Probability and Statistics 7 for Computer Science

$$
cov(X, Y) = E[(X - E[X])(Y - E[Y])]
$$

$$
= E[XY] - E[X]E[Y]
$$

Covariance is coming back in matrix!

Credit: wikipedia

Hongye Liu, Teaching Assistant Prof, CS361, UIUC, 3.25.2021

Last time

KEMaximum likelihood Estimation $(MLE II)$

✺Bayesian Inference (MAP)

Objective

✺Review of Bayesian inference

✺Visualizing high dimensional data & Summarizing data

$*$ The covariance matrix

✺Refresh of some linear algebra

Beta distribution

 $*$ A distribution is Beta distribution if it has the following pdf: $0 \leq \Theta \leq 1$ $P(\theta) = K(\alpha, \beta) \theta^{\alpha-1} (1-\theta)^{\beta-1}$ α >0, β>0 $= 0$ O.W. **pdf of Beta − distribution** $\frac{1}{2}$ 2 4 6 8 10 \blacksquare Beta(1,1) $K(\alpha, \beta) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha) \Gamma(\beta)}$ Beta(5,5) Beta(50,50) Beta(70,70) Beta(20,50) $\Gamma(\alpha)\Gamma(\beta)$ ∞ Beta(0.5,0.5) $*$ Is an expressive family of \circ density distributions \rightarrow \triangleleft $Beta(\alpha = 1, \beta = 1)$ is uniform \sim \circ

0.0 0.2 0.4 0.6 0.8 1.0

 θ

Beta distribution as the conjugate prior for Binomial likelihood

- ✺ The likelihood is Binomial (*N*, *k*) $P(D|\theta) = \binom{N}{N}$ \overline{k} \setminus $\theta^k(1-\theta)^{N-k}$
- $*$ The Beta distribution is used as the prior $P(\theta) = K(\alpha, \beta)\theta^{\alpha-1}(1-\theta)^{\beta-1}$
- [₩] So $P(θ|D) \propto θ^{\alpha+k-1}(1-θ)^{\beta+N-k-1}$
- **WE Then the posterior is** $Beta(\alpha + k, \beta + N k)$ $P(\theta|D) = K(\alpha + k, \beta + N - k)\theta^{\alpha + k - 1}(1 - \theta)$ $\beta + N - k - 1$

The update of Bayesian posterior

- $*$ Since the posterior is in the same family as the conjugate prior, the posterior can be used as a new prior if more data is observed.
- $*$ Suppose we start with a uniform prior on the probability θ of heads 10

Maximize the Bayesian posterior (MAP)

 $*$ The posterior of the previous example is

$$
P(\theta|D) = K(\alpha + k, \beta + N - k)\theta^{\alpha + k - 1}(1 - \theta)^{\beta + N - k - 1}
$$

 $*$ Differentiating and setting to 0 gives the MAP estimate

$$
\hat{\theta} = \frac{\alpha - 1 + k}{\alpha + \beta - 2 + N}
$$

Conjugate prior for other likelihood functions

- $*$ If the likelihood is Bernoulli or geometric, the conjugate prior is Beta
- $\mathcal K$ If the likelihood is Poisson or Exponential, the conjugate prior is Gamma
- $*$ If the likelihood is normal with known variance, the conjugate prior is normal

A data set with high dimensions

✺ Seed data set from the UCI Machine Learning site:

Matrix format of a dataset in the textbook

Scatterplot matrix

- Visualizing high ☀ dimensional data with scatter plot matrix
- Limited to ☀ small number of scatter plots

Red: seed type I Blue: seed type II Yellow: seed type III 210 data points 7 dimensions

 20

 13 15 17 0.82

perimeterP

12 16

areaA

ನಿ $\frac{6}{1}$

 $\overline{\mathbf{z}}$

3D scatter plot

- $*$ We can also view the data set in 3 dimensions
- $*$ But it's still limited in terms of number of dimensions we can see.

Summarizing multidimensional data

- ✺ LocaNon and spread parameters of a data set
- **☀ Notation**
	- **\aude{\manabba** Write {x} for a dataset consisting of N data items
	- ✺ Each item xi is a **d**-dimensional vector; column
	- \mathcal{W} Write jth component of x_i as $x_i^{(j)}$; row
	- ✺ Matrix for the data set {**x**} is **d** by **N** dimension

Mean of a multidimensional data

 \mathscr{W} We compute the mean of $\{x\}$ by computing the mean of each component separately and stacking them to a vector

$$
\text{mean of } \text{ith component} = \frac{\sum_i x_i^{(j)}}{N}
$$

 \mathscr{W} We write the mean of $\{x\}$ as

$$
mean(\{x\}) = \frac{\sum_{i} x_i}{N}
$$

Covariance

✺The **covariance** of random variables *X* and *Y* is

$cov(X, Y) = E[(X - E[X])(Y - E[Y])]$

^{ Note that}

 $cov(X, X) = E[(X - E[X])^{2}] = var[X]$

Correlation coefficient is normalized covariance

 $*$ The correlation coefficient is

$$
corr(X, Y) = \frac{cov(X, Y)}{\sigma_X \sigma_Y}
$$

 \mathscr{W} When X, Y takes on values with equal probability to generate data sets $\{(x,y)\}\$, the correlation coefficient will be as seen in Chapter 2.

Covariance seen from scatter plots

Covariance for a pair of components in a data set

 $*$ For the jth and kth components of a data set {x}

$$
cov(\{x\};j,k) = \frac{\sum_{i}(x_i^{(j)} - mean(\{x^{(j)}\})) (x_i^{(k)} - mean(\{x^{(k)}\}))^T}{N}
$$

Covariance of a pair of components

```
Data set \{ \mathbf{x} \} 7×8
```
 $cov({\mathbf{x}}); 3, 5)$

Take each row (component) of a pair and subtract it by the row mean, then do the inner product of the two resulting rows and divide by the number of columns

Covariance of a pair of components

$$
\text{Data set}\left\{\mathbf{x}\right\} \text{ 7}\text{-}\text{x8}
$$

 $cov({\{x\}}; 3, 5)$

How many pairs of rows are there for which we can compute the covariance?

49 \bigwedge $B)$ 64 56

Covariance matrix

$$
\text{Data set}\left\{\mathbf{x}\right\} \text{ 7×8}
$$

 $cov({\{x\}}; 3,5)$

$$
Countat(\{x\}) \text{ 7x7}
$$

Properties of Covariance matrix

$$
cov(\{x\};j,j)=var(\{x^{(j)}\}) \quad \text{Countat}(\{\mathbf{x}\}) \text{ z}
$$

- The diagonal elements Ж of the covariance matrix are just variances of each jth components
- The off diagonals are ☀ covariance between different components

Properties of Covariance matrix

 $cov(\{x\}; j, k) = cov(\{x\}; k, j)$

$$
Countat(\{ \mathbf{x} \}) \text{ z}
$$

- $*$ The covariance matrix is **symmetric**!
- **EXECUTE:** And it's **positive semi-definite**, that is all $\lambda_i \geq 0$
- $*$ Covariance matrix is diagonalizable

Properties of Covariance matrix

 $*$ If we define x_c as the mean centered matrix for dataset $\{x\}$

$$
Covmat({x}) = \frac{X_c X_c^T}{N}
$$

 $*$ The covariance matrix is a dxd matrix

$$
Countat(\{ \mathbf{x} \}) \text{ 7x7}
$$

$$
A_0 = \begin{bmatrix} 5 & 4 & 3 & 2 & 1 \\ -1 & 1 & 0 & 1 & -1 \end{bmatrix} \xrightarrow{\mathsf{x}^{(1)}} \mathsf{x}^{(2)}
$$

(I)

What are the dimensions of the covariance matrix of this data?

A) 2 by 2 B) 5 by 5 C) 5 by 2 D) 2 by 5

(1)
\nMean centering
\n
$$
A_0 = \begin{bmatrix} 5 & 4 & 3 & 2 & 1 \\ -1 & 1 & 0 & 1 & -1 \end{bmatrix}
$$
\n
$$
A_1 = \begin{bmatrix} 2 & 1 & 0 & -1 & -2 \\ -1 & 1 & 0 & 1 & -1 \end{bmatrix}
$$

(1)
\nMean centering
\n
$$
A_0 = \begin{bmatrix} 5 & 4 & 3 & 2 & 1 \\ -1 & 1 & 0 & 1 & -1 \end{bmatrix}
$$
\n
$$
A_1 = \begin{bmatrix} 2 & 1 & 0 & -1 & -2 \\ -1 & 1 & 0 & 1 & -1 \end{bmatrix}
$$

$$
(II) A_2 = A_1 A_1^T
$$

Inner product of each pairs: A_2 [1,1] = 10 A_2 [2,2] = 4 $A_2[1,2] = 0$

(III)

Divide the matrix with $N -$ the number of items

$$
\text{Covmat}(\mathbf{x}) = \frac{1}{N} A_2 = \frac{1}{5} \begin{bmatrix} 10 & 0 \\ 0 & 4 \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 0 & 0.8 \end{bmatrix}
$$

What do the data look like when Covmat({x}) is diagonal?

 $X^{(2)}$ $A_0 = \begin{bmatrix} 5 & 4 & 3 & 2 & 1 \\ -1 & 1 & 0 & 1 & -1 \end{bmatrix}$ $\mathsf{X}^{(1)}$ **Covmat({x})** = $\frac{1}{N}A_2 = \frac{1}{5}\begin{bmatrix} 10 & 0 \\ 0 & 4 \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 0 & 0.8 \end{bmatrix}$

Translation properties of mean and covariance matrix

 $*$ Translating the data set translates the mean

$$
mean(\{x\} + c) = mean(\{x\}) + c
$$

 $*$ Translating the data set leaves the covariance matrix unchanged

 $Count({x} + c) = Count({x})$

Translation properties of covariance matrix

Linear transformation properties of mean and covariance matrix

 $*$ Linearly transforming the data set linearly transforms the mean

$$
mean(\{A\mathbf{x}\}) = A \; mean(\{\mathbf{x}\})
$$

 $*$ Linearly transforming the data set linearly changes the covariance matrix quadratically

$$
Count(\{A\mathbf{x}\}) = A\;Count(\{\mathbf{x}\})A^T
$$

Proof of linear transformation of covariance matrix

Dimension Reduction

- ✺ In stead of showing more dimensions through visualization, it's a good idea to do dimension reduction in order to see the major features of the data set.
- $*$ For example, principal component analysis help find the major components of the data set.
- ✺ PCA is essenNally about finding eigenvectors of covariance matrix

Refresh of some linear algebra

Why linear algebra?

- **We are now into part IV of the course. The** contents will be basic machine learning techniques.
- $*$ Linear algebra is essential for a lot of machine Learning methods!

Eigenvalues and eigenvectors review

- ✺ If A is an **n×n** square matrix, an eigenvalue *λ* and its corresponding eigenvector *v* (of dimension $nx1$) satisfy $Av = \lambda v$.
- \mathscr{H} To solve for λ , we solve the characteristic equation

$$
|A - \lambda I| = 0
$$

✺ Given a value of *λ,* we solve *ν* by solving

$$
(A - \lambda I) v = 0
$$

Note if *v* is an eigenvector, then so is any multiple *kv*.

Find the eigenvalues and eigenvectors ☀

$$
A = \begin{bmatrix} 5 & 3 \\ 3 & 5 \end{bmatrix}
$$

Find the eigenvalues and eigenvectors ☀

 Γ \sim 0

$$
A = \begin{bmatrix} 3 & 3 \\ 3 & 5 \end{bmatrix}
$$

\n
$$
A = \begin{bmatrix} 5 & 3 \\ 3 & 5 \end{bmatrix}
$$

\n
$$
A = \begin{bmatrix} 5 & 3 \\ 3 & 5 \end{bmatrix}
$$

\n
$$
A = \begin{bmatrix} 5 - \lambda & 3 \\ 3 & 5 - \lambda \end{bmatrix} = (5 - \lambda)^{\frac{1}{2}} 3^{\frac{1}{2}} = \lambda^{\frac{1}{2}} 1 e \lambda + 15 - 9
$$

\n
$$
= \lambda^{\frac{1}{2}} 1 e \lambda + 16 = 0
$$

\nSo the eigenvalues $\lambda_1 = 8$,
\n
$$
\frac{1}{2} (\lambda - 8) (\lambda - 1) = 0
$$

\n
$$
= (\lambda - 8) (\lambda - 1) = 0
$$

Find the ☀ eigenvectors $A = \begin{bmatrix} 5 & 3 \\ 3 & 5 \end{bmatrix}$

Find the ☀ eigenvectors

$$
A = \begin{bmatrix} 5 & 3 \\ 3 & 5 \end{bmatrix} \begin{bmatrix} \text{For } \lambda_1 = 8 & A - 81 = \begin{bmatrix} 5 - 8 & 3 \\ 3 & 5 - 8 \end{bmatrix} = \begin{bmatrix} -3 & 3 \\ 7 & -3 \end{bmatrix}
$$

\n
$$
(A - 81) v_1 = o
$$

\n
$$
\Rightarrow v_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}
$$

\n
$$
\begin{bmatrix} \text{For } \lambda_1 = 2 & A - 21 = \begin{bmatrix} 5 - 2 & 3 \\ 3 & 5 - 2 \end{bmatrix} = \begin{bmatrix} 3 & 3 \\ 3 & 3 \end{bmatrix}
$$

\n
$$
(A - 21) v_2 = o
$$

\n
$$
\Rightarrow v_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}
$$

Find the eigenvalues and eigenvectors of ☀

$$
A = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}
$$

Find the eigenvalues and eigenvectors of ☀

$$
A = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}
$$

$$
A = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}
$$
 A is symmetric
\n
$$
|A - \lambda 1| = \begin{bmatrix} 1 - \lambda & 2 \\ 2 & 4 - \lambda \end{bmatrix} = (1 - \lambda) (4 - \lambda) - 4
$$

\n
$$
= \lambda - 5\lambda = 0
$$

\nSo c² (eigenvalues are $\lambda_1 = 5$, $\lambda = 0$
\n
$$
= \sqrt{90 \text{ s} \cdot 1100} = 90
$$

Find the eigenvectors of ☀ $A = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$

Find the eigenvectors of ☀ $A = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$

For
$$
\lambda_{i}=5
$$
 $A-51 = \begin{bmatrix} -\frac{6}{2} & 2 \\ 2 & -i \end{bmatrix}$
\n $(A-51) V_{1} = 0$
\n $\Rightarrow V_{2} = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \Rightarrow U_{1} = \frac{1}{\sqrt{5}} \begin{bmatrix} 1 \\ 2 \end{bmatrix}$
\n $\Rightarrow \lambda_{2} = 0$ $A V_{2} = 0$
\n $\Rightarrow \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix} V_{2} = 0$
\n $\Rightarrow V_{2} = \begin{bmatrix} -2 \\ 1 \end{bmatrix} \Rightarrow U_{2} = \frac{1}{\sqrt{5}} \begin{bmatrix} -2 \\ 1 \end{bmatrix}$

Diagonalization of a symmetric matrix

- $*$ If A is an n×n symmetric square matrix, the eigenvalues are real.
- $*$ If the eigenvalues are also distinct, their eigenvectors are orthogonal
- $\mathscr W$ We can then scale the eigenvectors to unit length, and place them into an orthogonal matrix $U = [\mathbf{u}_1 \mathbf{u}_2 \dots \mathbf{u}_n]$
- **We can write the diagonal matrix** $\Lambda = U^T A U$ such that the diagonal entries of Λ are λ_1 , λ_2 ... λ_n in that order.

Diagonalization example

☀ For

$$
A = \begin{bmatrix} 5 & 3 \\ 3 & 5 \end{bmatrix}
$$

For
$$
\lambda_1 = 8
$$
 $A - 81 = \begin{pmatrix} 5 - 8 & 3 \\ 3 & 5 - 8 \end{pmatrix} = \begin{pmatrix} -3 & 3 \\ 7 & -3 \end{pmatrix}$
\n $(A - 81) v_1 = 0$
\n $\Rightarrow v_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$
\nFor $\lambda_2 = 2$ $A - 21 = \begin{bmatrix} 5 - 2 & 3 \\ 3 & 5 - 2 \end{bmatrix} = \begin{bmatrix} 3 & 3 \\ 3 & 3 \end{bmatrix}$
\n $(A - 21) v_2 = 0$
\n $\Rightarrow v_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$

$$
\lambda_{1} = \delta \Rightarrow v_{1} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \Rightarrow u_{1} = \frac{1}{||v_{1}||} v_{1} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix}
$$
\n
$$
\lambda_{2} = 2 \Rightarrow V_{2} = \begin{bmatrix} 1 \\ -1 \end{bmatrix} \Rightarrow u_{2} = \frac{1}{||v_{2}||} v_{1} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \end{bmatrix}
$$
\n
$$
\begin{bmatrix} 8 & 0 \\ 0 & 2 \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} 5 & 3 \\ 3 & 5 \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{bmatrix}
$$
\n
$$
\Lambda = u^{\top} \qquad A \qquad u
$$

Q. Are these two vectors orthogonal?

$$
V_1 = [3 6], V_2 = [-2 1]
$$

A. Yes
B. No

Q. Is this true?

When two zero-mean vectors of data are orthogonal, they are uncorrelated

A. Yes

B. No

See you next time

See You!

