Probability and Statistics 7 for Computer Science

"Statistical thinking will one day be as necessary for efficient citizenship as the ability to read and write." H. G. Wells

Credit: wikipedia

Hongye Liu, Teaching Assistant Prof, CS361, UIUC, 3.23.2021

Last time

* Hyporhesis rest

* Maximum Likel:hood $2d = 0.05$ Estimation (MLE)

Objectives

* More on Maximum likelihood Estimation (MLE) P(DIO) **** Bayesian Inference (MAP) $P(O|D)$

Maximum likelihood estimation (MLE)

 \mathscr{W} We write the probability of seeing the data D given parameter θ

$$
L(\theta) = P(D|\theta)
$$

- $*$ The **likelihood function** $L(\theta)$ is **not** a probability distribution
- **EXECTE:** The maximum likelihood estimate (MLE) of θ is

 $\hat{\theta}$ $\theta = arg\ \underset{\theta}{max}\ L(\theta)$

Likelihood function: binomial example

Suppose we have a coin with unknown probability of θ coming up heads

Q. What is the MLE of binomial N=12, k=7

A. 12!/7!/5! B. 7/12 $C. 5/12$ D.12/7

Q. What is the MLE of geometric k=7

A. 7 $B. 1/7$ C. other

Q. What is the MLE of Poisson k1=5, k2=7, $n=2$

A. 6 $B. 35/2$ C. 12 D. other

MLE Example

You find a 5-sided die and want to estimate its probability θ of coming up 5, you decided to roll it 12 times and then roll it until it comes up 5. You rolled 15 times altogether and found there were 3 times when the die came up 5. All rolls are independent. Write down the likelihood function $L(\theta)$.

$$
P(D|0)
$$

\n $P(D|0)$
\n $P: P_{1} \rightarrow N, k$
\n $k_{1} = 2$
\n $k_{1} = 3$
\n $k_{1} = 3$
\n $k_{1} = 3$

MLE Example

 $L(0)=P(0|0) = P(\nabla, 10) P(D_1|0)$ $=(\begin{matrix}N\\ k\end{matrix})\otimes \begin{matrix}K_1\\ k\end{matrix})\otimes \begin{matrix}N-k_1\\ l\end{matrix}$ (1-0)
 $N = 12$ $K_1 = 2$ $K_2 = 3$ $L(u) = (\begin{array}{cc} 12 \\ 12 \end{array}) 6^{3} (1 - 9)^{12}$ log L 10) = log C + 3log 0 + 12 log (1-0) $\frac{dlnL}{d\theta} = 0 + \frac{3}{\theta} - \frac{12}{1-\theta} = 0$ $0 = \frac{3}{15} = \frac{1}{5}$

Drawbacks of MLE

- **EXECT** Maximizing some likelihood or log-likelihood function is mathematically hard
- $*$ If there are few data items, the MLE estimate maybe very unreliable
	- $*$ If we observe 3 heads in 10 coin tosses, should we accept that $p(heads)=0.3$?
	- $*$ If we observe 0 heads in 2 coin tosses, should we accept that $p(heads)=0$?

Bayesian inference

 $*$ In MLE, we maximized the likelihood function $L(\theta) = P(D|\theta)$

- **In Bayesian inference, we will maximize the posterior,** which is the probability of the parameters **θ** given the observed data D. $P(\theta|D)$
- \mathscr{H} Unlike $L(\theta)$, the posterior is a probability distribution
- **The value of** θ **that maximizes** $P(\theta|D)$ is called the **maximum a posterior (MAP)** estimate $\hat{\theta}$ $\hat{\theta}$

The components of Bayesian Inference

 ⊭ From Bayes rule $l(0)$ $P(C01D) = \frac{P(D10) P(0)}{P(D10)}$ $P(D)$

The components of Bayesian Inference

- **Kom Bayes rule** $P(D|0) P(0)$ Examples and the property of Bayesian Inference
 \mathbf{p}_c (*a* I **D**) = $\frac{\mathbf{p}(\mathbf{p} | \mathbf{0}) \mathbf{p}(\mathbf{0})}{\mathbf{p}(\mathbf{0})}$

Prior, assumed distribution of **0** befo $P(D)$
	- **EXECT BEFORE: Prior, assumed distribution of θ** before seeing data D
	- **■ Likelihood function of θ seeing D**
	- **WE Total Probability seeing D** --- $P(D)$
	- **WE Posterior**, distribution of **θ** given **D**

The usefulness of Bayesian inference

- **KETTER** From Bayes rule $P(\theta|D) = \frac{P(D|\theta)P(\theta)}{P(D)}$ $\overline{P(D)}$
- $*$ Bayesian inference allows us to include prior beliefs about θ in the prior $P(\theta)$, which is useful
	- When we have reasonable beliefs, such as a coin can not have $P($ heads $) = 0$
	- $*$ When there isn't much data
	- $*$ We get a distribution of the posterior, not just one maxima

 $P(\theta) =$

 $\sqrt{ }$

 \int

 $\overline{\mathcal{L}}$

- **EXECT** Suppose we have a coin of unknown probability θ of heads
	- **We see 7 heads in 10 tosses (D)**
	- \mathscr{H} We assume the prior about θ .
	- We have this likelihood:

$$
P(D|\theta) = {10 \choose 7} \theta^7 (1-\theta)^3
$$

$$
\begin{array}{ll}\n\frac{2}{3} & if \ \theta = 0.5 \\
\frac{1}{3} & if \ \theta = 0.6 \\
0 & otherwise\n\end{array}
$$

$$
+ \left(\begin{array}{c} 7 \end{array} \right)^{3} \left(\begin{array}{c} 7 \end{array} \right)^{3}
$$
\n
$$
\frac{1}{2} \text{ What is the posterior } P(\theta | D)?
$$

 $P(\theta) =$

- **We see 7 heads in 10 tosses (D)**
- $*$ We assume the prior about θ .
- \ We have this likelihood: $P(D|\theta) = \left(\frac{10}{7}\right)$ 7 \setminus $\theta^7(1-\theta)^3$

 \int \int $\overline{\mathcal{L}}$ $\overline{2}$ $\frac{2}{3}$ if $\theta = 0.5$ 1 $\frac{1}{3}$ if $\theta = 0.6$ 0 otherwise

 $\frac{1}{2}$ What is the posterior $P(\theta|D)$?

$$
P(\theta|D) = \frac{P(D|\theta)P(\theta)}{P(D)}
$$

- **We see 7 heads in 10 tosses (D)**
- $*$ We assume the prior about θ .
- \ We have this likelihood: $P(D|\theta) = \left(\frac{10}{7}\right)$ 7 \setminus $\theta^7(1-\theta)^3$
- $\frac{1}{2}$ What is the posterior $P(\theta|D)$?
	- $P(\theta|D) = \frac{P(D|\theta)P(\theta)}{P(D)}$ $\overline{P(D)}$ $P(D) = \sum$ $\theta_i \in \theta$ $P(D|\theta_i)P(\theta_i)$

 $P(\theta) =$

 \int

 $\overline{2}$

1

 $\frac{2}{3}$ if $\theta = 0.5$

 $\frac{1}{3}$ if $\theta = 0.6$

0 otherwise

 \int

 $\overline{\mathcal{L}}$

$$
P(\theta|0) = \frac{P(D|\theta)P(\theta)}{P(\theta)} \qquad P(\theta) = \begin{cases} \frac{1}{3} & \theta = 0.5 \\ \frac{1}{3} & \theta = 0.6 \end{cases}
$$

\n
$$
P(D|\theta) = {P(D|\theta)P(D|\theta)} \qquad \text{if } \theta = 0.6
$$

\n
$$
P(D) = \sum P(D|\theta|)P(D|\theta)
$$

\n
$$
= {P(D|\theta)P(D|\theta)} \qquad \text{if } \theta = 0.6
$$

\n
$$
P(D|D) = \begin{cases} 0.52 & \theta = 0.5 \\ 0.53 & \theta = 0.6 \end{cases}
$$

\n
$$
P(D|D) = \begin{cases} 0.52 & \theta = 0.6 \\ 0.48 & \theta = 0.6 \end{cases}
$$

\n
$$
P(D|D) = \begin{cases} 0.52 & \theta = 0.6 \\ 0.48 & \theta = 0.6 \end{cases}
$$

\n
$$
P(D|D) = \begin{cases} 0.52 & \theta = 0.6 \\ 0.48 & \theta = 0.6 \end{cases}
$$

\n
$$
P(D|D) = \begin{cases} 0.52 & \theta = 0.6 \\ 0.48 & \theta = 0.6 \end{cases}
$$

 $P(\theta) =$

- **We see 7 heads in 10 tosses (D)**
- $*$ We assume the prior about θ .
- \ We have this likelihood: $P(D|\theta) = \left(\frac{10}{7}\right)$ 7 \setminus $\theta^7(1-\theta)^3$

 \int \int $\overline{\mathcal{L}}$ $\overline{2}$ $\frac{2}{3}$ if $\theta = 0.5$ 1 $\frac{1}{3}$ if $\theta = 0.6$ 0 otherwise

 $\frac{1}{2}$ What is the posterior $P(\theta|D)$?

$$
P(\theta|D) = \begin{cases} 0.52 & if \ \theta = 0.5 \\ 0.48 & if \ \theta = 0.6 \\ 0 & otherwise \end{cases}
$$

MAP estimate=?

- **We see 7 heads in 10 tosses (D)**
- $*$ We assume the prior about θ . $P(\theta) =$
- \ We have this likelihood: $P(D|\theta) = \left(\frac{10}{7}\right)$ 7 \setminus $\theta^7(1-\theta)^3$

 $\overline{\mathcal{L}}$

 $\overline{2}$ $\frac{2}{3}$ if $\theta = 0.5$ 1 $\frac{1}{3}$ if $\theta = 0.6$ 0 otherwise

 \int

 \int

 $\overline{\mathcal{L}}$

 $\frac{1}{2}$ What is the posterior $P(\theta|D)$? $P(\theta|D) =$ \int \int 0.52 if $\theta = 0.5$ 0.48 if $\theta = 0.6$ MAP $\theta = 0.5$ $\hat{\theta}$

0 otherwise

Biased by the prior

 $\hat{\bm{\beta}}$

- **EXECT** Suppose we have a coin of unknown $probability θ of heads$
- **We see 7 heads in 10 tosses (D) 4** $P(\theta)$

 $\frac{1}{2}$ What is the posterior $P(\theta|D)$?

The constant in the Bayesian inference

$$
P(D) = \int_{\theta} P(D|\theta) P(\theta) d\theta
$$

 $\frac{1}{2}$ It's not always possible to calculating $P(D)$ in closed form.

* There are a lot of approximation methods.

Drawbacks of Bayesian inference

- **We Maximizing some posteriors** $P(\theta|D)$ is difficult
- $\mathscr W$ Some choices of prior $P(\theta)$ can overwhelm any data observed.
- $*$ It's hard to justify a choice of prior

The concept of conjugacy

- **We For a given likelihood function** $P(D|\theta)$, a prior $P(\theta)$ is its conjugate prior if it has the following properties:
	- $\mathscr{F}(\theta)$ belongs to a family of distributions that are expressive
	- **WEBEE The posterior** $P(\theta|D) \propto P(D|\theta)P(\theta)$ belongs to the same family of distribution as the prior $P(\theta)$
	- \mathscr{H} The posterior $P(\theta|D)$ is easy to maximize
- $*$ For example, a conjugate prior for binomial likelihood function is Beta distribution

Beta distribution

 $*$ A distribution is Beta distribution if it has the following $P(\theta) = K(\alpha, \beta) \theta^{\alpha-1} (1-\theta)^{\beta-1}$ pdf: $0 \leq \Theta \leq 1$ $=$ 0 0. W \rightarrow ther w: \rightarrow extribution a α >0, β >0 **pdf of Beta − distribution** 2 4 6 8 10 \blacksquare Beta(1,1) $K(\alpha, \beta) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha) \Gamma(\beta)}$ Beta(5,5) Beta(50,50) Beta(70,70) Beta(20,50) ∞ $\Gamma(\alpha)\Gamma(\beta)$ Beta(0.5,0.5) $*$ Is an expressive family of \circ density distributions \overline{a} $\text{# Beta}(\alpha = 1, \beta = 1)$ is uniform \sim

 \circ

0.0 0.2 0.4 0.6 0.8 1.0

 θ

Q. Beta distribution is a continuous probability distribution

Beta distribution as the conjugate prior for Binomial likelihood

EXECUTE: The likelihood is Binomial (*N*, *k*) $P(D|\theta) = \binom{N}{N}$ \overline{k} \setminus $\theta^k(1-\theta)^{N-k}$ $P1010000$

 ϵ [o,

 \int

- The Beta distribution is used as the prior $\frac{1}{2}$ So $P(\theta) = K(\alpha, \beta) \theta^{\alpha-1} (1-\theta)^{\beta-1}$ $P(\theta|D) \propto \theta^{\alpha+k-1} (1-\theta)^{\beta+N-k-1}$ $=84N-K$ \hat{a} , $\hat{\beta}$? $\frac{\alpha}{2} \frac{\theta^{\alpha+k-1}(1-\theta)^{\beta+N-k-1}}{k!}$ $\frac{\alpha}{2} \frac{\alpha}{2} \frac{\alpha}{2} k$ $\frac{\alpha}{2} \frac{\alpha}{2} \frac{\alpha}{2} k$ $\frac{\alpha}{2} \frac{\alpha}{2} \frac{\alpha}{2} \frac{\beta}{2}$
- $*$ Then the posterior is $$ $Beta(\alpha + k, \beta + N - k)$ - Beta
(á, ĵ)
	- $P(\theta|D) = K(\alpha + k, \beta + N k)\theta^{\alpha + k 1}(1 \theta)$ $\beta + N - k - 1$

The update of Bayesian posterior

 $*$ Since the posterior is in the same family as the conjugate prior, the posterior can be used as a new prior \mathcal{L}
 \mathcal{D} = $\left\{\begin{array}{c} \mathbf{g} \\ \mathbf{u} \\ \mathbf{u} \end{array}\right.$ = $\left\{\begin{array}{c} \mathbf{g} \\ \mathbf{v} \\ \mathbf{v} \end{array}\right\}$ t oc[\cdot . ') if more data is observed. ' I o \dot{p} lo)= ' prior on the $d = 1$
 $\begin{array}{|c|c|c|c|}\n\hline\n\end{array}$ Suppose we start with a uniform prior on the probability θ of heads Then we see 3H 0T 8 posterior on p(H) $*$ Then we see 4H 3T for 7H 3T in total 6 Then we see 10H 10T for 17H 13T in total 17H, 13T 4 Then we see 55H 15T for 72H 28T in total 3H, 0T 7H. 3T $\overline{2}$ 0 0.2 0.8 θ 0.4 0.6

θ

The update of Bayesian posterior

- $*$ Since the posterior is in the same family as the conjugate prior, the posterior can be used as a new prior if more data is observed.
- $*$ Suppose we start with a uniform prior on the probability θ of heads 10

Simulation of the update of Bayesian posterior

https://seeing-theory.brown.edu/bayesian-inference/ index.html

Maximize the Bayesian posterior (MAP)

 $\textcolor{blue}{\textbf{a}}$ The posterior of the previous example is $\textcolor{blue}{\bullet}$ $P(\theta|D) = K(\alpha + k, \beta + N - k)\theta^{\alpha + k - 1}(1 - \theta)$ $\beta + N - k - 1$ p β
are prior para. $\frac{k-1}{\mathbf{p} \cdot \mathbf{e}} (1-\theta)^{\beta+N}$ (d, β)

Differentiating and setting to 0 gives the MAP estimate

$$
\hat{\theta} = \frac{\alpha - 1 + k}{\alpha + \beta - 2 + N}
$$

Conjugate prior for other likelihood functions

- If the likelihood is Bernoulli or geometric, the conjugate prior is Beta
- If the likelihood is Poisson or Exponen&al, the conjugate prior is Gamma
- $*$ If the likelihood is normal with known variance, the conjugate prior is normal

Assignments

KEM Finish Chapter 9 of the textbook

KEXERGITH: SEXA EXAGGITH COVALLED MATRIX, PCA

Additional References

- ✺ Robert V. Hogg, Elliot A. Tanis and Dale L. Zimmerman. "Probability and Statistical Inference"
- **KERETHER Morris H. Degroot and Mark J. Schervish** "Probability and Statistics"

See you next time

See You!

