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Covariance	is	coming	back	in	
matrix!	
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Credit:	wikipedia	

cov(X, Y ) = E[(X − E[X])(Y − E[Y ])]
= E[XY ]− E[X]E[Y ]



Last	time	

✺ Maximum	likelihood	EsNmaNon	
(MLE	II)	

✺ Bayesian	Inference	(MAP)	



Objective	

✺ Review	of	Bayesian	inference	

✺ Visualizing	high	dimensional	data	&	
Summarizing	data	

✺ The	covariance	matrix	

✺ Refresh	of	some	linear	algebra	

	



Beta	distribution	

✺  A	distribuNon	is	Beta	distribuNon	if	it	has	the	following	
pdf:	

	

		

✺  Is	an	expressive	family	of	
distribuNons																											

✺  																														is	uniform	

P (θ) = K(α, β)θα−1(1− θ)β−1

K(α, β) =
Γ(α + β)

Γ(α)Γ(β)
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Beta	distribution	as	the	conjugate	prior	
for	Binomial	likelihood	
✺  The	likelihood	is	Binomial	(N,	k)	

✺  The	Beta	distribuNon	is	used	as	the	prior	

✺  So	

✺  Then	the	posterior	is		

P (θ) = K(α, β)θα−1(1− θ)β−1

P (D|θ) =

(

N

k

)

θ
k(1− θ)N−k

P (θ|D) ∝ θ
α+k−1(1− θ)β+N−k−1

Beta(α + k, β +N − k)

P (θ|D) = K(α + k, β +N − k)θα+k−1(1− θ)β+N−k−1



The	update	of	Bayesian	posterior	

✺  Since	the	posterior	is	in	the	same	family	as	the	
conjugate	prior,	the	posterior	can	be	used	as	a	new	prior	
if	more	data	is	observed.	

✺  Suppose	we	start	with	a	uniform	prior	on	the	
probability	θ	of	heads	

θ	

N	 k	 α	 β	

1	 1	

3	 0	 1	 4	

10	 7	 8	 7	

30	 17	 25	 20	

100	 72	 97	 48	

⌃	 ⌃	



Maximize	the	Bayesian	posterior	(MAP)	

✺  The	posterior	of	the	previous	example	is	

	

✺  DifferenNaNng	and	sefng	to	0	gives	the	MAP	esNmate	

P (θ|D) = K(α + k, β +N − k)θα+k−1(1− θ)β+N−k−1

θ̂ =
α− 1 + k

α + β − 2 +N



Conjugate	prior	for	other	likelihood	
functions	
✺  If	the	likelihood	is	Bernoulli	or	geometric,	the	conjugate	

prior	is	Beta	

✺  If	the	likelihood	is	Poisson	or	ExponenNal,	the	conjugate	
prior	is	Gamma	

✺  If	the	likelihood	is	normal	with	known	variance,	the	
conjugate	prior	is	normal	



A	data	set	with	high	dimensions	

✺  Seed	data	set	from	the	UCI	Machine	Learning	
site:	

areaA	 perimeterP	 compactness	 lengthKernel	 widthKernel	 asymmetry	 lengthGroove	 Label	

1	 15.26	 14.84	 0.871	 5.763	 3.312	 2.221	 5.22	 1	

2	 14.88	 14.57	 0.8811	 5.554	 3.333	 1.018	 4.956	 1	

3	 14.29	 14.09	 0.905	 5.291	 3.337	 2.699	 4.825	 1	

4	 13.84	 13.94	 0.8955	 5.324	 3.379	 2.259	 4.805	 1	

5	 16.14	 14.99	 0.9034	 5.658	 3.562	 1.355	 5.175	 1	

6	 14.38	 14.21	 0.8951	 5.386	 3.312	 2.462	 4.956	 1	

7	 14.69	 14.49	 0.8799	 5.563	 3.259	 3.586	 5.219	 1	

…	



Matrix	format	of	a	dataset	in	the	textbook	



Scatterplot	matrix	

✺  Visualizing	high	
dimensional	
data	with	
scajer	plot	
matrix	

✺  Limited	to	
small	number	
of	scajer	plots	
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3D	scatter	plot	

✺  We	can	also	view	
the	data	set	in	3	
dimensions	

✺  But	it’s	sNll	
limited	in	terms	
of	number	of	
dimensions	we	
can	see.	

3D Scatter Plot
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Summarizing	multidimensional	data	

✺  LocaNon	and	spread	parameters	of	a	data	
set	

✺ NotaNon	
✺  Write	{x}	for	a	dataset	consisNng	of	N	data	

items	
✺  Each	item	xi	is	a	d-dimensional	vector;	column	
✺  Write	jth	component	of	xi	as	xi(j);	row	
✺  Matrix	for	the	data	set	{x}	is	d	by	N	dimension	

	



Mean	of	a	multidimensional	data	

✺  We	compute	the	mean	of	{x}	by	compuNng	the	
mean	of	each	component	separately	and	stacking	
them	to	a	vector	

✺  We	write	the	mean	of	{x}	as		

mean	of	jth	component	=
∑

i x
(j)
i

N

mean({x}) =

∑
i
xi

N



Covariance	
✺ The	covariance	of	random	
variables	X	and	Y	is	

✺ Note	that	

cov(X, Y ) = E[(X − E[X])(Y − E[Y ])]

cov(X,X) = E[(X − E[X])2] = var[X]



Correlation	coefficient	is	normalized		
covariance	

✺  The	correlaNon	coefficient	is	

	

✺  When	X, Y	takes	on	values	with	equal	
probability	to	generate	data	sets	{(x,y)},	the	
correlaNon	coefficient	will	be	as	seen	in	Chapter	
2.	

corr(X, Y ) =
cov(X, Y )

σXσY



Covariance	seen	from	scatter	plots	

PosiNve		
Covariance	
	

NegaNve		
Covariance	

Zero		
Covariance	
	

Credit:	
Prof.Forsyth	



Covariance	for	a	pair	of	components	in	a	
data	set	
✺  For	the	jth	and	kth	components	of	a	data	set	

{x}	

																												cov({x}; j, k)=
∑

i(x
(j)
i −mean({x(j)}))(x(k)

i −mean({x(k)}))T

N



Covariance	of	a	pair	of	components	

{

cov({x}; 3, 5)

Data	set	{x} 7×8	

Take	each	row	
(component)	of	a	pair	
and	subtract	it	by	the	
row	mean,	then	do	
the	inner	product	of	
the	two	resulNng	
rows	and	divide	by	
the	number	of	
columns	

1	 2	 3	 4	 5	 6	 7	 8	

1	 *	 *	 *	 *	 *	 *	 *	 *	

2	 *	 *	 *	 *	 *	 *	 *	 *	

3	 *	 *	 *	 *	 *	 *	 *	 *	

4	 *	 *	 *	 *	 *	 *	 *	 *	

5	 *	 *	 *	 *	 *	 *	 *	 *	

6	 *	 *	 *	 *	 *	 *	 *	 *	

7	 *	 *	 *	 *	 *	 *	 *	 *	



Covariance	of	a	pair	of	components	

How	many	pairs	of	rows	
are	there	for	which	we	can	
compute	the	covariance?	
	
A)  49	
B)  64	
C)  56	

1	 2	 3	 4	 5	 6	 7	 8	

1	 *	 *	 *	 *	 *	 *	 *	 *	

2	 *	 *	 *	 *	 *	 *	 *	 *	

3	 *	 *	 *	 *	 *	 *	 *	 *	

4	 *	 *	 *	 *	 *	 *	 *	 *	

5	 *	 *	 *	 *	 *	 *	 *	 *	

6	 *	 *	 *	 *	 *	 *	 *	 *	

7	 *	 *	 *	 *	 *	 *	 *	 *	

{

cov({x}; 3, 5)

Data	set	{x} 7×8		



Covariance	matrix	

1	 2	 3	 4	 5	 6	 7	

1	 *	 *	 *	 *	 *	 *	 *	

2	 *	 *	 *	 *	 *	 *	 *	

3	 *	 *	 *	 *	 *	 *	 *	

4	 *	 *	 *	 *	 *	 *	 *	

5	 *	 *	 *	 *	 *	 *	 *	

6	 *	 *	 *	 *	 *	 *	 *	

7	 *	 *	 *	 *	 *	 *	 *	

Covmat(										)	{x} 7×7	

1	 2	 3	 4	 5	 6	 7	 8	

1	 *	 *	 *	 *	 *	 *	 *	 *	

2	 *	 *	 *	 *	 *	 *	 *	 *	

3	 *	 *	 *	 *	 *	 *	 *	 *	

4	 *	 *	 *	 *	 *	 *	 *	 *	

5	 *	 *	 *	 *	 *	 *	 *	 *	

6	 *	 *	 *	 *	 *	 *	 *	 *	

7	 *	 *	 *	 *	 *	 *	 *	 *	

cov({x}; 3, 5)

Data	set	{x} 7×8		

{



Properties	of	Covariance	matrix	

cov({x}; j, j) = var({x(j)})
1	 2	 3	 4	 5	 6	 7	

1	 *	 *	 *	 *	 *	 *	 *	

2	 *	 *	 *	 *	 *	 *	 *	

3	 *	 *	 *	 *	 *	 *	 *	

4	 *	 *	 *	 *	 *	 *	 *	

5	 *	 *	 *	 *	 *	 *	 *	

6	 *	 *	 *	 *	 *	 *	 *	

7	 *	 *	 *	 *	 *	 *	 *	

Covmat(										)	{x} 7×7	

✺  The	diagonal	elements	
of	the	covariance	matrix	
are	just	variances	of	
each	jth	components	

✺  The	off	diagonals	are	
covariance	between	
different	components	



Properties	of	Covariance	matrix	

1	 2	 3	 4	 5	 6	 7	

1	 *	 *	 *	 *	 *	 *	 *	

2	 *	 *	 *	 *	 *	 *	 *	

3	 *	 *	 *	 *	 *	 *	 *	

4	 *	 *	 *	 *	 *	 *	 *	

5	 *	 *	 *	 *	 *	 *	 *	

6	 *	 *	 *	 *	 *	 *	 *	

7	 *	 *	 *	 *	 *	 *	 *	

Covmat(										)	{x} 7×7	

✺  The	covariance	
matrix	is	symmetric!	

✺  And	it’s	posi=ve	
semi-definite,	that	is	
all	λi	≥	0	

✺  Covariance	matrix	is	
diagonalizable	

cov({x}; j, k) = cov({x}; k, j)



Properties	of	Covariance	matrix	

1	 2	 3	 4	 5	 6	 7	

1	 *	 *	 *	 *	 *	 *	 *	

2	 *	 *	 *	 *	 *	 *	 *	

3	 *	 *	 *	 *	 *	 *	 *	

4	 *	 *	 *	 *	 *	 *	 *	

5	 *	 *	 *	 *	 *	 *	 *	

6	 *	 *	 *	 *	 *	 *	 *	

7	 *	 *	 *	 *	 *	 *	 *	

Covmat(										)	{x} 7×7	✺  If	we	define	xc	as	the	
mean	centered	
matrix	for	dataset	{x}	

✺  The	covariance	
matrix	is	a	d×d	matrix	

d	=7		

Covmat({x}) =
XcX

T
c

N



Example:	covariance	matrix	of	a	data	set	

X(1)	

X(2)	

What	are	the	dimensions	of	the	
covariance	matrix	of	this	data?	
	
A)  2	by	2	
B)  5	by	5	
C)  5	by	2	
D)  2	by	5	

A0 =

[

5 4 3 2 1

−1 1 0 1 −1

]

(I)	



Example:	covariance	matrix	of	a	data	set	

Mean	centering	
(I)	

A0 =

[

5 4 3 2 1

−1 1 0 1 −1

]

A1 =

[

2 1 0 −1 −2

−1 1 0 1 −1

]



Example:	covariance	matrix	of	a	data	set	

Mean	centering	
(I)	

A0 =

[

5 4 3 2 1

−1 1 0 1 −1

]

Inner	product	of	each	pairs:	
																		[1,1]	=	10	
																		[2,2]	=	4	
																		[1,2]	=	0	
	

(II)	

A2

A2

A2

A2 = A1A
T

1

A1 =

[

2 1 0 −1 −2

−1 1 0 1 −1

]



Example:	covariance	matrix	of	a	data	set	

Mean	centering	
(I)	

A0 =

[

5 4 3 2 1

−1 1 0 1 −1

]

Inner	product	of	each	pairs:	
																		[1,1]	=	10	
																		[2,2]	=	4	
																		[1,2]	=	0	
	

(II)	

A2

A2

A2

A2 = A1A
T

1

A1 =

[

2 1 0 −1 −2

−1 1 0 1 −1

]

Covmat(							)	{x}

Divide	the	matrix	with	N	–	the	number	of	items	

(III)	

=
1

N
A2 =

1

5

[

10 0

0 4

]

=

[

2 0

0 0.8

]



What	do	the	data	look	like	when	
Covmat({x})	is	diagonal?	

*	

*	

*	

*	

*	

Covmat(							)	{x} =
1

N
A2 =

1

5

[

10 0

0 4

]

=

[

2 0

0 0.8

]

A0 =

[

5 4 3 2 1

−1 1 0 1 −1

]

X(1)	

X(2)	



Translation	properties	of	mean	and	
covariance	matrix	
✺ TranslaNng	the	data	set	translates	the	
mean	

✺ TranslaNng	the	data	set	leaves	the	
covariance	matrix	unchanged	

	

mean({x}+ c) = mean({x}) + c

Covmat({x}+ c) = Covmat({x})



Translation	properties	of	covariance	
matrix	
✺ Proof:	



Linear	transformation	properties	of	mean	
and	covariance	matrix	

✺  Linearly	transforming	the	data	set	linearly	
transforms	the	mean	

✺  Linearly	transforming	the	data	set	linearly	
changes	the	covariance	matrix	quadraNcally	

Covmat({Ax}) = A Covmat({x})AT

mean({Ax}) = A mean({x})



Proof	of	linear	transformation	of	
covariance	matrix	



Dimension	Reduction	

✺  In	stead	of	showing	more	dimensions	through	
visualizaNon,	it’s	a	good	idea	to	do	dimension	
reducNon	in	order	to	see	the	major	features	of	
the	data	set.	

✺  For	example,	principal	component	analysis	help	
find	the	major	components	of	the	data	set.	

✺  PCA	is	essenNally	about	finding	eigenvectors	of	
covariance	matrix	



Refresh	of	some	linear	algebra	



Why	linear	algebra?	

✺ We	are	now	into	part	IV	of	the	course.	The	
contents	will	be	basic	machine	learning	
techniques.	

✺  Linear	algebra	is	essenNal	for	a	lot	of	
machine	Learning	methods!	



Eigenvalues	and	eigenvectors	review	

✺  If	A	is	an	n×n	square	matrix,	an	eigenvalue	λ	and	its	
corresponding	eigenvector	ν	(of	dimension	n×1)	saNsfy	
Aν	=	λν.	

✺  To	solve	for	λ,	we	solve	the	characterisNc	equaNon		

	|A	-	λI|	=	0	

✺  Given	a	value	of	λ,	we	solve	ν	by	solving		

	(A	–	λI)	ν	=	0	

✺  Note	if	ν		is	an	eigenvector,	then	so	is	any	mulNple	kν.	



Eigenvalues	and	eigenvectors	example	

✺  Find	the	eigenvalues	and	eigenvectors		

		
A =

[

5 3

3 5

]



Eigenvalues	and	eigenvectors	example	

✺  Find	the	eigenvalues	and	eigenvectors		

		
A =

[

5 3

3 5

]



Eigenvalues	and	eigenvectors	example	

✺  Find	the	
eigenvectors	

A =

[

5 3

3 5

]

					



Eigenvalues	and	eigenvectors	example	

✺  Find	the	
eigenvectors	

A =

[

5 3

3 5

]

					



Eigenvalues	and	eigenvectors	example	(2)	

✺  Find	the	eigenvalues	and	eigenvectors	of	

A =

[

1 2

2 4

]



Eigenvalues	and	eigenvectors	example	(2)	

✺  Find	the	eigenvalues	and	eigenvectors	of	

A =

[

1 2

2 4

]



Eigenvalues	and	eigenvectors	example	

✺  Find	the	eigenvectors	of		
A =

[

1 2

2 4

]



Eigenvalues	and	eigenvectors	example	

✺  Find	the	eigenvectors	of		
A =

[

1 2

2 4

]



Diagonalization	of	a	symmetric	matrix	

✺  If	A	is	an	n×n	symmetric	square	matrix,	the	eigenvalues	
are	real.	

✺  If	the	eigenvalues	are	also	disNnct,	their	eigenvectors	
are	orthogonal	

✺  We	can	then	scale	the	eigenvectors	to	unit	length,	and	
place	them	into	an	orthogonal	matrix	U=	[u1	u2	….	un]	

✺  We	can	write	the	diagonal	matrix																									such	
that	the	diagonal	entries	of	Λ	are	λ1,	λ2…	λn	in	that	order.		

Λ = U
T
AU



Diagonalization	example	

✺  For		

A =

[

5 3

3 5

]

			



Q.	Are	these	two	vectors	orthogonal?	

V1	=	[3	6],	V2	=	[-2	1]	

A.	Yes	

B.	No	



Q.	Is	this	true?	

When	two	zero-mean	vectors	of	
data	are	orthogonal,	they	are	
uncorrelated		

A.	Yes	

B.	No	



See	you	next	time	

See 
 You! 


