Probability and Statistics 7 for Computer Science

"All models are wrong, but some models are useful"--- George Box

Credit: wikipedia

Hongye Liu, Teaching Assistant Prof, CS361, UIUC, 04.20.2021

Last time

Komastic Gradient Descent Stochastic Gradient Descent

✺ Naïve Bayesian Classifier

Objectives

- ✺ Linear regression
	- ✺ The problem
	- $*$ The least square solution
	- $*$ The training and prediction
	- \ \ The R-squared for the evaluation of the fit.

Some popular topics in Ngram

Regression models are Machine learning methods

- ✺ Regression models have been around for a while
- ✺ Dr. Kelvin Murphy's Machine Learning book has 3+ chapters on regression

Wait, have we seen the linear regression before?

It's about *Relationship* between data features

✺ Example: Is the height of people related to their weight?

 $\frac{1}{2}$ x : HIGHT, y: WEIGHT

Chicago social economic census

- $*$ The census included 77 communities in Chicago
- $*$ The census evaluated the average hardship index of the residents
- $*$ The census evaluated the following parameters for each community:
	- ✺ PERCENT_OF_**HOUSING_CROWDED**
	- ✺ PERCENT_**HOUSEHOLD_BELOW_POVERTY**
	- ✺ PERCENT_**AGED_16p_UNEMPLOYED**
	- ✺ PERCENT_**AGED_25p_WITHOUT_HIGH_SCHOOL_DIPLOMA**
	- ✺ PERCENT_**AGED_UNDER_18_OR_OVER_64**
	- PER CAPITA **INCOME**

Given a new community and its parameters, *can* you predict its average hardship index with all these parameters?

The regression problem

Some terminology

- \mathscr{H} Suppose the dataset $\{(x, y)\}$ consists of N labeled $items(\mathbf{x}_i, y_i)$
- $*$ If we represent the dataset as a table
	- $*$ The d columns representing $\{x\}$ are called **explanatory variables** $\mathbf{x}^{(j)}$
	- $*$ The numerical column y is called the **dependent variable**

Variables of the Chicago census

[1] "PERCENT_OF_HOUSING_CROWDED" [2]"PERCENT_HOUSEHOLDS_BELOW_POVERTY" [3] "PERCENT AGED 16p UNEMPLOYED" [4]"PERCENT_AGED_25p_WITHOUT_HIGH_SCHOOL_DI PLOMA"

[5] "PERCENT_AGED_UNDER_18_OR_OVER_64" [6]"PER_CAPITA_INCOME" [7] "HardshipIndex"

Which is the dependent variable in the census example?

- A. "PERCENT_OF_HOUSING_CROWDED"
- B. "PERCENT_AGED_25p_WITHOUT_HIGH_SCHOOL_DIPLOMA"
- C. "HardshipIndex"
- D. "PERCENT AGED UNDER 18 OR OVER 64"

Linear model

 $\mathscr W$ We begin by modeling y as a linear function of $\mathbf x^{(j)}$ plus randomness

$$
y = \mathbf{x}^{(1)}\beta_1 + \mathbf{x}^{(2)}\beta_2 + \dots + \mathbf{x}^{(d)}\beta_d + \xi
$$

Where ξ is a zero-mean random variable that represents model error

 $*$ In vector notation:

$$
y = \mathbf{x}^T \boldsymbol{\beta} + \boldsymbol{\xi}
$$

Where β is the d-dimensional vector of coefficients that we train

Each data item gives an equation

$$
\text{# The model: } y = \mathbf{x}^T \boldsymbol{\beta} + \boldsymbol{\xi} = \mathbf{x}^{(1)} \beta_1 + \mathbf{x}^{(2)} \beta_2 + \boldsymbol{\xi}
$$

Which together form a matrix equation

where model $y = x^T \beta + \xi = x^{(1)} \beta_1 + x^{(2)} \beta_2 + \xi$

$$
\begin{bmatrix} 0 \\ 2 \\ 5 \end{bmatrix} = \begin{bmatrix} 1 & 3 \\ 2 & 3 \\ 3 & 6 \end{bmatrix} \begin{bmatrix} \beta_1 \\ \beta_2 \end{bmatrix} + \begin{bmatrix} \xi_1 \\ \xi_2 \\ \xi_3 \end{bmatrix}
$$

Which together form a matrix equation

WE The model $y = \mathbf{x}^T \boldsymbol{\beta} + \boldsymbol{\xi} = \mathbf{x}^{(1)} \beta_1 + \mathbf{x}^{(2)} \beta_2 + \boldsymbol{\xi}$

$$
\begin{bmatrix} 0 \\ 2 \\ 5 \end{bmatrix} = \begin{bmatrix} 1 & 3 \\ 2 & 3 \\ 3 & 6 \end{bmatrix} \begin{bmatrix} \beta_1 \\ \beta_2 \end{bmatrix} + \begin{bmatrix} \xi_1 \\ \xi_2 \\ \xi_3 \end{bmatrix}
$$

$$
\mathbf{y} = X \cdot \boldsymbol{\beta} + \mathbf{e}
$$

Q. What's the dimension of matrix X?

A. N \times d $B. d \times N$ $C. N \times N$ $D. d \times d$

Training the model is to choose β

 $\mathscr K$ Given a training dataset $\{(\mathbf x, y)\}$, we want to fit a model $y = \mathbf{x}^T\boldsymbol{\beta} + \boldsymbol{\xi}$

$$
\text{ define } \mathbf{y} = \begin{bmatrix} y_1 \\ \vdots \\ y_N \end{bmatrix} \text{ and } X = \begin{bmatrix} \mathbf{x}_1^T \\ \vdots \\ \mathbf{x}_N^T \end{bmatrix} \text{ and } \mathbf{e} = \begin{bmatrix} \xi_1 \\ \vdots \\ \xi_N \end{bmatrix}
$$

 $\frac{1}{2}$ To train the model, we need to choose β that makes e small in the matrix equation $y = X \cdot \beta + e$

Training using least squares

 $\frac{1}{2}$ In the least squares method, we aim to minimize $\left\| \mathbf{e} \right\|^2$

$$
\|\mathbf{e}\|^2 = \|\mathbf{y} - X\boldsymbol{\beta}\|^2 = (\mathbf{y} - X\boldsymbol{\beta})^T(\mathbf{y} - X\boldsymbol{\beta})
$$

 $\mathscr W$ Differentiating with respect to β and setting to zero

$$
X^T X \boldsymbol{\beta} - X^T \mathbf{y} = 0
$$

 $*$ If $X^T X$ is invertible, the least squares estimate of the coefficient is:

$$
\widehat{\boldsymbol{\beta}} = (X^T X)^{-1} X^T \mathbf{y}
$$

Derivation of least square solution

Least square solution in the project

Convex set and convex function

If a set is convex, any line connecting two points in the set is completely included in the set

Figure 7.4 (a) Illustration of a convex set. (b) Illustration of a nonconvex set.

- A convex function: the area above the curve is convex $f(\lambda x + (1 - \lambda)y) < \lambda f(x) + (1 - \lambda)f(y)$
- $*$ The least square function is **convex**

Credit: Dr. Kelvin Murphy

What's the dimension of matrix $X^{T}X$?

A. N \times d $B. d \times N$ $C. N \times N$ $D. d \times d$

Is this statement true?

If the matrix **X^TX** does NOT have zero valued eigenvalues, it is invertible.

> A. TRUE B. FALSE

Training using least squares example

$$
\text{Model: } y = \mathbf{x}^T \boldsymbol{\beta} + \boldsymbol{\xi} = \mathbf{x}^{(1)} \beta_1 + \mathbf{x}^{(2)} \beta_2 + \boldsymbol{\xi}
$$

$$
\widehat{\beta}_1 = 2
$$

$$
\widehat{\beta}_2 = -\frac{1}{3}
$$

Prediction

We train the model coefficients $\hat{\boldsymbol{\beta}}$ **, we can predict** y from \mathbf{x}_0 $\widehat{\boldsymbol{\beta}}$, we can predict y_0^p

$$
y_0^p = \mathbf{x}_0^T \boldsymbol{\widehat{\beta}}
$$

 $\overline{1}$

 $\frac{1}{2}$ In the model $y = \mathbf{x}^{(1)}\beta_1 + \mathbf{x}^{(2)}\beta_2 + \xi$ with $\widehat{\boldsymbol{\beta}}$ β = $\lceil 2 \rceil$ $-\frac{1}{2}$ —
3

\n- The prediction for
$$
\mathbf{x}_0 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}
$$
 is y_0^p
\n- The prediction for $\mathbf{x}_0 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ is y_0^p
\n

A linear model with constant offset

WE The problem with the model $y = \mathbf{x}^{(1)}\beta_1 + \mathbf{x}^{(2)}\beta_2 + \xi$ is:

\mathcal{L} Let's add a constant offset β_0 to the model

$$
y = \beta_0 + \mathbf{x}^{(1)}\beta_1 + \mathbf{x}^{(2)}\beta_2 + \xi
$$

Training and prediction with constant offset

 \mathbb{R} The model $y = \beta_0 + \mathbf{x}^{(1)}\beta_1 + \mathbf{x}^{(2)}\beta_2 + \mathbf{\xi} = \mathbf{x}^T\boldsymbol{\beta} + \mathbf{\xi}$

✺ Training data:

 $*$ For $\mathbf{x}_0 =$

$$
\begin{bmatrix} 1 & x^{(1)} & x^{(2)} \end{bmatrix}
$$

 $\sqrt{0}$

0

 $\big]$

$$
\widehat{\boldsymbol{\beta}} = (X^T X)^{-1} X^T \mathbf{y} = \begin{bmatrix} -3\\2\\ \frac{1}{3} \end{bmatrix}
$$

$$
y_0^p = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} -3 \\ 2 \\ \frac{1}{3} \end{bmatrix} = -3
$$

Variance of the linear regression model

 $*$ The least squares estimate satisfies this property $var(\{y_i\}) = var(\{\mathbf{x}_i^T\boldsymbol{\widehat{\beta}}$ \widehat{A} $\}$) + $var(\{\xi_i\})$

 $*$ The random error is uncorrelated to the least square solution of linear combination of explanatory variables.

Variance of the linear regression model: proof

 $*$ The least squares estimate satisfies this property

$$
var(\lbrace y_i \rbrace) = var(\lbrace \mathbf{x}_i^T \widehat{\boldsymbol{\beta}} \rbrace) + var(\lbrace \xi_i \rbrace)
$$

Proof:

Evaluating models using R-squared

 $*$ The least squares estimate satisfies this property

$$
var(\lbrace y_i \rbrace) = var(\lbrace \mathbf{x}_i^T \hat{\boldsymbol{\beta}} \rbrace) + var(\lbrace \xi_i \rbrace)
$$

 $*$ This property gives us an evaluation metric called Rsquared

$$
R^2 = \frac{var(\{\mathbf{x}_i^T \widehat{\boldsymbol{\beta}}\})}{var(\{y_i\})}
$$

[₩] We have $0 \leq R^2 \leq 1$ with a larger value meaning a better fit.

Q: What is R-squared if there is only one explanatory variable in the model?

Q: What is R-squared if there is only one explanatory variable in the model?

R-squared would be **the correlation coefficient squared** (textbook pgs 43-44)

R-squared examples

Comparing our example models

$$
y = \mathbf{x}^{(1)}\beta_1 + \mathbf{x}^{(2)}\beta_2 + \xi
$$

$$
y = \beta_0 + \mathbf{x}^{(1)}\beta_1 + \mathbf{x}^{(2)}\beta_2 + \xi
$$

 Γ $\overline{}$ −3 $\overline{2}$ 1 <u>ร</u> $\mathsf I$ ⎦

Linear regression model for the Chicago census data

 $Call:$

 $lm(formula = HardshipIndex ~ . . , data = dat)$

Residuals:

10 Median Min 30 Max $-15.7157 - 1.9230$ 0.1301 1.9810 8.6719

Coefficients:

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 3.9 on 70 degrees of freedom Multiple R-squared: 0.983, Adjusted R-squared: 0.9815 F-statistic: 673.9 on 6 and 70 DF, p -value: < 2.2e-16

Residual is normally distributed?

The Q-Q plot of the residuals is roughly normal

Prediction for another community

Predicted hardship index: **41.46038**

Note: maximum of hardship index in the training data is 98, minimum is 1

The clusters of the Chicago communities: clusters and hardship

Clusters of community

tSNE1

The clusters of the Chicago communities: per capital income and hardship

−15

 $-10-$

●

●

●

●

●

●

●

●

 \bullet \bullet \bullet

● ● ●

●

−40 −20 0 20 tSNE1

●

●

●

●

● ●

● ●

●

25 50 75 Hardship index

●

●

●

●

●

●

●

PER CAPITAL INCOME

The clusters of the Chicago communities: without diploma and hardship

PERCENT_AGED_25p_WITHOUT _HIGH_SCHOOL_DIPLOMA

Assignments

✺ Read Chapter 13 of the textbook

✺ Week 13 module

[☀] Next time: More on linear regression

Additional References

- ✺ Robert V. Hogg, Elliot A. Tanis and Dale L. Zimmerman. "Probability and Statistical Inference"
- ✺ Kelvin Murphy, "Machine learning, A Probabilistic perspective"

See you next time

See You!

