Probability and Statistics 7 for Computer Science

"Statistical thinking will one day be as necessary for efficient citizenship as the ability to read and write." H. G. Wells

Credit: wikipedia

Hongye Liu, Teaching Assistant Prof, CS361, UIUC, 3.23.2021

Objectives

✺More on Maximum likelihood Estimation (MLE)

✺Bayesian Inference (MAP)

Maximum likelihood estimation (MLE)

 \mathscr{W} We write the probability of seeing the data D given parameter θ

$$
L(\theta) = P(D|\theta)
$$

- \mathscr{L} The **likelihood function** $L(\theta)$ is **not** a probability distribution
- **EXECTE:** The maximum likelihood estimate (MLE) of θ is

 $\hat{\theta}$ $\theta = arg\ \underset{\theta}{max}\ L(\theta)$

Likelihood function: binomial example

- Suppose we have a coin with unknown probability of θ coming up heads
- We toss it 10 times and observe *7* heads
- The likelihood function is: $P(D|\theta) = \left(\frac{10}{7}\right)$ 7 \setminus $\theta^7(1-\theta)^3$
- The MLE is $\hat{\bm{\beta}}$

Q. What is the MLE of binomial N=12, k=7

A. 12!/7!/5! B. 7/12 $C. 5/12$ D.12/7

$Q.$ What is the MLE of geometric $k=7$

A. 7 B. 1/7 C. other

Q. What is the MLE of Poisson k1=5, k2=7, $n=2$

A. 6 B. 35/2 C. 12 D. other

MLE Example

You find a 5-sided die and want to estimate its probability θ of coming up 5, you decided to roll it 12 times and then roll it until it comes up 5. You rolled 15 times altogether and found there were 3 times when the die came up 5. Write down the likelihood function $L(\theta)$.

Drawbacks of MLE

- ✺ Maximizing some likelihood or log-likelihood function is mathematically hard
- $*$ If there are few data items, the MLE estimate maybe very unreliable
	- **WE If** we observe 3 heads in 10 coin tosses, should we accept that $p(heads)=0.3$?
	- ✺ If we observe 0 heads in 2 coin tosses, should we accept that $p(heads)=0$?

Bayesian inference

 $*$ In MLE, we maximized the likelihood function $L(\theta) = P(D|\theta)$

- ✺ In Bayesian inference, we will maximize the **posterior**, which is the probability of the parameters **θ** given the observed data D. $P(\theta|D)$
- \mathscr{H} Unlike $L(\theta)$, the posterior is a probability distribution
- **W** The value of θ that maximizes $P(\theta|D)$ is called the **maximum a posterior (MAP)** estimate $\hat{\theta}$ $\hat{\theta}$

The components of Bayesian Inference

✺ From Bayes rule

The components of Bayesian Inference

✺ From Bayes rule

- [∗] Prior, assumed distribution of **θ** before seeing data **D**
- ^{**≢} Likelihood function of θ seeing D**</sup>
- ✺ Total Probability seeing **D** --- P(**D**)
- [∗] **Posterior**, distribution of **θ** given **D**

The usefulness of Bayesian inference

- ✺ From Bayes rule $P(\theta|D) = \frac{P(D|\theta)P(\theta)}{P(D)}$ $\overline{P(D)}$
- ✺ Bayesian inference allows us to include prior beliefs about θ in the prior $P(\theta)$, which is useful
	- ✺ When we have reasonable beliefs, such as a coin can not have $P($ heads $) = 0$
	- $*$ When there isn't much data
	- ✺ We get a distribu&on of the posterior, not just one maxima

 $P(\theta) =$

 $\sqrt{ }$

 \int

 $\sqrt{2}$

- ✺ Suppose we have a coin of unknown probability θ of heads
	- ✺ We see 7 heads in 10 tosses (**D**)
	- \mathscr{H} We assume the prior about θ .
	- We have this likelihood:

$$
P(D|\theta) = {10 \choose 7} \theta^7 (1-\theta)^3
$$

$$
\begin{array}{ll}\n\frac{2}{3} & if \ \theta = 0.5 \\
\frac{1}{3} & if \ \theta = 0.6 \\
0 & otherwise\n\end{array}
$$

$$
+ \left(\begin{array}{c} 7 \end{array} \right)^{3} \left(\begin{array}{c} 7 \end{array} \right)^{3}
$$
\n
$$
\frac{1}{2} \text{ What is the posterior } P(\theta | D)?
$$

 $P(\theta) =$

- ✺ We see 7 heads in 10 tosses (**D**)
- $*$ We assume the prior about θ .
- ✺ We have this likelihood: $P(D|\theta) = \left(\frac{10}{7}\right)$ 7 \setminus $\theta^7(1-\theta)^3$

 $\sqrt{ }$ \int $\sqrt{2}$ $\overline{2}$ $\frac{2}{3}$ if $\theta = 0.5$ $\breve{1}$ $\frac{1}{3}$ if $\theta = 0.6$ 0 otherwise

 $\frac{1}{2}$ What is the posterior $P(\theta|D)$?

$$
P(\theta|D) = \frac{P(D|\theta)P(\theta)}{P(D)}
$$

- ✺ We see 7 heads in 10 tosses (**D**)
- $*$ We assume the prior about θ .
- ✺ We have this likelihood: $P(D|\theta) = \left(\frac{10}{7}\right)$ 7 \setminus $\theta^7(1-\theta)^3$
- $\frac{1}{2}$ What is the posterior $P(\theta|D)$?
	- $P(\theta|D) = \frac{P(D|\theta)P(\theta)}{P(D)}$ $\overline{P(D)}$ $P(D) = \sum$ $\theta_i \in \theta$ $P(D|\theta_i)P(\theta_i)$

 $P(\theta) =$

 $\sqrt{ }$

 $\overline{2}$

 $\breve{1}$

 $\frac{2}{3}$ if $\theta = 0.5$

 $\frac{1}{3}$ if $\theta = 0.6$

0 otherwise

 \int

 $\sqrt{2}$

 $P(\theta) =$

- ✺ We see 7 heads in 10 tosses (**D**)
- $*$ We assume the prior about θ .
- ✺ We have this likelihood: $P(D|\theta) = \left(\frac{10}{7}\right)$ 7 \setminus $\theta^7(1-\theta)^3$

 $\sqrt{ }$ \int $\sqrt{2}$ $\overline{2}$ $\frac{2}{3}$ if $\theta = 0.5$ $\breve{1}$ $\frac{1}{3}$ if $\theta = 0.6$ 0 otherwise

 $\frac{1}{2}$ What is the posterior $P(\theta|D)$?

$$
P(\theta|D) = \begin{cases} 0.52 & if \ \theta = 0.5 \\ 0.48 & if \ \theta = 0.6 \\ 0 & otherwise \end{cases}
$$

MAP estimate=?

- ✺ We see 7 heads in 10 tosses (**D**)
- $*$ We assume the prior about θ . $P(\theta) =$
- ✺ We have this likelihood: $P(D|\theta) = \left(\frac{10}{7}\right)$ 7 \setminus $\theta^7(1-\theta)^3$

 \overline{a}

 $\overline{2}$ $\frac{2}{3}$ if $\theta = 0.5$ $\breve{1}$ $\frac{1}{3}$ if $\theta = 0.6$ 0 otherwise

 $\sqrt{ }$

 \int

 $\sqrt{2}$

 $\frac{1}{2}$ What is the posterior $P(\theta|D)$? $P(\theta|D) =$ $\sqrt{ }$ \int 0.52 if $\theta = 0.5$ 0.48 if $\theta = 0.6$ MAP $\theta = 0.5$ $\hat{\theta}$

0 otherwise

Biased by the prior

 $\hat{\bm{\beta}}$

- ✺ Suppose we have a coin of unknown $probability θ of heads$
- [■] We see 7 heads in 10 tosses (D) ↑ $P(\theta)$

 $\frac{1}{2}$ What is the posterior $P(\theta|D)$?

The constant in the Bayesian inference

$$
P(D) = \int_{\theta} P(D|\theta) P(\theta) d\theta
$$

 $\frac{1}{2}$ It's not always possible to calculating $P(D)$ in closed form.

✺ There are a lot of approximation methods.

Drawbacks of Bayesian inference

- $\mathscr W$ Maximizing some posteriors $P(\theta|D)$ is difficult
- $\mathscr W$ Some choices of prior $P(\theta)$ can overwhelm any data observed.
- $*$ It's hard to justify a choice of prior

The concept of conjugacy

- $\mathscr W$ For a given likelihood function $P(D|\theta)$, a prior $P(\theta)$ is its conjugate prior if it has the following properties:
	- $\mathscr{F}(\theta)$ belongs to a family of distributions that are expressive
	- **W** The posterior $P(θ|D) \propto P(D|θ)P(θ)$ belongs to the same family of distribution as the prior $P(\theta)$
	- \mathscr{H} The posterior $P(\theta|D)$ is easy to maximize
- **Example, a conjugate prior for binomial likelihood** function is Beta distribution

Beta distribution

EXECT A distribution is Beta distribution if it has the following $P(\theta) = K(\alpha, \beta) \theta^{\alpha-1} (1-\theta)^{\beta-1}$ pdf: $0 \le \Theta \le 1$ $=$ 0 0.W. $=$ $\frac{1}{2}$ $\frac{1}{$ **pdf of Beta − distribution** 2 4 6 8 10 \blacksquare Beta(1,1) $K(\alpha, \beta) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha) \Gamma(\beta)}$ Beta(5,5) Beta(50,50) Beta(70,70) Beta(20,50) ∞ $\Gamma(\alpha)\Gamma(\beta)$ Beta(0.5,0.5) $*$ Is an expressive family of \circ density distributions \overline{a} \triangleleft $Beta(\alpha = 1, \beta = 1)$ is uniform \sim

 \circ

0.0 0.2 0.4 0.6 0.8 1.0

 θ

Q. Beta distribution is a continuous **probability distribution**

A. TRUE B. FALSE

Beta distribution as the conjugate prior for Binomial likelihood

- ✺ The likelihood is Binomial (*N*, *k*) $P(D|\theta) = \binom{N}{N}$ \overline{k} \setminus $\theta^k(1-\theta)^{N-k}$
- $*$ The Beta distribution is used as the prior $P(\theta) = K(\alpha, \beta)\theta^{\alpha-1}(1-\theta)^{\beta-1}$
- [₩] So $P(θ|D) \propto θ^{\alpha+k-1}(1-θ)^{\beta+N-k-1}$
- **■** Then the posterior is $Beta(\alpha + k, \beta + N k)$ $P(\theta|D) = K(\alpha + k, \beta + N - k)\theta^{\alpha + k - 1}(1 - \theta)$ $\beta + N - k - 1$

The update of Bayesian posterior

 $*$ Since the posterior is in the same family as the conjugate prior, the posterior can be used as a new prior if more data is observed.

 $*$ Suppose we start with a uniform prior on the probability θ of heads 10

- Then we see 3H 0T
- ✺ Then we see 4H 3T for 7H 3T in total
- Then we see 10H 10T for 17H 13T in total
- Then we see 55H 15T for 72H 28T in total

The update of Bayesian posterior

- $*$ Since the posterior is in the same family as the conjugate prior, the posterior can be used as a new prior if more data is observed.
- $\frac{1}{2}$ Suppose we start with a uniform prior on the probability θ of heads 10

Simulation of the update of Bayesian posterior

https://seeing-theory.brown.edu/bayesian-inference/ index.html

Maximize the Bayesian posterior (MAP)

 $*$ The posterior of the previous example is

$$
P(\theta|D) = K(\alpha + k, \beta + N - k)\theta^{\alpha + k - 1}(1 - \theta)^{\beta + N - k - 1}
$$

 $*$ Differentiating and setting to 0 gives the MAP estimate

$$
\hat{\theta} = \frac{\alpha - 1 + k}{\alpha + \beta - 2 + N}
$$

Conjugate prior for other likelihood functions

- $*$ If the likelihood is Bernoulli or geometric, the conjugate prior is Beta
- $\mathcal K$ If the likelihood is Poisson or Exponential, the conjugate prior is Gamma
- $*$ If the likelihood is normal with known variance, the conjugate prior is normal

Assignments

✺ Finish Chapter 9 of the textbook

$*$ Next time: Covariance matrix, PCA

Additional References

- ✺ Robert V. Hogg, Elliot A. Tanis and Dale L. Zimmerman. "Probability and Statistical Inference"
- ✺ Morris H. Degroot and Mark J. Schervish "Probability and Statistics"

See you next time

See You!

