

$$cov(X,Y) = E[(X - E[X])(Y - E[Y])]$$
$$= E[XY] - E[X]E[Y]$$

Covariance is coming back in matrix!

Credit: wikipedia

Bootstrap for confidence interval of other sample statistics

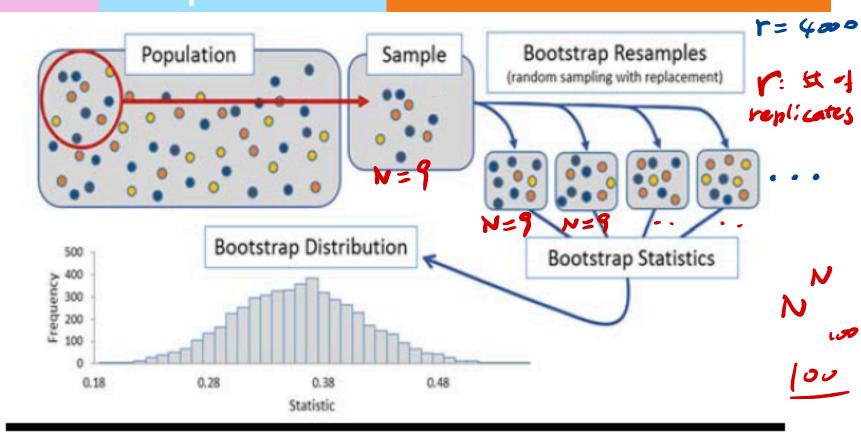


Figure 1. Summary of Bootstrapping Process

Credit: E S. Banjanovic and J. W. Osborne, 2016, PAREonline

Last time

** Maximum likelihood Estimation (MLE II) $L(\theta) = P(D|\theta)$

** Bayesian Inference (MAP)

$$P(O|D) \sim RV$$

$$P(O|D) \sim distri$$

$$P(O|D) = P(D|O) \cdot P(O)$$

$$P(O|D) = P(D)$$

Objective

- ** Review of Bayesian inference
- ** Visualizing high dimensional data & Summarizing data
- ** The covariance matrix
- ** Refresh of some linear algebra

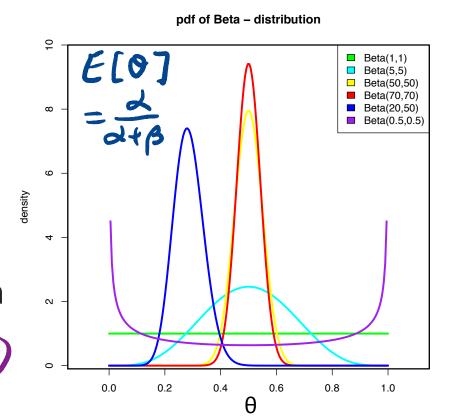
Beta distribution

A distribution is Beta distribution if it has the following pdf: 0≤ Θ ≤1 $P(\theta) = K(\alpha, \beta)\theta^{\alpha-1}(1-\theta)^{\beta-1}$

$$K(\alpha, \beta) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)}$$

Is an expressive family of distributions

 $\# Beta(\alpha=1,\beta=1)$ is uniform $^{\wedge}$ where $^{\wedge}$ $^{\wedge}$



 $\alpha > 0$, $\beta > 0$

Beta distribution as the conjugate prior for Binomial likelihood

The likelihood is Binomial (N, k)

$$P(D|\theta) = \binom{N}{k} \theta^k (1-\theta)^{N-k}$$

The Beta distribution is used as the prior

$$P(\theta) = K(\alpha, \beta)\theta^{\alpha - 1}(1 - \theta)^{\beta - 1}$$

$$**$$
 So $P(\theta|D) \propto heta^{\alpha+k-1}(1- heta)^{eta+N-k-1}$

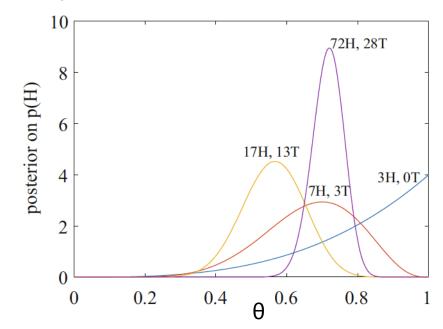
The update of Bayesian posterior

Since the posterior is in the same family as the conjugate prior, the posterior can be used as a new prior if more data is observed.

Suppose we start with a uniform prior on the

probability θ of heads

N	k	α	β
		1	1
3	0	1	4
10	7	8	7
30	17	25	20
100	72	97	48



Maximize the Bayesian posterior (MAP)

* The posterior of the previous example is

$$P(\theta|D) = K(\alpha + k, \beta + N - k)\theta^{\alpha+k-1}(1-\theta)^{\beta+N-k-1}$$

Differentiating and setting to 0 gives the MAP estimate

$$\hat{\theta} = \frac{\alpha - 1 + k}{\alpha + \beta - 2 + N}$$

Table of conjugate prior for different likelihood functions

	Likelihood	Conjugate Prior	
L(0) =P(D(0)	Bernoulli Geometric B: nomial	Beta distri.	P(0)
	Poisson Exponential	Gamma distri.	
	Normal with known 5 ²	Normal distri	
			-

Conjugate prior for other likelihood functions

- If the likelihood is Bernoulli or geometric, the conjugate prior is Beta
- If the likelihood is Poisson or Exponential, the conjugate prior is Gamma
- If the likelihood is normal with known variance, the conjugate prior is normal

Which distri is the posterior?

If the likelihood is Geometric and we use the corresponding conjugate prior.

A) Binomial
B) Beta
C) Poisson
D) Bernoulli
E) Normal

What are the dims of A?

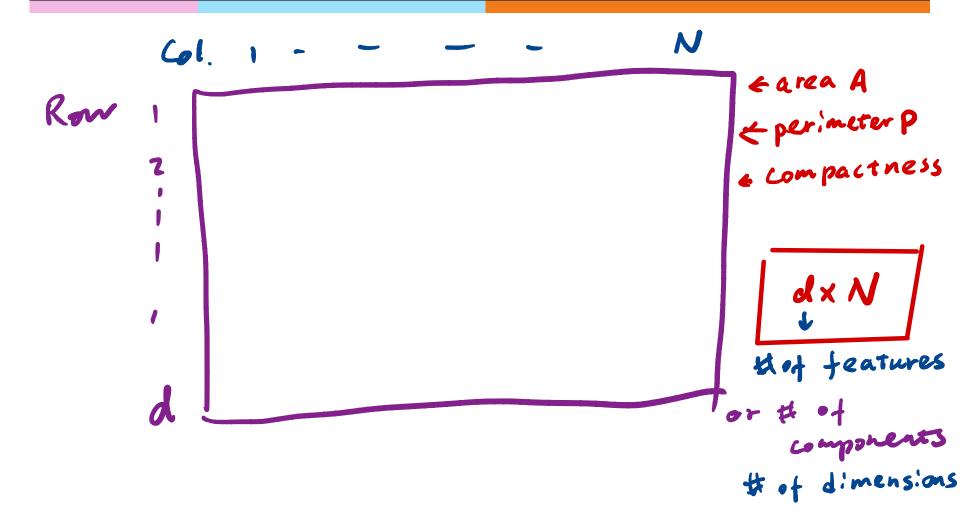
A data set with high dimensions

Seed data set from the UCI Machine Learning site:

	areaA	perimeterP	compactness	lengthKernel	widthKernel	asymmetry	lengthGroove	Label
1	15.26	14.84	0.871	5.763	3.312	2.221	5.22	1
2	14.88	14.57	0.8811	5.554	3.333	1.018	4.956	1
3	14.29	14.09	0.905	5.291	3.337	2.699	4.825	1
4	13.84	13.94	0.8955	5.324	3.379	2.259	4.805	1
5	16.14	14.99	0.9034	5.658	3.562	1.355	5.175	1
6	14.38	14.21	0.8951	5.386	3.312	2.462	4.956	1
7	14.69	14.49	0.8799	5.563	3.259	3.586	5.219	1

...

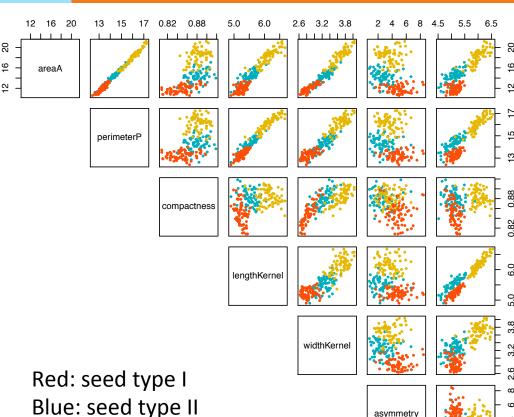
Matrix format of a dataset in the textbook



Scatterplot matrix

Wisualizing high dimensional data with scatter plot matrix

Limited to small number of scatter plots



lenathGroove -

4.5 5.5 6.5

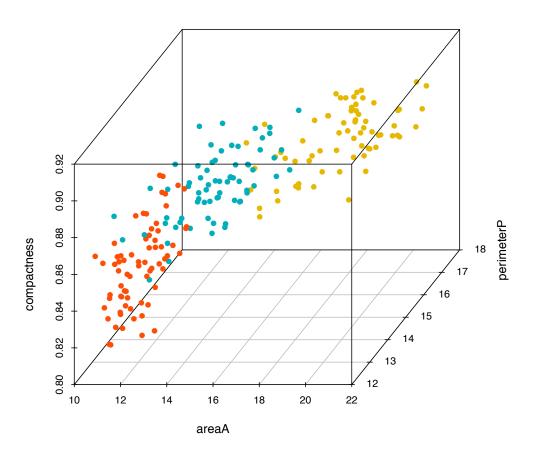
Blue: seed type II Yellow: seed type III

210 data points

7 dimensions

3D scatter plot

- ** We can also view the data set in 3 dimensions
- ** But it's still limited in terms of number of dimensions we can see.



Summarizing multidimensional data

- ** Location and spread parameters of a data set
- ***** Notation
 - Write {x} for a dataset consisting of N data items
 - Each item x_i is a **d**-dimensional vector; column
 - * Write jth component of x_i as $x_i^{(j)}$; row
 - ** Matrix for the data set {x} is d by N dimension

Mean of a multidimensional data

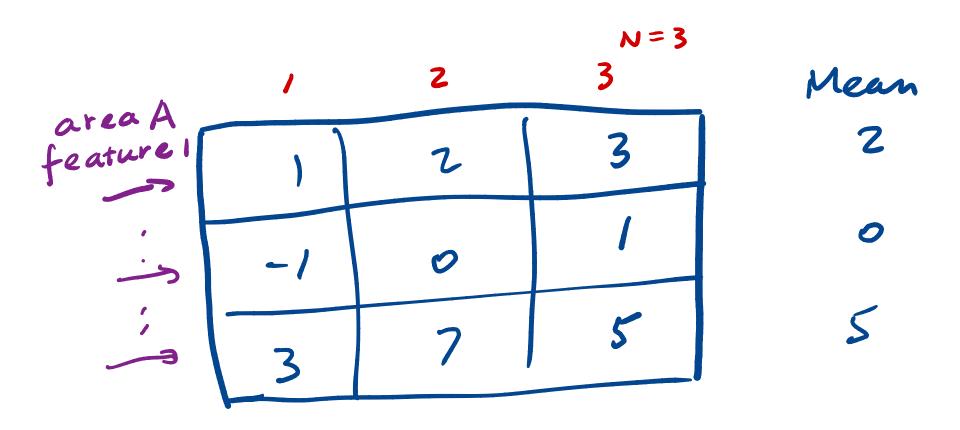
We compute the mean of {x} by computing the mean of each component separately and stacking them to a vector

mean of jth component
$$=\frac{\sum_{i}x_{i}^{(\mathcal{I})}}{N}$$

* We write the mean of {x} as

$$mean(\{x\}) = \frac{\sum_{i} x_i}{N}$$

Example of mean of a multidimensional data set



Mean-Centering a data matrix

Raw

Mean Centered

mean

	2	3
-1	0	1
3	7	5

2

0

5

-1	0	1	
-1	0	1	
-2	2	0	

Covariance

** The **covariance** of random variables X and Y is

$$cov(X,Y) = E[(X - E[X])(Y - E[Y])]$$

**** Note that**

$$cov(X, X) = E[(X - E[X])^2] = var[X]$$

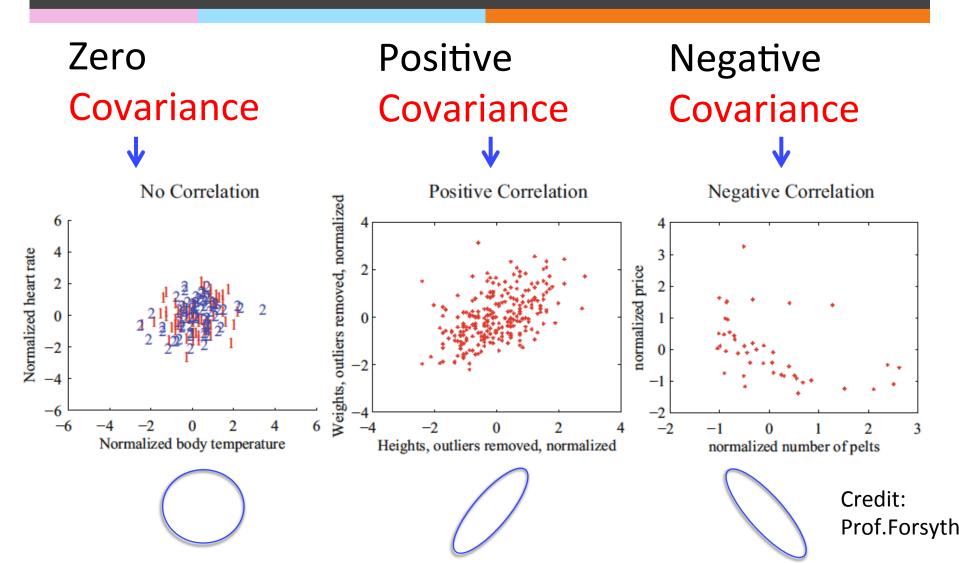
Correlation coefficient is normalized covariance

****** The correlation coefficient is

$$corr(X,Y) = \frac{cov(X,Y)}{\sigma_X \sigma_Y}$$

When X, Y takes on values with equal probability to generate data sets $\{(x,y)\}$, the correlation coefficient will be as seen in Chapter 2.

Covariance seen from scatter plots



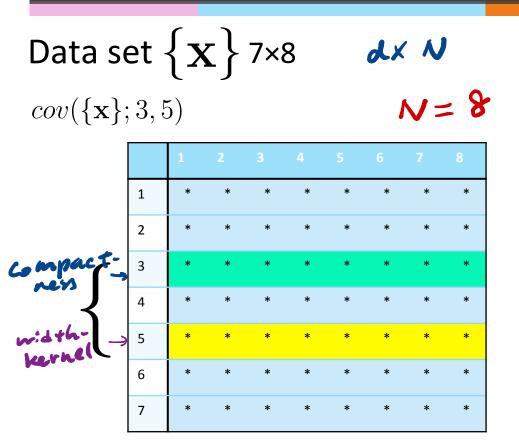
Covariance for a pair of components in a data set

For the jth and kth components of a data set
{x}

$$cov(\{x\}; j, k) = \frac{\sum_{i} (x_i^{(j)} - mean(\{x^{(j)}\}))(x_i^{(k)} - mean(\{x^{(k)}\}))^T}{N}$$

$$Corr (|x,y|) = \frac{\sum x y}{N}$$

Covariance of a pair of components

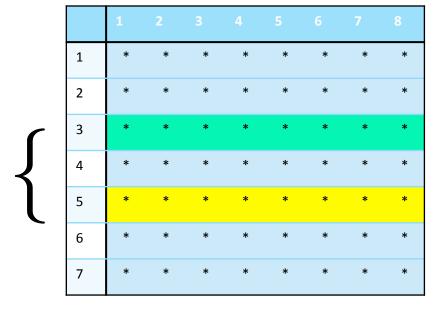


Take each row (component) of a pair and subtract it by the row mean, then do the inner product of the two resulting rows and divide by the number of columns

Covariance of a pair of components

Data set
$$\{\mathbf{X}\}$$
 7×8

$$cov(\{\mathbf{x}\}; 3, 5)$$

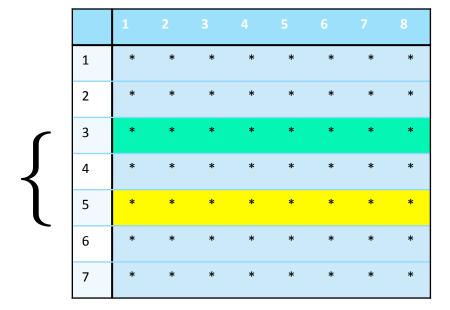


How many pairs of rows are there for which we can compute the covariance?

Covariance matrix

Data set $\left\{ \mathbf{X} \right\}$ 7×8

$$cov(\{\mathbf{x}\}; 3, 5)$$



Covmat($\{\mathbf{X}\}$) 7×7

	1	2	3	4	5	6	7
1	*	*	*	*	*	*	*
2	*	*	*	*	*	*	*
3	*	*	*	*	*	*	*
4	*	*	*	*	*	*	*
5	*	*	*	*	*	*	*
6	*	*	*	*	*	*	*
7	*	*	*	*	*	*	*

Properties of Covariance matrix

$$cov(\{x\}; j, j) = var(\{x^{(j)}\})$$
 Covmat($\{\mathbf{X}\}$) 7×7

- ** The diagonal elements of the covariance matrix are just variances of each jth components
- The off diagonals are covariance between different components.

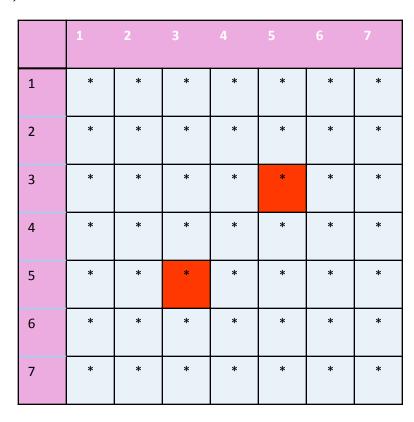
Corr = 6x69 =

	1	2	3	4	5	6	7
1	6, 2	*	*	*	*	*	*
2	*	6,2	*	*	V.	*	*
3	*	*	632	*	*	*	*
4	*	*	*	54	*	*	*
5	*	*	*	*	65	*	*
6	*	*	*	*	*	662	*
7	*	*	*	*	*	*	6,2
	Vo Vo						

Properties of Covariance matrix

$$cov(\lbrace x \rbrace; j, k) = cov(\lbrace x \rbrace; k, j)$$
 Covmat($\lbrace \mathbf{X} \rbrace$) 7×7

- ** The covariance matrix is symmetric!
- ** And it's positive semi-definite, that is all $\lambda_i \geq 0$
- Covariance matrix is diagonalizable



Properties of Covariance matrix

** If we define X_c as the mean centered matrix for dataset $\{x\}$

$$Covmat(\{x\}) = \frac{X_c X_c^T}{N}$$

** The covariance matrix is a d×d matrix

Covmat($\{\mathbf{x}\}$) 7×7

		1	2	3	4	5	6	7
•	1	*	*	*	*	*	*	*
	2	*	*	*	*	*	*	*
	3	*	*	*	*	*	*	*
	4	*	*	*	*	*	*	*
	5	*	*	*	*	*	*	*
	6	*	*	*	*	*	*	*
	7	*	*	*	*	*	*	*

(1)

$$A_0 = \begin{bmatrix} 5 & 4 & 3 & 2 & 1 \\ -1 & 1 & 0 & 1 & -1 \end{bmatrix} \begin{array}{c} \mathbf{x^{(1)}} & \text{covariance matrix of this data?} \\ \mathbf{x^{(2)}} & \\ \end{array}$$

What are the dimensions of the

Mean centering
$$A_0 = \begin{bmatrix} 5 & 4 & 3 & 2 & 1 \\ -1 & 1 & 0 & 1 & -1 \end{bmatrix} \begin{bmatrix} 3 \\ 0 \\ 0 \end{bmatrix}$$

$$A_1 = \begin{bmatrix} 2 & 1 & 0 & -1 & -2 \\ -1 & 1 & 0 & 1 & -1 \end{bmatrix}$$

$$A_0 = \begin{bmatrix} 5 & 4 & 3 & 2 & 1 \\ -1 & 1 & 0 & 1 & -1 \end{bmatrix}$$

$$A_1 = \begin{bmatrix} 2 & 1 & 0 & -1 & -2 \\ -1 & 1 & 0 & 1 & -1 \end{bmatrix}$$

(II)
$$A_2 = A_1 A_1^T$$

Inner product of each pairs:

$$A_2$$
 [1,1] = 10

$$A_2[2,2] = 4$$

$$A_2[1,2] = 0$$

$$A_0 = \begin{bmatrix} 5 & 4 & 3 & 2 & 1 \\ -1 & 1 & 0 & 1 & -1 \end{bmatrix}$$

$$A_1 = \begin{vmatrix} 2 & 1 & 0 & -1 & -2 \\ -1 & 1 & 0 & 1 & -1 \end{vmatrix}$$

(II)
$$A_2 = A_1 A_1^T$$

Inner product of each pairs:

$$A_2[1,1] = 10$$

$$A_2[2,2] = 4$$

$$A_2[1,2] = 0$$

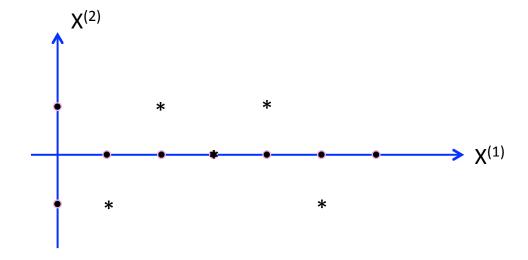
(III)

Divide the matrix with N – the number of items

Covmat(
$$\{\mathbf{x}\}$$
) = $\frac{1}{N}A_2 = \frac{1}{5}\begin{bmatrix} 10 & 0 \\ 0 & 4 \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 0 & 0.8 \end{bmatrix}$

What do the data look like when Covmat({x}) is diagonal?

$$A_0 = \begin{bmatrix} 5 & 4 & 3 & 2 & 1 \\ -1 & 1 & 0 & 1 & -1 \end{bmatrix}$$



Covmat(
$$\{\mathbf{x}\}$$
) = $\frac{1}{N}A_2 = \frac{1}{5}\begin{bmatrix} 10 & 0 \\ 0 & 4 \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 0 & 0.8 \end{bmatrix}$

Translation properties of mean and covariance matrix

** Translating the data set translates the mean

$$mean(\{x\} + c) = mean(\{x\}) + c$$

** Translating the data set leaves the covariance matrix unchanged

$$Covmat(\{x\} + c) = Covmat(\{x\})$$

Translation properties of covariance matrix

** Proof:

$$covmat(\{x\}) = \frac{Xc Xc^T}{N}$$

if we translate $\{x\}$, Xc doesn't change.
because
 $x+c-mean(\{x\}+c)$
 $= x-mean(\{x\}) = Xc$

Linear transformation properties of mean and covariance matrix

** Linearly transforming the data set linearly transforms the mean

$$mean(\{A\mathbf{x}\}) = A \ mean(\{\mathbf{x}\})$$

** Linearly transforming the data set linearly changes the covariance matrix quadratically

$$Covmat(\{A\mathbf{x}\}) = A\ Covmat(\{\mathbf{x}\})A^T$$

$$var(k(x)) = k^2 var(\{x\})$$

Proof of linear transformation of covariance matrix

Coverat(
$$\{x\}$$
) = $\frac{X_c X_c^T}{N}$ * Suppose $X = X_c$ data is centered.

Coverat($\{Ax\}$) = $\frac{(AX)_c (AX)_c^T}{N}$ (i) : $AX = AX_c$

$$= \frac{AX_c (AX_c)^T}{N}$$
 (ii) : $AX = AX_c$

$$= \frac{AX_c (AX_c)^T}{N}$$
 (iv) : $AX = AX_c$

$$AX = AX_c$$

$$AX_c \cdot AX_c^T A^T$$

Assignments

- ** Read Chapter 10 of the textbook
- ** Finish Week9 module including the quiz.
- ****** Next time: PCA

Additional References

- ** Robert V. Hogg, Elliot A. Tanis and Dale L. Zimmerman. "Probability and Statistical Inference"
- ** Morris H. Degroot and Mark J. Schervish "Probability and Statistics"

See you next time

See You!

