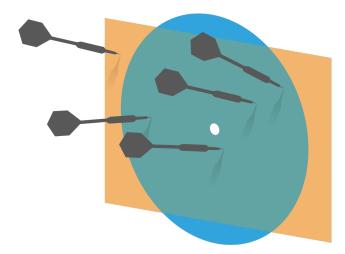
Probability and Statistics for Computer Science



$$cov(X,Y) = E[(X - E[X])(Y - E[Y])]$$
$$= E[XY] - E[X]E[Y]$$

Covariance is coming back in matrix!

Credit: wikipedia

Hongye Liu, Teaching Assistant Prof, CS361, UIUC, 3.25.2021

Last time

Maximum likelihood Estimation (MLE II)

Bayesian Inference (MAP)

Objective

Review of Bayesian inference

Wisualizing high dimensional data & Summarizing data

* The covariance matrix

Refresh of some linear algebra

Beta distribution

A distribution is Beta distribution if it has the following ▓ pdf: $P(\theta) = K(\alpha, \beta)\theta^{\alpha-1}(1-\theta)^{\beta-1}$ $0 \le \Theta \le 1$ α >0, β>0 = 0 O.W. pdf of Beta – distribution 9 Beta(1,1) $K(\alpha,\beta) = \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}$ Beta(5,5) Beta(50,50) Beta(70,70) Beta(20,50) ω Beta(0.5.0.5 Is an expressive family of ⋙ 9 density distributions 4 $\#Beta(\alpha = 1, \beta = 1)$ is uniform ΩI 0

0.0

0.2

0.4

0.6

θ

0.8

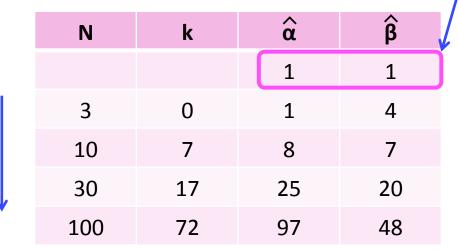
1.0

Beta distribution as the conjugate prior for Binomial likelihood

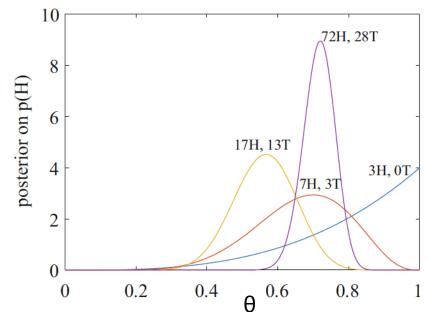
- ** The likelihood is Binomial (*N*, *k*) $P(D|\theta) = \binom{N}{k} \theta^k (1-\theta)^{N-k}$
- * The Beta distribution is used as the prior $P(\theta) = K(\alpha,\beta)\theta^{\alpha-1}(1-\theta)^{\beta-1}$
- * So $P(\theta|D) \propto \theta^{\alpha+k-1}(1-\theta)^{\beta+N-k-1}$
- * Then the posterior is $Beta(\alpha + k, \beta + N k)$ $P(\theta|D) = K(\alpha + k, \beta + N - k)\theta^{\alpha + k - 1}(1 - \theta)^{\beta + N - k - 1}$

The update of Bayesian posterior

- Since the posterior is in the same family as the conjugate prior, the posterior can be used as a new prior if more data is observed.
 - Suppose we start with a uniform prior on the probability θ of heads



⊯



Maximize the Bayesian posterior (MAP)

* The posterior of the previous example is

$$P(\theta|D) = K(\alpha + k, \beta + N - k)\theta^{\alpha + k - 1}(1 - \theta)^{\beta + N - k - 1}$$

Differentiating and setting to 0 gives the MAP estimate

$$\hat{\theta} = \frac{\alpha - 1 + k}{\alpha + \beta - 2 + N}$$

Conjugate prior for other likelihood functions

- If the likelihood is Bernoulli or geometric, the conjugate prior is Beta
- If the likelihood is Poisson or Exponential, the conjugate prior is Gamma
- If the likelihood is normal with known variance, the conjugate prior is normal

A data set with high dimensions

Seed data set from the UCI Machine Learning site:

	areaA	perimeterP	compactness	lengthKernel	widthKernel	asymmetry	lengthGroove	Label
1	15.26	14.84	0.871	5.763	3.312	2.221	5.22	1
2	14.88	14.57	0.8811	5.554	3.333	1.018	4.956	1
3	14.29	14.09	0.905	5.291	3.337	2.699	4.825	1
4	13.84	13.94	0.8955	5.324	3.379	2.259	4.805	1
5	16.14	14.99	0.9034	5.658	3.562	1.355	5.175	1
6	14.38	14.21	0.8951	5.386	3.312	2.462	4.956	1
7	14.69	14.49	0.8799	5.563	3.259	3.586	5.219	1

Matrix format of a dataset in the textbook

Scatterplot matrix

- Wisualizing high dimensional data with scatter plot matrix
- Limited to \ast small number of scatter plots

Red: seed type I Blue: seed type II Yellow: seed type III 210 data points 7 dimensions

12 16 20

areaA

20 16

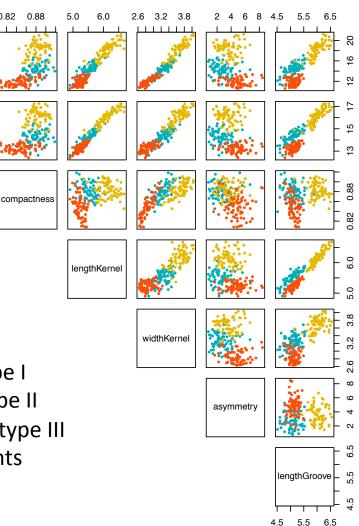
⊵

13

15 17

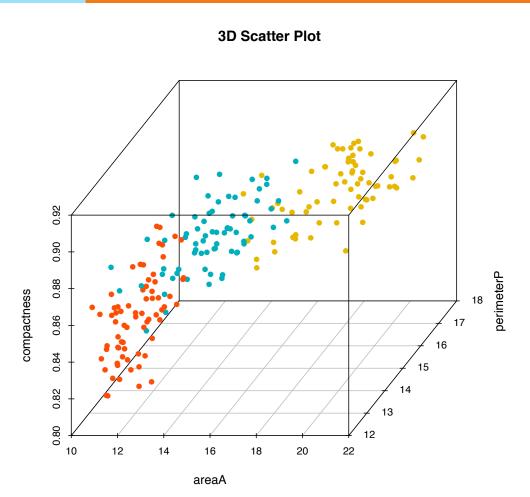
perimeterP

0.82



3D scatter plot

- We can also view
 the data set in 3
 dimensions
- But it's still
 limited in terms
 of number of
 dimensions we
 can see.



Summarizing multidimensional data

- * Location and spread parameters of a data set
- * Notation
 - Write {x} for a dataset consisting of N data items
 - # Each item x_i is a **d**-dimensional vector; column
 - **Write jth component of** x_i **as** $x_i^{(j)}$ **; row**
 - Matrix for the data set {x} is d by N dimension

Mean of a multidimensional data

We compute the mean of {x} by computing the mean of each component separately and stacking them to a vector

mean of jth component
$$= \frac{\sum_i x_i^{(j)}}{N}$$

We write the mean of {x} as

$$mean(\{x\}) = \frac{\sum_i x_i}{N}$$

Covariance

* The covariance of random variables X and Y is

cov(X, Y) = E[(X - E[X])(Y - E[Y])]

Note that

 $cov(X, X) = E[(X - E[X])^2] = var[X]$

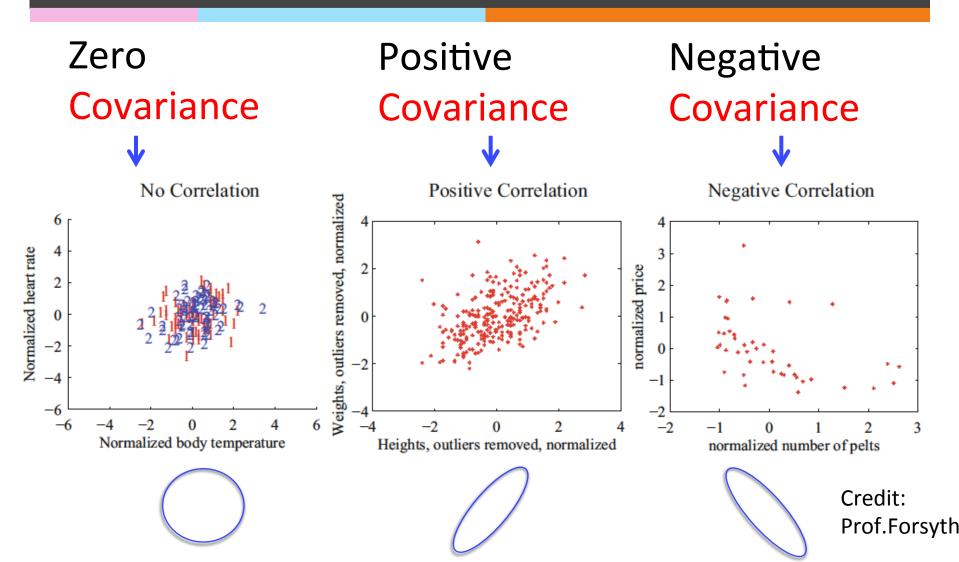
Correlation coefficient is normalized covariance

* The correlation coefficient is

$$corr(X,Y) = \frac{cov(X,Y)}{\sigma_X \sigma_Y}$$

When X, Y takes on values with equal probability to generate data sets {(x,y)}, the correlation coefficient will be as seen in Chapter 2.

Covariance seen from scatter plots



Covariance for a pair of components in a data set

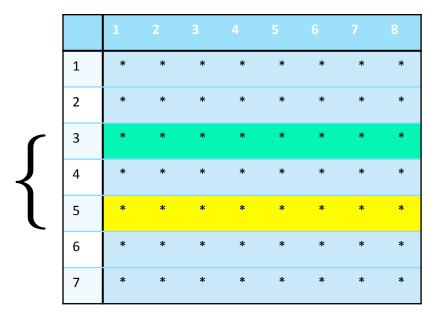
For the jth and kth components of a data set {x}

$$cov(\{x\}; j, k) = \frac{\sum_{i} (x_{i}^{(j)} - mean(\{x^{(j)}\}))(x_{i}^{(k)} - mean(\{x^{(k)}\}))^{T}}{N}$$

Covariance of a pair of components

Data set
$$ig\{\mathbf{X}ig\}$$
 7×8

 $cov({\mathbf{x}}; 3, 5)$

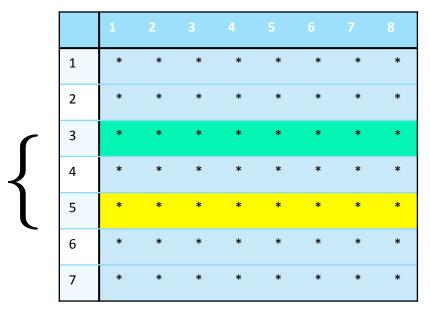


Take each row (component) of a pair and subtract it by the row mean, then do the inner product of the two resulting rows and divide by the number of columns

Covariance of a pair of components

Data set
$$\left\{ \mathbf{X}
ight\}$$
 7×8

 $cov({\mathbf{x}}; 3, 5)$



How many pairs of rows are there for which we can compute the covariance?

49

64

56

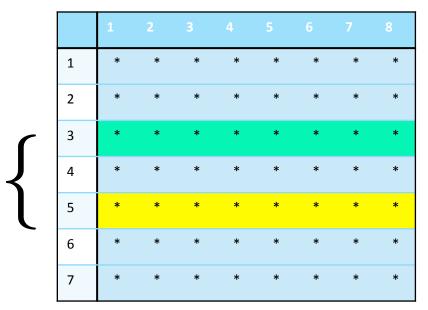
A)

B)

Covariance matrix

Data set
$$ig\{\mathbf{X}ig\}$$
 7×8

 $cov({\mathbf{x}}; 3, 5)$



Covmat(
$$\{\mathbf{X}\}$$
) 7×7

	1	2	3	4	5	6	7
1	*	*	*	*	*	*	*
2	*	*	*	*	*	*	*
3	*	*	*	*	*	*	*
4	*	*	*	*	*	*	*
5	*	*	*	*	*	*	*
6	*	*	*	*	*	*	*
7	*	*	*	*	*	*	*

Properties of Covariance matrix

$$cov(\{x\}; j, j) = var(\{x^{(j)}\})$$
 Covmat($\{\mathbf{x}\}$) 7×7

- The diagonal elements

 of the covariance matrix
 are just variances of
 each jth components
- The off diagonals are covariance between different components

	1	2	3	4	5	6	7
1	*	*	*	*	*	*	*
2	*	*	*	*	*	*	*
3	*	*	*	*	*	*	*
4	*	*	*	*	*	*	*
5	*	*	*	*	*	*	*
6	*	*	*	*	*	*	*
7	*	*	*	*	*	*	*

Properties of Covariance matrix

$$cov(\{x\}; j, k) = cov(\{x\}; k, j)$$

Covmat(
$$\{\mathbf{X}\}$$
) 7×7

- * The covariance matrix is symmetric!
- And it's positive semi-definite, that is all $λ_i ≥ 0$
- Covariance matrix is diagonalizable

	1	2	3	4	5	6	7
1	*	*	*	*	*	*	*
2	*	*	*	*	*	*	*
3	*	*	*	*	*	*	*
4	*	*	*	*	*	*	*
5	*	*	*	*	*	*	*
6	*	*	*	*	*	*	*
7	*	*	*	*	*	*	*

Properties of Covariance matrix

If we define x_c as the mean centered matrix for dataset {x}

$$Covmat(\{x\}) = \frac{X_c X_c^T}{N}$$

* The covariance matrix is a d×d matrix

Covmat(
$$\{\mathbf{x}\}$$
) 7×7

	1	2	3	4	5	6	7
1	*	*	*	*	*	*	*
2	*	*	*	*	*	*	*
3	*	*	*	*	*	*	*
4	*	*	*	*	*	*	*
5	*	*	*	*	*	*	*
6	*	*	*	*	*	*	*
7	*	*	*	*	*	*	*

$$A_0 = \begin{bmatrix} 5 & 4 & 3 & 2 & 1 \\ -1 & 1 & 0 & 1 & -1 \end{bmatrix} \begin{array}{c} \mathbf{X}^{(1)} \\ \mathbf{X}^{(2)} \end{array}$$

(I)

What are the dimensions of the covariance matrix of this data?

(I)

$$A_{0} = \begin{bmatrix} 5 & 4 & 3 & 2 & 1 \\ -1 & 1 & 0 & 1 & -1 \end{bmatrix}$$

$$A_{1} = \begin{bmatrix} 2 & 1 & 0 & -1 & -2 \\ -1 & 1 & 0 & 1 & -1 \end{bmatrix}$$

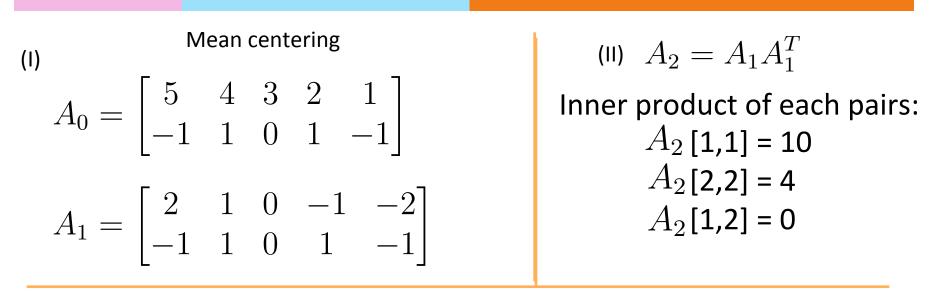
Mean centering

$$A_{0} = \begin{bmatrix} 5 & 4 & 3 & 2 & 1 \\ -1 & 1 & 0 & 1 & -1 \end{bmatrix}$$

$$A_{1} = \begin{bmatrix} 2 & 1 & 0 & -1 & -2 \\ -1 & 1 & 0 & 1 & -1 \end{bmatrix}$$

(II)
$$A_2 = A_1 A_1^T$$

Inner product of each pairs: A_2 [1,1] = 10 A_2 [2,2] = 4 A_2 [1,2] = 0



(111)

Divide the matrix with N – the number of items

Covmat({x}) =
$$\frac{1}{N}A_2 = \frac{1}{5}\begin{bmatrix} 10 & 0\\ 0 & 4 \end{bmatrix} = \begin{bmatrix} 2 & 0\\ 0 & 0.8 \end{bmatrix}$$

What do the data look like when Covmat({x}) is diagonal?

X⁽²⁾ $A_0 = \begin{bmatrix} 5 & 4 & 3 & 2 & 1 \\ -1 & 1 & 0 & 1 & -1 \end{bmatrix}$ $X^{(1)}$ * Covmat({x}) = $\frac{1}{N}A_2 = \frac{1}{5}\begin{bmatrix} 10 & 0\\ 0 & 4 \end{bmatrix} = \begin{bmatrix} 2 & 0\\ 0 & 0.8 \end{bmatrix}$

Translation properties of mean and covariance matrix

* Translating the data set translates the mean

$$mean(\{x\} + c) = mean(\{x\}) + c$$

* Translating the data set leaves the covariance matrix unchanged

 $Covmat(\{x\}+c) = Covmat(\{x\})$

Translation properties of covariance matrix

Linear transformation properties of mean and covariance matrix

* Linearly transforming the data set linearly transforms the mean

$$mean(\{A\mathbf{x}\}) = A mean(\{\mathbf{x}\})$$

Linearly transforming the data set linearly changes the covariance matrix quadratically

 $Covmat({Ax}) = A \ Covmat({x})A^T$

Proof of linear transformation of covariance matrix

Dimension Reduction

- In stead of showing more dimensions through visualization, it's a good idea to do dimension reduction in order to see the major features of the data set.
- * For example, principal component analysis help find the major components of the data set.
- * PCA is essentially about finding eigenvectors of covariance matrix

Refresh of some linear algebra

Why linear algebra?

- We are now into part IV of the course. The contents will be basic machine learning techniques.
- * Linear algebra is essential for a lot of machine Learning methods!

Eigenvalues and eigenvectors review

- * If A is an **n×n** square matrix, an eigenvalue λ and its corresponding eigenvector v (of dimension n×1) satisfy $Av = \lambda v$.
- * To solve for λ , we solve the characteristic equation

$$|A - \lambda I| = 0$$

* Given a value of λ , we solve v by solving

$$(A - \lambda I) v = 0$$

* Note if v is an eigenvector, then so is any multiple kv.

Find the eigenvalues and eigenvectors

$$A = \begin{bmatrix} 5 & 3 \\ 3 & 5 \end{bmatrix}$$

Find the eigenvalues and eigenvectors

$$A = \begin{bmatrix} 5 & 3 \\ 3 & 5 \end{bmatrix}$$

$$A = \begin{bmatrix} 5 & 3 \\ 3 & 5 \end{bmatrix}$$

$$A = \begin{bmatrix} 5 & 3 \\ 3 & 5 \end{bmatrix}$$

$$A = \begin{bmatrix} 5 & 3 \\ 3 & 5 \end{bmatrix}$$

$$A = \begin{bmatrix} 5 - \lambda & 3 \\ 3 & 5 - \lambda \end{bmatrix} = (5 - \lambda)^{2} - 3^{2} = \lambda^{2} - 10\lambda + 15 - 9$$

$$= \lambda^{2} - 10\lambda + 16 = 0$$

$$= \lambda^{2} - 10\lambda + 16 = 0$$

$$= (\lambda - 8)(\lambda - 2) = 0$$
So the eigenvertues $\lambda_{1} = 8$, $pos^{2} + ive = definite$

$$\lambda_{2} = 2$$
, $pos^{2} + ive = definite$

Find the eigenvectors

$$A = \begin{bmatrix} 5 & 3\\ 3 & 5 \end{bmatrix}$$

% Find the
eigenvectors

$$A = \begin{bmatrix} 5 & 3 \\ 3 & 5 \end{bmatrix} \quad \begin{bmatrix} -\sigma & \lambda_1 = \delta & A - \delta 1 = \begin{pmatrix} 5 - \delta & 3 \\ 3 & 5 - \delta \end{pmatrix} = \begin{pmatrix} -3 & 3 \\ 7 & -3 \end{pmatrix}$$
$$(A - \delta 1) \cup_i = o$$
$$\Rightarrow \cup_i = \begin{bmatrix} i \\ i \end{bmatrix}$$
$$\begin{bmatrix} -\sigma & \lambda_2 = 2 & A - 21 = \begin{bmatrix} 5 - 2 & 3 \\ 3 & 5 - 2 \end{bmatrix} = \begin{bmatrix} 3 & 3 \\ 3 & 3 \end{bmatrix}$$
$$(A - 21) \cup_i = o$$
$$\Rightarrow \bigcup_i 2 = \begin{bmatrix} -1 \\ -1 \end{bmatrix}$$

Find the eigenvalues and eigenvectors of

$$A = \begin{bmatrix} 1 & 2\\ 2 & 4 \end{bmatrix}$$

Find the eigenvalues and eigenvectors of

$$A = \begin{bmatrix} 1 & 2\\ 2 & 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix} A \text{ is symmetric}$$

$$|A - \lambda 1| = \begin{bmatrix} 1 - \lambda & 2 \\ 2 & 4 - \lambda \end{bmatrix} = (1 - \lambda) (4 - \lambda) - 4$$

$$= \lambda^{2} - 5\lambda = 0$$
So che eigenvalues are $\lambda_{1} = 5, \lambda_{2} = 0$

$$\int Politive \quad \text{femi-definite}$$

* Find the eigenvectors of $A = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$

* Find the eigenvectors of $A = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$

For
$$\lambda_{1}=5$$
 $A-51 = \begin{bmatrix} -4 & 2 \\ 2 & -1 \end{bmatrix}$
 $(A-51) V_{1} = 0$
 $\Rightarrow V_{1} = \begin{bmatrix} 2 \\ 2 \end{bmatrix} \Rightarrow U_{1} = \int_{-5}^{1} \begin{bmatrix} 2 \\ 2 \end{bmatrix}$
 $\lambda_{2}=0$ $A V_{2} = 0$
 $\Rightarrow \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix} V_{2} = 0$
 $\Rightarrow V_{2} = \begin{bmatrix} -2 \\ 1 \end{bmatrix} \Rightarrow U_{2} = \int_{-2}^{1} \begin{bmatrix} -2 \\ -2 \end{bmatrix}$

Diagonalization of a symmetric matrix

- If A is an n×n symmetric square matrix, the eigenvalues are real.
- If the eigenvalues are also distinct, their eigenvectors are orthogonal
- * We can then scale the eigenvectors to unit length, and place them into an orthogonal matrix $U = [\mathbf{u}_1 \, \mathbf{u}_2 \, ..., \, \mathbf{u}_n]$
- * We can write the diagonal matrix $\Lambda = U^T A U$ such that the diagonal entries of Λ are $\lambda_1, \lambda_2 \dots \lambda_n$ in that order.

Diagonalization example

⊮ For

$$A = \begin{bmatrix} 5 & 3 \\ 3 & 5 \end{bmatrix}$$

For
$$\lambda_1 = 8$$
 $A - 82 = \begin{pmatrix} 5 - 8 & 3 \\ 3 & 5 - 8 \end{pmatrix} = \begin{pmatrix} -3 & 3 \\ 3 & -3 \end{pmatrix}$
 $(A - 81) \cup_1 = 0$
 $\Rightarrow \cup_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$
For $\lambda_2 = 2$ $A - 21 = \begin{bmatrix} 5 - 2 & 3 \\ 3 & 5 - 2 \end{bmatrix} = \begin{bmatrix} 3 & 3 \\ 3 & 3 \end{bmatrix}$
 $(A - 21) \cup_2 = 0$
 $\Rightarrow \bigcup_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$

$$\begin{split} \lambda_{i} = \delta_{i} \Rightarrow \nu_{i} = \begin{bmatrix} i \\ j \end{bmatrix} \Rightarrow u_{i} = \frac{1}{\|\nu_{i}\|} \nu_{i} = \frac{1}{2^{2}} \begin{bmatrix} i \\ j \end{bmatrix} \\ \lambda_{2} = 2 \Rightarrow \nu_{2} = \begin{bmatrix} i \\ -i \end{bmatrix} \Rightarrow u_{2} = \frac{1}{\|\nu_{2}\|} \nu_{2} = \frac{1}{2^{2}} \begin{bmatrix} i \\ -i \end{bmatrix} \\ \begin{bmatrix} \delta \\ 0 \end{bmatrix} = \begin{bmatrix} \frac{1}{2^{2}} & \frac{1}{2^{2}} \end{bmatrix} \begin{bmatrix} 5 & 3 \\ \frac{1}{2^{2}} & -\frac{1}{2^{2}} \end{bmatrix} \begin{bmatrix} \frac{1}{2^{2}} & \frac{1}{2^{2}} \\ \frac{1}{2^{2}} & -\frac{1}{2^{2}} \end{bmatrix} \begin{bmatrix} \frac{1}{2^{2}} & \frac{1}{2^{2}} \\ \frac{1}{2^{2}} & -\frac{1}{2^{2}} \end{bmatrix} \end{split}$$

Q. Are these two vectors orthogonal?

Q. Is this true?

When two zero-mean vectors of data are orthogonal, they are uncorrelated

A. Yes

B. No

See you next time

See You!

