6) i;( 1+9 0)=0



MLE : Poisson example

N

LogL(0) = Z(—é’ + k; logh — log k;!)

] i=1 .
—log L(0) =0 142 _0) =
5109 (6) i;( 1+9 0)=0




MLE : Poisson example

N
LogL(0) = Z(—é’ + k; logh — log k;!)
i=1
il() L(#) =0 iZ(—leE—O)—O
ag - T T L o
0
: N
H — Zz i
- N _

The MLE of A



MLE for normal distribution

Suppose we model the dataset D = {z} as
normally distributed

What should be the likelihood function? Is the
method of modeling the same as for the Poisson
distribution?

A. Yes B. No



MLE for normal distribution

Suppose we model the dataset D = {z} as
normally distributed

What should be the likelihood function? Is the
method of modeling the same as for the Poisson
distribution? Yes and No. The idea is similar but
the normal distribution is continuous, we need to

use the probability density instead.



MLE for normal distribution

Suppose we model the dataset D = {z} as
normally distributed

The likelihood function of a normal distribution:

n

L) = [T om0




MLE for normal distribution

Suppose we model the dataset D = {z} as
normally distributed

There are two parameters to estimate: u and o

* IfwefixoandsetO=u 1 N
=23
Nz'=1

% If we fixgandsetO=0

A 1
p— . — 2
(9 \ N 1=1 (xz Iu)

-




Drawbacks of MLE

Maximizing some likelihood or log-likelihood
function is mathematically hard

If there are very few data items, the MLE
estimate maybe very unreliable

% If we observe 3 heads in 10 coin tosses, should we
accept that p(heads)=0.3 ?

% If we observe O heads in 2 coin tosses, should we
accept that p(heads)=0"7?



Confidence intervals for MLE estimates

An MLE parameter estimate é depends on the
data that was observed

We can construct a confidence interval for §) using
the parametric bootstrap

% Use the distribution with parameter é to generate
a large number of bootstrap samples

% From each “synthetic” dataset, re-estimate the
parameter using MLE

% Use the histogram of these re-estimates to
construct a confidence interval



Finish Chapter 7 of the textbook

Next time: Maximum likelihood
estimate, Bayesian inference



Additional References

Robert V. Hogg, Elliot A. Tanis and Dale L.
Zimmerman. “Probability and Statistical
Inference”

Morris H. Degroot and Mark J. Schervish
"Probability and Statistics”



Chi-square distribution

It Z/s are independent variables of standard normal
distribution, v _ 72 72 72 - Z Z?

has a Chi- square distribution with degree of freedom
m, X ~ x*(m)

We can test the goodness of fit for a model using a
statistic C against this distribution, where

C i fo Ez ft 52))
1=1



Independence analysis using Chi-square

Given the two way table, test whether the
column and row are independent

Boy Girl Total
Grades 117 130 247
Popular 50 91 141
Sports 60 30 90



Independence analysis using Chi-square

The theoretical expected values if

independent
Boy Girl Total
Grades 117.29916 129.70084 247
Popular 66.96025 74.03975 141
Sports 42.74059 47.25941 90



The degree of the chi-square distribution

for the two way table

The degree of freedom for the chi-square
distribution for a r by c table is

(r-1) x (c-1) where r>1 and c>1
Because the degree df = n-1-p  seetextbook Pg171-172

=rc-1-(r-1) - (c-1)

n is the number of cells of = (r-1) x(c-1)
data;
p is the number of =2

unknown parameters



Chi-square test for the popular kid data

The Chi-statistic :[21.455]

chisg.test(data_BG)

Pearson's Chi-squared test

data: data_BG
X-squared = 21.455, df = 2, p-value = 2.193e-05

P-value:2.193e-05 |

It’s very unlikely the two categories are
independent



Q. What is the degree of freedom for this?

The following 2-way table for chi-square test
has a degree of freedom equal to:

Table 10.26 Data for Exercise 3

Number of lectures attended

0 1 2 3 4
Freshmen 10 16 27 6 11
Sophomores 14 19 20 4 13
Juniors 15 15 17 4 0
Seniors 19 8 6 5 12

O

12 D. 4



Chi-square test is very versatile

Chi-square test is so versatile that it can
be utilized in many ways either for
discrete data or continuous data via
intervals

Please check out the worked-out
examples in the textbook and read more
about its applications.



We are interested in comparing

sample means

* Are the average
daily body
temperature of the
two beavers the
same?

* We need to model
the difference
between two
sample means




How do we model the difference

between two samples means?

We know when the sample size N is large,
the sample mean random variable
approaches normal *.

So our problem became finding the model
of the difference between two normally
distributed random variables.

* Assume the daily temperature at different times are independent.



Background: sum of independent normals

We know
X1 ~ normal (i, 07)

X5 ~ normal (s, 05)
X1+ Xg~ 7

The sum of X, and X, is still normal (proof
omitted, ref. ...)



Background: sum of independent normals

We know
X1 ~ normal (i, 07)

X5 ~ normal (s, 05)

So Xi+ Xo~normal(p + o, (T% + 03)

By the linearity of expected value and the
sum rule of variance of the sum of two
independent random variables.



Background: sum of independent normals

We know
X1 ~ normal (i, 07)

X5 ~ normal (s, 05)

So [Xl + Xy ~ normal(pn + pa, 07 + 03)]

By properties:
EX1+ Xo] = E[Xq] + E[X)]
var| X, + Xo| = var| X1] + var| X,



Difference of independent normals

We know
X1 ~ normal(u,0?)

X5 ~ normal(us, 03)

X1 —Xg~ 7

The difference of X, and X, is still normal
(proof omitted)



Difference of independent normals

We know
X1 ~ normal (1, 07)

X5 ~ normal(jia, 05) .

So [Xl — Xo ~ normal(,ul - /LQ,O'% + 03)]

By the linearity of expected value and the sum
rule of variance of the sum of two independent
random variables and the scaling property of
variance.



Derivation of the mean and variance of

difference of independent normals
¢ Because

* %k %k
[X1 — Xog ~ normal(,ul — /LQaU% + U%)J




Derivation of the mean and variance of

difference of independent normals

¢ Because E[X;— X5] = E[X,] — E[X,]
— M1 — M2



Derivation of the mean and variance of

difference of independent normals

¢ Because E[X;— X5] = E[X,] — E[X,]
— M1 — M2

var[ X, — Xo] = var[X; + (—=X>)]



Derivation of the mean and variance of

difference of independent normals

Because E[X;— Xy] = E[X;] — EF[X;)]
— M1 — M2

var[ X, — Xo] = var[X; + (—=X>)]
= var|X1| + var|—X,]



Derivation of the mean and variance of

difference of independent normals

Because E[X;— Xy] = E[X;] — EF[X;)]
— M1 — M2

var[ X, — Xo] = var[X; + (—=X>)]
= var|X| + var|— X5
= var[X,] + var[Xs]

N

var|c - Xs| = c*var|Xs)]



Derivation of the mean and variance of

difference of independent normals

Because

E| X, — X5 = F|X,| — E| X,

H1 — M2

var[X; — Xo] = var[Xl + (—X3)]

var|Xq] + var[—X,]
var[Xl] + var[X,]
01 + a



Derivation of the mean and variance of

difference of independent normals

¢ Because E[X;— X5] = E[X,] — E[X,]
— M1 — M2

var| X, — Xs| = var[Xl + (—X3)]
= var|X| + var|— X5

= var|Xi| + var| X,

— O'% + ag

* %k %k
[X1 — Xog ~ normal(,ul — HQaU% + U%)J




Now we are ready to check the

differences between sample means

¢ Because sample means are roughly normal
when N is large.

X %k

[X1 — Xo ~ normal(,ul — /ﬁ270% + U%)J




The difference between two sample means

Suppose we draw samples from two populations

{z} and {y}

% From a sample of size k_from{x}, we get sample
mean X (=)

* From a sample of size k, from {3/}, we get sample
mean Y (ky)



The difference between two sample means

Define random variable D = X (k=) _ y(ky)
as the difference between the sample
means

If we hypothesize that popmean({x}) =
popmean({y}), then

E[D] = E[Xk=)] — BlY®)] = (



Standard error of the difference between two

sample means

Recall the standard error is roughly the
standard deviation of a sample mean

By the property of variance of the difference
between two independent normals

var[D] = stderr({x})? + stderr({y})’
std[D)] = +/stderr({x})? + stderr({y} = stderr(D

std[D] = \/Smunbi015605({x})2 n stdunbiased({y})?

k. k,



P-value for testing the equality of two

Means
¢ Define the test statistic

mean({x}) — mean({y})
stderr(D)

g:

+ Iftk, =30 and If k, =30

(" )

9] 22
—1— =
p=1-1 m/

- _J

exp(— )du




P-value: Rejection region- "The extreme

action
It is conventional to report the p-value of a
hypothesis test

p=1—-f=1

9] 22

Nor =/ (=)

Since N>30, x should come from a standard normal

4 By convention: )
2a = 0.05
That is:

If p <0.05, reject Hy

Rejection region
(20)

®
I

Io 0

<« reject Hy - don’t reject Hy e reject Hy




Comparing the body temperatures of two

beavers
k. = 114 and k, = 100

Mean({x}) = 36.86219

Mean({y}) = 37.5967
stdunbiased({x})

stderr({x}) = i

stderr({y}) — stdunbiased({y})

v/ 100

> head(beaverl)

day time temp activ

1 346 840 36.33
2 346 850 36.34
3 346 900 36.35
4 346 910 36.42
5 346 920 36.55
6 346 930 36.69

> head(beaver?2)
day time temp
1 307 0930 36.58
2 307 949 36.73
3 307 0950 36.93
4 307 1000 37.15
5 307 1010 37.23
6 307 1020 37.24

stderr(D) = \/Stderr({x})Q + stderr({y})?

= 0.04821181

oo e

activ

oo e

{x}

Ul



Comparing the body temperatures of two

beavers
Hypothesis H,: the mean temperatures of the
two beavers are the same
36.86219 — 37.5967

The test statisticg = 0 04891181 =-15.235
15.235
p=1—f —1—— exp(— )du
V2T J 15235
p~0

So we can reject the hypothesis that the mean
temperatures are the same



What if N < 30?

There are general solutions for either N >=30 or N <
30 if the data sets are random samples from normal
distributed data.

% The difference between sample means can be
either modeled as t-distribution with degree (k,
+k,-2) when their population standard deviations
are the same

% Or the difference between sample means can be
approximated with t-distribution with other proper
degree of freedom.

% There are build in t-test procedures in Python, R



Compare the two mean temperatures of

two beavers with t.test
Hypothesis H,: the mean temperatures of the
two beavers are the same

> t.test(beaverl$temp, beaver2$temp)
Welch Two Sample t-test

data: beaverl$temp and beaver2$temp
= -15.235, df = 131.12, p-value < 2.2e-16
alternative hypothesis: true difference in means is not equal to @
95 percent confidence interval:
-0.8298806 -0.6391334
sample estimates:
mean of X mean of y
36.86219 37.59670

p < 2.2e-16, also reject the hypothesis



See you next time




