Probability and Statistics 2

for Computer Science

cov(X,Y) = E[(X — E[X])(Y — E[Y])
= E[XY] — E[X]E[Y]

Covariance is coming back in
matrix!

Credit: wikipedia
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Maximum likelihood Estimation
(MLE I1)

Bayesian Inference (MAP)



Review of Bayesian inference

Visualizing high dimensional data &
Summarizing data

The covariance matrix

Refresh of some linear algebra



Beta distribution

A distribution is Beta distribution if it has the following
pdf: 0<0 <1

P(0) = K(a, B)0* (1 — 0)°! 050, B>0
— O O.W. ] pdf of Beta - distribution
[(a+ B) = e,
K(a,B) = . /\ = S
( ) F ( &)F ( 5 ) B Beta(0.5,0.5)
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Is an expressive family of

distributions .
Beta(a = 1,8 = 1)is uniform .. k / \ J




Beta distribution as the conjugate prior

for Binomial likelihood

The likelihood is Binomial (N, k)

P(D|§) = (]D 08 (1 — )N F

The Beta distribution is used as the prior

P(0) = K(a,8)0* (1 - 0)"""

So P(0|D) oc 9°TF1(1 — )P A

Then the posterior is Beta(a + k,J6 + N — k)|
P(H‘D) — K(a +k B8+ N — k)@o‘““—l(l _ 9)6+N—k—1




The update of Bayesian posterior

Since the posterior is in the same family as the
conjugate prior, the posterior can be used as a new prior
if more data is observed.

Suppose we start with a uniform prior on the
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Maximize the Bayesian posterior (MAP)

The posterior of the previous example is

PO|D) = K(a+k,B+ N — kg 11 — )Pt —+1

Differentiating and setting to O gives the MAP estimate
é o — 1 —+ k
a4+ B—-2+N




Conjugate prior for other likelihood

functions

If the likelihood is Bernoulli or geometric, the conjugate
prior is Beta

If the likelihood is Poisson or Exponential, the conjugate
prior is Gamma

If the likelihood is normal with known variance, the
conjugate prior is normal



A data set with high dimensions

Seed data set from the UCI Machine Learning

site:
areaA perimeterP compactness  lengthKernel widthKernel asymmetry lengthGroove Label
1 15.26 14.84 0.871 5.763 3.312 2.221 5.22 1
2 14.88 14.57 0.8811 5.554 3.333 1.018 4.956 1
3 14.29 14.09 0.905 5.291 3.337 2.699 4.825 1
4 13.84 13.94 0.8955 5.324 3.379 2.259 4.805 1
5 16.14 14.99 0.9034 5.658 3.562 1.355 5.175 1
6 14.38 14.21 0.8951 5.386 3.312 2.462 4.956 1

7 14.69 14.49 0.8799 5.563 3.259 3.586 5.219 1



Matrix format of a dataset in the textbook




Scatterplot matrix

Visualizing high
dimensional
data with
scatter plot
matrix

Limited to
small number
of scatter plots
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3D scatter plot

We can alSO VieW 3D Scatter Plot
the data setin 3
dimensions

But it’s still = ,;.;:'.;,.

limited interms .| i
of number of 25y /r i
dimensionswe = °

can see. N —

areaA



Summarizing multidimensional data

Location and spread parameters of a data
set

Notation

% Write {x} for a dataset consisting of N data
items

* Each item x. is a d-dimensional vector; column
% Write jth component of x. as x.); row
% Matrix for the data set {x} is d by N dimension



Mean of a multidimensional data

We compute the mean of {x} by computing the
mean of each component separately and stacking

them to a vector .
J

N

mean of jth component =

We write the mean of {x} as

sz

mean({x}) =



Covariance

The covariance of random
variables X' and Y is

cov(X,Y)=FE[(X — EFX])(Y — E|Y])]
Note that
cov(X, X) = E[(X — E[X])?] = var[X]



Correlation coefficient is normalized

covariance

The correlation coefficient is
cov(X,Y)

Ox0y

corr(X,Y) =

When X, Y takes on values with equal
probability to generate data sets {(x,))}, the
correlation coefficient will be as seen in Chapter
2.



Covariance seen from scatter plots

Normalized heart rate
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Covariance for a pair of components in a

data set

For the jth and kth components of a data set

{x}

: (29 — mean({zW 2% o oamn (L ENT
cov({x}; j, k)= = {=)) e ({=9h)




Covariance of a pair of components

Data set {X} 7x8
cov({x};3,5)

~N [e)] (2} ~ w N =

Take each row
(component) of a pair
and subtract it by the
row mean, then do
the inner product of
the two resulting
rows and divide by
the number of
columns



Covariance of a pair of components

Data set{X} 7x8

cov({x};3,5) How many pairs of rows
are there for which we can
compute the covariance?

: A) 49
s B) 64
: C) 56




Covariance matrix

Data set{x } 7x8 covmat({X }) 7x7

cov({x};3,5)
1
1
2 2
3 * * * * * * * * 3 N N N N N
4 * * * * * * * *
4 * * * * * *
5 * * * * * * * *
6 * * * * * * * * 5 * * . *
7 * * * * * * * * 6 " " " "
7




Properties of Covariance matrix

cou({}:,j) = var({z)})  comat({x})

The diagonal elements .
of the covariance matrix )
are just variances of ;
each jth components

The off diagonals are
covariance between °
different components 7




Properties of Covariance matrix

cov({x}; 7, k) = cov({x}; k, 7)

Covmat({X}) 7x7

The covariance

matrix is symmetric!

And it’s positive
semi-definite, that is
allA, 20

Covariance matrix is

* * *
* . *
* * *

* *
* . *
* * *

diagonalizable




Properties of Covariance matrix

If we define x_ as the Covmat({X }) 7x7
mean centered
matrix for dataset {x} .

XX |
N N

The covariance A s . :
matrix is a dxd matrix ;

Covmat({x}) =




Example: covariance matrix of a data set

(1)
What are the dimensions of the

5 4 3 9 1] xw covariance matrix of this data?
1 0 1

A) 2by?2
B) 5by5
C) 5by2
D) 2by5




Example: covariance matrix of a data set

Mean centering

5 4 3 2 1
AO__—1101—1]

2 1 0 -1 -2
Al__—110 1 —1]




Example: covariance matrix of a data set

Mean centering

4
1

1
1

3
0

0
0

2
1

—1
|

.

—2
—1

|

) Ay = A A7

Inner product of each pairs:

1,1]
2,2]

1,2]

=10
=4
=0



Example: covariance matrix of a data set

Mean centering

5 4 3 2 1
AO_—1101—1]
(2 1 0 —1 -2
Al_—1101—1]

(111

Divide the matrix with N — the number of items

1 1110 0
Covmat({X}) = NAQ =5 [O A

) Ay = A A7

Inner product of each pairs:

|

1,1]
2,2]
1,2]

=10
=4
=0




What do the data look like when
Covmat({x}) is diagonal?

> X1

1 1110 0 2 0
Covmat({X}):N 2= ¢ [O 4] 0 0.8]

fu—l\




Translation properties of mean and

covariance matrix

Translating the data set translates the

mean
mean({x} + ¢) = mean({x}) + ¢

Translating the data set leaves the
covariance matrix unchanged

Covmat({x} + ¢) = Covmat({z})



Translation properties of covariance

matrix
* Proof:




Linear transformation properties of mean

and covariance matrix

Linearly transforming the data set linearly
transforms the mean

mean({Ax}) = A mean({x})

Linearly transforming the data set linearly
changes the covariance matrix quadratically

Covmat({Ax}) = A Covmat({x})A*



Proof of linear transformation of

covariance matrix




Dimension Reduction

In stead of showing more dimensions through
visualization, it’s a good idea to do dimension
reduction in order to see the major features of
the data set.

For example, principal component analysis help
find the major components of the data set.

PCA is essentially about finding eigenvectors of
covariance matrix



Refresh of some linear algebra




Why linear algebra?

We are now into part IV of the course. The
contents will be basic machine learning
techniques.

Linear algebra is essential for a lot of
machine Learning methods!



Eigenvalues and eigenvectors review

If A'is an nxn square matrix, an eigenvalue A and its
corresponding eigenvector v (of dimension nx1) satisfy
Av = Av.

To solve for A, we solve the characteristic equation
|A-AL| =0

Given a value of A, we solve v by solving
(A—A)v=0

Note if v is an eigenvector, then so is any multiple kv.



Eigenvalues and eigenvectors example

* Find the eigenvalues and eigenvectors

L



Eigenvalues and eigenvectors example

Find the eigenvalues and eigenvectors
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Eigenvalues and eigenvectors example

* Find the
eigenvectors

N



Eigenvalues and eigenvectors example

Find the
eigenvectors
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Eigenvalues and eigenvectors example (2)

* Find the eigenvalues and eigenvectors of

iy



Eigenvalues and eigenvectors example (2)

Find the eigenvalues and eigenvectors of

iy




Eigenvalues and eigenvectors example

* Find the eigenvectors of
) 1 2
12 4



Eigenvalues and eigenvectors example

Find the eigenvectors of
4 — {1 2}
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Diagonalization of a symmetric matrix

If A'is an nxn symmetric square matrix, the eigenvalues
are real.

If the eigenvalues are also distinct, their eigenvectors
are orthogonal

We can then scale the eigenvectors to unit length, and
place them into an orthogonal matrix U= [u, u, .... u ]

We can write the diagonal matrix A = [JX AU such
that the diagonal entries of Aare A, A,... A in that order.



Diagonalization example
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Q. Are these two vectors orthogonal?

V, = [3 6], V, = [-2 1]
A. Yes
B. No



Q. Is this true?

When two zero-mean vectors of
data are orthogonal, they are
uncorrelated

A. Yes
B. NoO



See you next time




