Probability and Statistics 2

for Computer Science

"Statistical thinking will one day
be as necessary for efficient
citizenship as the ability to read
and write." H. G. Wells

Credit: wikipedia
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Hongye Liu, Teaching Assistant Prof, CS361, UIUC, 3.23.2021
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Maximum likelihood estimation (MLE)

We write the probability of seeing the data D
given parameter 0

[ L(6) = P(D|6) J

The likelihood function L(6) is not a
probability distribution

The maximum likelihood estimate (MLE) of

Ols [é = arg max L(@)J

v




Likelihood function: binomial example

Suppose we have a coin with unknown probability of 6
coming up heads

Likelihood L(O)

0.30

We toss it 10 times and
DV

observe 7 heads K =

-
0.25
|

0.20

The likelihood functionis: s |

P(D|f) = (170) 07(1 — 0)°

The MLE is

0.10

0.05

0.00
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Q. What is the MLE of binomial N=12, k=7

A.121/71/5!
B.7/12
C.5/12
D.12/7



Q. What is the MLE of geometric k=7

A.7
B.1/7
C. other



Q. What is the MLE of Poisson ki=5, k2=7,

n=2

A. 6
B.35/2
C.12

D. other



MLE Example

You find a 5-sided die and want to estimate its
probability 8 of coming up 5, you decided to roll it 12
times and then roll it until it comes up 5. You rolled 15
times altogether and found there were 3 times when the
die came up 5. All rolls are independent. Write down the

likelihood function L(8). (> . - - .553
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MLE Example
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Drawbacks of MLE

Maximizing some likelihood or log-likelihood
function is mathematically hard

If there are few data items, the MLE
estimate maybe very unreliable

% If we observe 3 heads in 10 coin tosses, should we
accept that p(heads)=0.3 ?

% If we observe O heads in 2 coin tosses, should we
accept that p(heads)=0"7?



Bayesian inference

In MLE, we maximized the likelihood function
| L(6) = P(D]6) |

In Bayesian inference, we will maximize the posterior,
which is the probability of the parameters 0 given the

observed data D. [ P((9|D) J
Unlike L(0), the posterior is a probability distribution

The value of 8 that maximizes P(#|D) is called the
maximum a posterior (MAP) estimate



The components of Bayesian Inference

From Bayes rule Lo)

pP(DI®) P(®)

P(QID):: T



The components of Bayesian Inference

From Bayes rule

pP(DIO) P(G®)
pep)

% Prior, assumed distribution of © before
seeing data D

P(QID)-:

* Likelihood function of © seeing D
% Total Probability seeing D --- P(D)
% Posterior, distribution of © given D



The usefulness of Bayesian inference

From Bayes rule

poolp) - PLIOPO)

P(D)
Bayesian inference allows us to include prior
beliefs about 0 in the prior P(8), which is useful

% When we have reasonable beliefs, such as a
coin can not have P(heads) =0

¥ When there isn’t much data

% We get a distribution of the posterior, not just
one maxima




Bayesian Inference: a discrete prior

Suppose we have a coin of unknown
probability 0 of heads

% We see 7 heads in 10 tosses (D)
% We assume the prior about 6.

2 if0=0.5
P@)=q5 if 0=06
% We have this likelihood: 0 otherwise

P(D|§) = (170) 0’ (1 —6)°
% What is the posterior P(@‘D) ?



Bayesian Inference: a discrete prior

% We see 7 heads in 10 tosses (D)

% We assume the prior about 6.

¥ We have this likelihood:

% What is the posterior P(0|D)?

—

P(9)

P(D|f) = (170) 67(1 — )

: P(D|0)P(6 A
prp) - 2P
. ,

O WIFWI|N

of 6 =0.5
1 f 6 =0.6
otherwise



Bayesian Inference: a discrete prior

% We see 7 heads in 10 tosses (D)

% We assume the prior about 6.

¥ We have this likelihood:

—

2 if0=0.5
PO)=< < if 0=0.6
0 otherwise

zxpwyz(gvﬂqy—mS

% What is the posterior P(0|D)?

: P(D|O)P(6)
Pwmyz(A&J)
\ /

P(D) = ZP(DW@)P(@')

0,€0
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Bayesian Inference: a discrete prior

% We see 7 heads in 10 tosses (D)

% We assume the prior about8. (2 if 6 =0.5
PO)=< < if 0=0.6
% We have this likelihood: 0 otherwise

P(D|f) = (170) 67(1 — )
% What is the posterior P(0|D)?
0.52 if 0=05 MAP estimate="?
PO|D) =048 if 6 =0.6

0 otherwise



Bayesian Inference: a discrete prior

% We see 7 heads in 10 tosses (D)

% We assume the prior about8. (2 if 6 =0.5
PO)=< < if 0=0.6
% We have this likelihood: 0 otherwise

P(D|f) = (170) 67(1 — )
% What is the posterior P(0|D)?

0.52 ¢f 6 =0.5 MAP @ =0.5
PO|D)=1<048 f 6 =0.6

0 otherwise Biased by the prior



Bayesian Inference: a continuous prior

Suppose we have a coin of unknown
probability 0 of heads

P(0
We see 7 heads in 10 tosses (D) 4 (9)

We assume
5 if 6 €10.4,0.6]

P(o) = {0 if 0¢10.4,0.6 0
What is the posterior P(Q D) ?




Bayesian Inference: a continuous prior

What is the posterior P(Q‘D) ?
P(D|0) = Likelihood AP(Q)

[ 1,

0 04 06 O
(5 if 0€[04,0.6
P(e)—{o if 004,006

P(60)D) o P(D|6)P(6) 9 =06



Bayesian Inference: a continuous prior

What is the posterior P(Q‘D) ?
P(D|0) = Likelihood AP(Q)

/ 5 |

[ 1,

0 04 06 ¢

(5 if 0€[04,0.6
P(o) = {o if 0 [0.40.06]

|
0.2 0.4

P(8|D)  P(D|6)P(6)



Bayesian Inference: a continuous prior

What is the posterior P(Q‘D) ?

P(DI0) = Likelihlood A P(0)
| 5]
[ 1,
0 04 06 ¢
L\ re=1 Feghios
02 0.4 08 10

A

POD) x P(D|IO)P(6)  MAP ) =0.6



The constant in the Bayesian inference

P(D) = /9 P(D|0)P(6)df

P(D|0) = Likelihood

It’s not always
possible to
calculating P(D) in
closed form.

Scale by 5

for this
\ example
O!B 1!0

There are a lot of

approximation -
methods. RV

Y
7



Drawbacks of Bayesian inference

Maximizing some posteriors P(0|D) is difficult

Some choices of prior P(6) can overwhelm any
data observed.

It’s hard to justify a choice of prior



The concept of conjugacy

For a given likelihood function P(D|6), a prior P(0) is its
conjugate prior if it has the following properties:

% P(60) belongs to a family of distributions that are
expressive

% The posterior P(0|D) o< P(D|0)P(6) belongs to the same
family of distribution as the prior P(9)

* The posterior P(0|D) is easy to maximize

For example, a conjugate prior for binomial likelihood
function is Beta distribution



Beta distribution

A distribution is Beta distribution if it has the following

o p(g) = K (o, 51— 0
=0 O.W:‘oi"‘" w: iyl pdf of Beta - distribution >0, >0

K(ag) = 2D =

’ F(&)F(/B) " = BZtZEO.S’,O.zS)

Is an expressive family of -1

distributions 5
Beta(a = 1,8 = 1) is uniform .. k / \ J




Q. Beta dlstrlbutlon is a continuous

AJTRUE

B. FALSE
pcple>- pd)

p.glo)= Pl




Beta distribution as the conjugate prior

for Binomial likelihood

The likelihood is Binomial (N, k) pPDIB) pes)
N
P(DI#) = (k>ek(1 — G)NF
The Beta distribution is used as the prior

a—1¢1 64[0/’]
PO) = Kl oo gl 0

~

R , ﬁ ?
at+k—1 B—I—N k—1
So P(O|D) x (?’_"u 1<( —0) "+ Puoln Be-l-a

Then the pos‘t’zerlor is Beta(a+ k, B+ N — k) (A, (3 )
P(H‘D) — K(a +k B8+ N — k)@o‘““—l(l _ 9)6+N—k—1



The update of Bayesian posterior

Since the posterior is in the same family as the
conjugate prior, the posterior can be used as a new prior

if more data is observed , t4 oeCe. 1)
o= | "
Suppose we start with a uniform prior on the od= |
e _‘ A=,
probability © of heads 410 , | —

72H, 28T

%  Then we see 3H 0T 8t
%  Then we see 4H 3T for 7H 3T in total

%  Then we see 10H 10T for 17H 13T in total
%  Then we see 55H 15T for 72H 28T in total

17H, 13T

posterior on p(H)




The update of Bayesian posterior

Since the posterior is in the same family as the
conjugate prior, the posterior can be used as a new prior
if more data is observed.

Suppose we start with a uniform prior on the

- 10 '
probability O of heads -
8 L
N k a B =)
1 1 = 6f
N o
3 0 1 4 ry /5 § 17H, 13T
5 4
10 7 8 7 v g
30 17 25 20 2|
100 72 97 48 0 '
0 0.2 0.4 0.6 0.8 |



Simulation of the update of Bayesian

vosterior

https://seeing-theory.brown.edu/bayesian-inference/
index.html



Maximize the Bayesian posterior (MAP)

The posterior of the previous exampleis &2 (®
W(b Pr:” ‘1%.

PO|D) = K(a+k,B+ N — kg 1(1 — )Pt —+1

(9) ~ Ge 2
v A, 3
Differentiating and setting to O gives the MAP estimate

é— Oé—l—|_l€
a4+ B—-2+N




Conjugate prior for other likelihood

functions

If the likelihood is Bernoulli or geometric, the conjugate
prior is Beta

If the likelihood is Poisson or Exponential, the conjugate
prior is Gamma

If the likelihood is normal with known variance, the
conjugate prior is normal



Finish Chapter 9 of the textbook

Next time: Covariance matrix, PCA



Additional References

Robert V. Hogg, Elliot A. Tanis and Dale L.
Zimmerman. “Probability and Statistical
Inference”

Morris H. Degroot and Mark J. Schervish
"Probability and Statistics”



See you next time




