Probability and Statistics 7 for Computer Science

$$
cov(X, Y) = E[(X - E[X])(Y - E[Y])]
$$

$$
= E[XY] - E[X]E[Y]
$$

Covariance is coming back in matrix!

Credit: wikipedia

Hongye Liu, Teaching Assistant Prof, CS361, UIUC, 3.25.2021

Bootstrap for confidence interval of other sample statistics

Figure 1. Summary of Bootstrapping Process

Credit: E S. Banjanovic and J. W. Osborne, 2016, PAREonline

Last time

Komaximum likelihood Estimation $(MLE II)$ **WE Bayesian Inference (MAP)** $L(\theta) = P(D | \theta)$ $\mathbf{\Theta} = \mathbf{a} \mathbf{r} \mathbf{g} \mathbf{m} \mathbf{a} \mathbf{x}$ $L(0)$ $\theta \rightarrow RV$ $P (0 | D) \rightarrow$ distr: $p(0|D)=\frac{p(\vec{D}(0),\vec{P}(0))}{p(n-1)}$

Objective

Keview of Bayesian inference

Wisualizing high dimensional data & Summarizing data

$*$ The covariance matrix

Kefresh of some linear algebra

Beta distribution

 $*$ A distribution is Beta distribution if it has the following pdf: $0 \leq \Theta \leq 1$ $P(\theta) = K(\alpha, \beta) \theta^{\alpha-1} (1-\theta)^{\beta-1}$ $\alpha > 0$, $\beta > 0$ $\begin{bmatrix} 0 & 0 & W \end{bmatrix}$ **pdf of Beta − distribution** 2 4 6 8 10 ELOI \blacksquare Beta(1,1) $K(\alpha, \beta) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha) \Gamma(\beta)}$ EQ Beta(5,5) Beta(50,50) Beta(70,70) Beta(20,50) $\Gamma(\alpha)\Gamma(\beta)$ $d\sqrt{3}$ Beta(0.5,0.5) $*$ Is an expressive family of \circ density p (Q | D) distributions $\text{#} Beta(\alpha = 1, \beta = 1)$ is uniform $\sim A$ that maximize 0 0.0 0.2 0.4 0.6 0.8 1.0 θ

Beta distribution as the conjugate prior for Binomial likelihood

- **EXECUTE:** The likelihood is Binomial (*N*, *k*) $P(D|\theta) = \binom{N}{N}$ \overline{k} \setminus $\theta^k(1-\theta)^{N-k}$
- $*$ The Beta distribution is used as the prior $P(\theta) = K(\alpha, \beta)\theta^{\alpha-1}(1-\theta)^{\beta-1}$ A $2=0.16 - 1$
- $\frac{1}{2}$ So $P(\theta|D) \propto \theta^{\alpha+k-1} (1-\theta)^{\beta+N-k-1}$
- $*$ Then the posterior is $$ $Beta(\alpha + k, \beta + N - k)$
	- $P(\theta|D) = K(\alpha + k, \beta + N k)\theta^{\alpha + k 1}(1 \theta)$ $\beta + N - k - 1$ θ ϵ [o, i]

 θ ϵ [o, i]

 $\hat{\beta} = \beta + N - k$

The update of Bayesian posterior

- $*$ Since the posterior is in the same family as the conjugate prior, the posterior can be used as a new prior if more data is observed.
- $*$ Suppose we start with a uniform prior on the probability θ of heads 10

Maximize the Bayesian posterior (MAP)

 $*$ The posterior of the previous example is

$$
P(\theta|D) = K(\alpha + k, \beta + N - k)\theta^{\alpha + k - 1}(1 - \theta)^{\beta + N - k - 1}
$$

 $*$ Differentiating and setting to 0 gives the MAP estimate

$$
\hat{\theta} = \frac{\alpha - 1 + k}{\alpha + \beta - 2 + N}
$$

Table of conjugate prior for different likelihood functions

Conjugate prior for other likelihood functions

- $\mathcal K$ If the likelihood is Bernoulli or geometric, the conjugate prior is Beta
- If the likelihood is Poisson or ExponenNal, the conjugate prior is Gamma
- $*$ If the likelihood is normal with known variance, the conjugate prior is normal

Which distri. is the posterior?

If the likelihood is Geometric and we use ehe corresponding conjugate prior .

A) Binomial ③ Beta C) Poisson D) Bernoulli E) Normal

What are the dims of A?

 $A \cdot X = B$ MEd. dxN MXN X is matrix of dxN B is matrix of MxN A is matrix of ?

 $M \times d$

A data set with high dimensions

KETA: Seed data set from the UCI Machine Learning site:

Matrix format of a dataset in the textbook

Scatterplot matrix

- Visualizing high ☀ dimensional data with scatter plot matrix
- Limited to ☀ small number of scatter plots

Red: seed type I Blue: seed type II Yellow: seed type III 210 data points 7 dimensions

 20

 $13¹³$ 15 17 0.82

perimeterP

12 16

areaA

ನಿ $\frac{6}{1}$

 $\overline{\mathbf{z}}$

3D scatter plot

- $*$ We can also view the data set in 3 dimensions
- $*$ But it's still limited in terms of number of dimensions we can see.

Summarizing multidimensional data

- $*$ Location and spread parameters of a data set
- * Notation
	- Write {**x**} for a dataset consisNng of N data items
	- **Each item x_i is a d-dimensional vector; column**
	- \mathcal{W} Write jth component of x_i as $x_i^{(j)}$; row
	- **EXE** Matrix for the data set $\{x\}$ is **d** by **N** dimension

Mean of a multidimensional data

 \mathcal{W} We compute the mean of $\{x\}$ by computing the mean of each component separately and stacking them to a vector

$$
\text{mean of } \text{ith component} = \frac{\sum_i x_i^{(j)}}{N}
$$

 \mathscr{W} We write the mean of $\{x\}$ as

$$
mean(\{x\}) = \frac{\sum_{i} x_i}{N}
$$

Example of mean of a multidimensional data set

Mean - Centering ^a data matrix

Covariance

The **covariance** of random variables *X* and *Y* is

$cov(X, Y) = E[(X - E[X])(Y - E[Y])]$

$*$ Note that

 $cov(X, X) = E[(X - E[X])^{2}] = var[X]$

Correlation coefficient is normalized covariance

 $*$ The correlation coefficient is

$$
corr(X, Y) = \frac{cov(X, Y)}{\sigma_X \sigma_Y}
$$

 \mathscr{W} When X, Y takes on values with equal probability to generate data sets $\{(x,y)\}\)$, the correlation coefficient will be as seen in Chapter 2. Corr Kx, $y_i = \frac{\sum \hat{x} \cdot \hat{y}}{N}$

Covariance seen from scatter plots

Covariance for a pair of components in a data set

 $*$ For the jth and kth components of a data set {x}

$$
cov(\lbrace x \rbrace;j,k) = \frac{\sum_{i}(x_i^{(j)} - mean(\lbrace x^{(j)} \rbrace))(x_i^{(k)} - mean(\lbrace x^{(k)} \rbrace))^T}{N}
$$

Corr $\lbrace \prec \gamma \rbrace$ = $\frac{\prec \gamma}{\gamma}$

Covariance of a pair of components

dx N

Data set $\{ \mathbf{x} \}$ 7×8

Take each row (component) of a pair and subtract it by the row mean, then do the inner product of the two resulting rows and divide by the number of columns

Covariance of a pair of components

$$
\text{Data set}\left\{\mathbf{x}\right\} \text{ 7}\text{-}\text{x8}
$$

 $cov({\{x\}}; 3, 5)$

How many pairs of rows are there for which we can compute the covariance?

Covariance matrix

$$
\text{Data set}\left\{\mathbf{x}\right\} \text{ 7×8}
$$

 $cov({\{x\}}; 3,5)$

$$
Countat(\{x\}) \text{ 7x7}
$$

Properties of Covariance matrix

$$
cov(\{x\};j,j)=var(\{x^{(j)}\}) \quad \text{Count}(\{\mathbf{x}\}) \text{ z}
$$

- The diagonal elements ☀ of the covariance matrix are just variances of each jth components
- The off diagonals are ☀ covariance between different components. x 6g

Properties of Covariance matrix

 $cov(\{x\}; j, k) = cov(\{x\}; k, j)$

$$
Countat(\{ \mathbf{x} \}) \text{ z}
$$

- $*$ The covariance matrix is **symmetric**!
- **EXECUTE:** And it's **positive** semi-definite, that is all $\lambda_i \geq 0$ $*$ Covariance matrix is diagonalizable $e:genvalues$

Properties of Covariance matrix

If we define
$$
X_c
$$
 as the mean centered matrix for dataset $\{x\}_{\text{max}} \left[\begin{array}{cccc} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ \hline & & & & \\ \hline$

$$
Count(\{x\}) = \frac{X_c X_c^T}{N}
$$

 $*$ The covariance matrix is a d×d matrix

$$
Countat(\{ \mathbf{x} \}) \text{ 7x7}
$$

(I)

What are the dimensions of the
\n
$$
A_0 = \begin{bmatrix} 5 & 4 & 3 & 2 & 1 \\ -1 & 1 & 0 & 1 & -1 \end{bmatrix} \begin{matrix} x^{(1)} & \text{covariance matrix of this data;} \\ x^{(2)} & \text{A} & 2 & \text{by } 2 \\ B & 5 & \text{by } 5 \end{matrix}
$$
\nC) 5 by 2
\nC) 5 by 2
\nC) 5 by 2
\nC) 5 by 2
\nC) 5 by 5

(1)
\nMean centering
\n
$$
A_0 = \begin{bmatrix} 5 & 4 & 3 & 2 & 1 \\ -1 & 1 & 0 & 1 & -1 \end{bmatrix} \begin{bmatrix} 3 \\ 0 \end{bmatrix}
$$
\n
$$
A_1 = \begin{bmatrix} 2 & 1 & 0 & -1 & -2 \\ -1 & 1 & 0 & 1 & -1 \end{bmatrix}
$$

(1)
\nMean centering
\n
$$
A_0 = \begin{bmatrix} 5 & 4 & 3 & 2 & 1 \\ -1 & 1 & 0 & 1 & -1 \end{bmatrix}
$$
\n
$$
A_1 = \begin{bmatrix} 2 & 1 & 0 & -1 & -2 \\ -1 & 1 & 0 & 1 & -1 \end{bmatrix}
$$

 $X_c X_c$ ^T

 $\frac{x_c}{N}$

 C_0 V $(\{x\})=$

$$
(II) A_2 = A_1 A_1^T
$$

Inner product of each pairs: A_2 [1,1] = 10 A_2 [2,2] = 4 $A_2[1,2] = 0$

(III)

Divide the matrix with $N -$ the number of items

$$
\text{Covmat}(\mathbf{x}) = \frac{1}{N} A_2 = \frac{1}{5} \begin{bmatrix} 10 & 0 \\ 0 & 4 \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 0 & 0.8 \end{bmatrix}
$$

What do the data look like when Covmat({x}) is diagonal?

 $X^{(2)}$ $A_0 = \begin{bmatrix} 5 & 4 & 3 & 2 & 1 \\ -1 & 1 & 0 & 1 & -1 \end{bmatrix}$ $\mathsf{X}^{(1)}$ **Covmat({x})** = $\frac{1}{N}A_2 = \frac{1}{5}\begin{bmatrix} 10 & 0 \\ 0 & 4 \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 0 & 0.8 \end{bmatrix}$

Translation properties of mean and covariance matrix

 $*$ Translating the data set translates the mean

$$
mean(\{x\} + c) = mean(\{x\}) + c
$$

 $*$ Translating the data set leaves the covariance matrix unchanged

 $Count({x} + c) = Count({x})$

Translation properties of covariance matrix

 Proof: $covmat(\{x})=$ $Xc Xc$ Xc Xc^T if we translate $\{x\}$, X_c doesn't change. because $x+c-mean(fx)+c)$

$$
= x - \text{mean}(\{x\}) = X_c
$$

Linear transformation properties of mean and covariance matrix

EXECT: Linearly transforming the data set linearly transforms the mean

$$
mean(\{A\mathbf{x}\}) = A \; mean(\{\mathbf{x}\})
$$

 Linearly transforming the data set linearly changes the covariance matrix quadratically

$$
Count(\{A\mathbf{x}\}) = A\,\,Count(\{\mathbf{x}\})A^T
$$

$$
Var(K\{x\}) = k^2var(\{x\})
$$

Proof of linear transformation of covariance matrix

$$
Countat(\{x\}) = \frac{Xc Xc^{T}}{N} \qquad \# \text{Suppose } X = Xc
$$
\n
$$
Countat(\{AX\}) = \frac{(AX)c (AX)c^{T}}{N} \qquad \text{(i)} \quad \{AX \} \leq AXc
$$
\n
$$
= \frac{AXc (AXc)^{T}}{N} \qquad \text{(ii)} \quad \{X \text{ is entered } AX \text{ is entered } AX\} = AXc
$$
\n
$$
(Ma \cdot Mb)^{T} = \frac{AXc \cdot Xc^{T} A^{T}}{N} \qquad \therefore (AXc)_{c} = AXc
$$
\n
$$
= A \cdot Courat(\{x\})A^{T}
$$

Assignments

Kead Chapter 10 of the textbook

Kogell Finish Week9 module including the quiz.

 $*$ Next time: PCA

Additional References

- ✺ Robert V. Hogg, Elliot A. Tanis and Dale L. Zimmerman. "Probability and Statistical Inference"
- **KERETHER Morris H. Degroot and Mark J. Schervish** "Probability and Statistics"

See you next time

See You!

