Probability and Statistics for Computer Science

"All models are wrong, but some models are useful"--- George Box

Credit: wikipedia

Hongye Liu, Teaching Assistant Prof, CS361, UIUC, 04.20.2021

Last time

Stochastic Gradient Descent

***** Naïve Bayesian Classifier

Objectives

- # Linear regression
 - * The problem
 - * The least square solution
 - * The training and prediction
 - * The R-squared for the evaluation of the fit.

Some popular topics in Ngram

Regression models are Machine learning methods

- Regression models have been around for a while
- Dr. Kelvin Murphy's Machine Learning book has 3+ chapters on regression

Wait, have we seen the linear regression before?

It's about *Relationship* between data features

IDNO	BODYFAT	DENSITY	AGE	WEIGHT	HEIGHT
1	12.6	1.0708	23	154.25	67.75
2	6.9	1.0853	22	173.25	72.25
3	24.6	1.0414	22	154.00	66.25
4	10.9	1.0751	26	184.75	72.25
5	27.8	1.0340	24	184.25	71.25
6	20.6	1.0502	24	210.25	74.75
7	19.0	1.0549	26	181.00	69.75
8	12.8	1.0704	25	176.00	72.50
9	5.1	1.0900	25	191.00	74.00
10	12.0	1.0722	23	198.25	73.50

x : HIGHT, y: WEIGHT ▓

Chicago social economic census

- * The census included 77 communities in Chicago
- * The census evaluated the average hardship index of the residents
- * The census evaluated the following parameters for each community:
 - # PERCENT_OF_HOUSING_CROWDED
 - # PERCENT_HOUSEHOLD_BELOW_POVERTY
 - # PERCENT_AGED_16p_UNEMPLOYED
 - # PERCENT_AGED_25p_WITHOUT_HIGH_SCHOOL_DIPLOMA
 - # PERCENT_AGED_UNDER_18_OR_OVER_64
 - # PER_CAPITA_INCOME

Given a new community and its parameters, can you predict its average hardship index with all these parameters?

The regression problem

Some terminology

- * Suppose the dataset $\{(\mathbf{x}, y)\}$ consists of N labeled items (\mathbf{x}_i, y_i)
- If we represent the dataset as a table
 - * The d columns representing $\{\mathbf{x}\}$ are called **explanatory variables** $\mathbf{x}^{(j)}$
 - * The numerical column y is called the dependent variable

$\mathbf{x}^{(1)}$	$\mathbf{x}^{(2)}$	y
1	3	0
2	3	2
3	6	5

Variables of the Chicago census

[1] "PERCENT_OF_HOUSING_CROWDED"
[2] "PERCENT_HOUSEHOLDS_BELOW_POVERTY"
[3] "PERCENT_AGED_16p_UNEMPLOYED"
[4] "PERCENT_AGED_25p_WITHOUT_HIGH_SCHOOL_DI
PLOMA"
[5] "PERCENT_AGED_UNDER_18_OR_OVER_64"
[6] "PER_CAPITA_INCOME"
[7] "HardshipIndex"

Which is the dependent variable in the census example?

- A. "PERCENT_OF_HOUSING_CROWDED"
- B. "PERCENT_AGED_25p_WITHOUT_HIGH_SCHOOL_DIPLOMA"
- C. "HardshipIndex"
- D. "PERCENT_AGED_UNDER_18_OR_OVER_64"

Linear model

We begin by modeling y as a linear function of $\mathbf{x}^{(j)}$ plus randomness

$$y = \mathbf{x}^{(1)}\beta_1 + \mathbf{x}^{(2)}\beta_2 + ... + \mathbf{x}^{(d)}\beta_d + \xi$$

Where ξ is a zero-mean random variable that

represents model error

In vector notation:

▓

$$y = \mathbf{x}^T \boldsymbol{\beta} + \boldsymbol{\xi}$$

Where β is the d-dimensional vector of coefficients that we train

$\mathbf{x}^{(1)}$	$\mathbf{x}^{(2)}$	y
1	3	0
2	3	2
3	6	5

Each data item gives an equation

* The model:
$$y = \mathbf{x}^T \boldsymbol{\beta} + \xi = \mathbf{x}^{(1)} \beta_1 + \mathbf{x}^{(2)} \beta_2 + \xi$$

$\mathbf{x}^{(1)}$	$\mathbf{x}^{(2)}$	y
1	3	0
2	3	2
3	6	5

Which together form a matrix equation

* The model $y = \mathbf{x}^T \boldsymbol{\beta} + \xi = \mathbf{x}^{(1)} \beta_1 + \mathbf{x}^{(2)} \beta_2 + \xi$

$\mathbf{x}^{(1)}$	$\mathbf{x}^{(2)}$	y
1	3	0
2	3	2
3	6	5

$$\begin{bmatrix} 0\\2\\5 \end{bmatrix} = \begin{bmatrix} 1 & 3\\2 & 3\\3 & 6 \end{bmatrix} \begin{bmatrix} \beta_1\\\beta_2 \end{bmatrix} + \begin{bmatrix} \xi_1\\\xi_2\\\xi_3 \end{bmatrix}$$

Which together form a matrix equation

* The model $y = \mathbf{x}^T \boldsymbol{\beta} + \xi = \mathbf{x}^{(1)} \beta_1 + \mathbf{x}^{(2)} \beta_2 + \xi$

$\mathbf{x}^{(1)}$	$\mathbf{x}^{(2)}$	y
1	3	0
2	3	2
3	6	5

$$\begin{bmatrix} 0\\2\\5 \end{bmatrix} = \begin{bmatrix} 1 & 3\\2 & 3\\3 & 6 \end{bmatrix} \begin{bmatrix} \beta_1\\\beta_2 \end{bmatrix} + \begin{bmatrix} \xi_1\\\xi_2\\\xi_3 \end{bmatrix}$$
$$\mathbf{y} = X \cdot \boldsymbol{\beta} + \mathbf{e}$$

Q. What's the dimension of matrix X?

A. N \times d B. d \times N C. N \times N D. d \times d

Training the model is to choose β

* Given a training dataset $\{(\mathbf{x}, y)\}$, we want to fit a model $y = \mathbf{x}^T \boldsymbol{\beta} + \xi$

** Define
$$\mathbf{y} = \begin{bmatrix} y_1 \\ \vdots \\ y_N \end{bmatrix}$$
 and $X = \begin{bmatrix} \mathbf{x}_1^T \\ \vdots \\ \mathbf{x}_N^T \end{bmatrix}$ and $\mathbf{e} = \begin{bmatrix} \xi_1 \\ \vdots \\ \xi_N \end{bmatrix}$

* To train the model, we need to choose β that makes e small in the matrix equation $y = X \cdot \beta + e$

Training using least squares

$$\|\mathbf{e}\|^2 = \|\mathbf{y} - X\boldsymbol{\beta}\|^2 = (\mathbf{y} - X\boldsymbol{\beta})^T (\mathbf{y} - X\boldsymbol{\beta})$$

- * Differentiating with respect to β and setting to zero $X^T X \beta - X^T \mathbf{v} = 0$
- ** If $X^T X$ is invertible, the least squares estimate of the coefficient is:

$$\widehat{\boldsymbol{\beta}} = (X^T X)^{-1} X^T \mathbf{y}$$

Derivation of least square solution

Least square solution in the project

Convex set and convex function

If a set is convex,
 any line connecting
 two points in the
 set is completely
 included in the set

Figure 7.4 (a) Illustration of a convex set. (b) Illustration of a nonconvex set.

- * A convex function: the area above the curve is convex $f(\lambda x + (1 - \lambda)y) < \lambda f(x) + (1 - \lambda)f(y)$
- The least square function is convex

Credit: Dr. Kelvin Murphy

What's the dimension of matrix X^TX?

A. N \times d B. d \times N C. N \times N D. d \times d

Is this statement true?

If the matrix **X^TX** does NOT have zero valued eigenvalues, it is invertible.

A. TRUE B. FALSE

Training using least squares example

* Model:
$$y = \mathbf{x}^T \boldsymbol{\beta} + \xi = \mathbf{x}^{(1)} \beta_1 + \mathbf{x}^{(2)} \beta_2 + \xi$$

$\mathbf{x}^{(1)}$	$\mathbf{x}^{(2)}$	y
1	3	0
2	3	2
3	6	5

$$\widehat{\boldsymbol{\beta}}_1 = 2$$
$$\widehat{\boldsymbol{\beta}}_2 = -\frac{1}{2}$$

Prediction

* If we train the model coefficients $\widehat{oldsymbol{eta}}$, we can predict y_0^p from \mathbf{x}_0

$$y_0^p = \mathbf{x}_0^T \widehat{\boldsymbol{\beta}}$$

* In the model $y = \mathbf{x}^{(1)}\beta_1 + \mathbf{x}^{(2)}\beta_2 + \xi$ with $\hat{\boldsymbol{\beta}} = \begin{vmatrix} 2 \\ -\frac{1}{2} \end{vmatrix}$

* The prediction for
$$\mathbf{x}_0 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$
 is y_0^p
The prediction for $\mathbf{x}_0 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ is y_0^p

A linear model with constant offset

* The problem with the model $y = \mathbf{x}^{(1)}\beta_1 + \mathbf{x}^{(2)}\beta_2 + \xi$ is:

* Let's add a constant offset β_0 to the model

$$y = \beta_0 + \mathbf{x}^{(1)}\beta_1 + \mathbf{x}^{(2)}\beta_2 + \xi$$

Training and prediction with constant offset

* The model $y = \beta_0 + \mathbf{x}^{(1)}\beta_1 + \mathbf{x}^{(2)}\beta_2 + \xi = \mathbf{x}^T \boldsymbol{\beta} + \xi$

* Training data:

$$\begin{bmatrix} 1 & x^{(1)} & x^{(2)} \end{bmatrix}$$

1	$\mathbf{x}^{(1)}$	$\mathbf{x}^{(2)}$	y
1	1	3	0
1	2	3	2
1	3	6	5

For
$$\mathbf{x}_0 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

⊯

$$\widehat{\boldsymbol{\beta}} = (X^T X)^{-1} X^T \mathbf{y} = \begin{bmatrix} -3\\2\\\frac{1}{3} \end{bmatrix}$$

$$y_0^p = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} -3 \\ 2 \\ \frac{1}{3} \end{bmatrix} = -3$$

Variance of the linear regression model

* The least squares estimate satisfies this property $var(\{y_i\}) = var(\{\mathbf{x}_i^T \hat{\boldsymbol{\beta}}\}) + var(\{\xi_i\})$

* The random error is uncorrelated to the least square solution of linear combination of explanatory variables.

Variance of the linear regression model: proof

* The least squares estimate satisfies this property

$$var(\{y_i\}) = var(\{\mathbf{x}_i^T \widehat{\boldsymbol{\beta}}\}) + var(\{\xi_i\})$$

Proof:

Evaluating models using R-squared

* The least squares estimate satisfies this property

$$var(\{y_i\}) = var(\{\mathbf{x}_i^T \widehat{\boldsymbol{\beta}}\}) + var(\{\xi_i\})$$

* This property gives us an evaluation metric called Rsquared

$$R^{2} = \frac{var(\{\mathbf{x}_{i}^{T}\widehat{\boldsymbol{\beta}}\})}{var(\{y_{i}\})}$$

We have $0 \le R^2 \le 1$ with a larger value meaning a better fit.

Q: What is R-squared if there is only one explanatory variable in the model?

Q: What is R-squared if there is only one explanatory variable in the model?

R-squared would be **the correlation coefficient squared** (textbook pgs 43-44)

R-squared examples

Comparing our example models

$$y = \mathbf{x}^{(1)}\beta_1 + \mathbf{x}^{(2)}\beta_2 + \xi$$
 $y = \beta_0 + \mathbf{x}^{(1)}\beta_1 + \mathbf{x}^{(2)}\beta_2 + \xi$

			$\widehat{oldsymbol{eta}} =$	$\begin{bmatrix} 2\\ -\frac{1}{3} \end{bmatrix}$	
$\mathbf{x}^{(1)}$	$\mathbf{x}^{(2)}$	y	$\mathbf{x}^T \widehat{\boldsymbol{eta}}$	LJ	
1	3	0	1		
2	3	2	3		
3	6	5	4		

1	$\mathbf{x}^{(1)}$	$\mathbf{x}^{(2)}$	y	$\mathbf{x}^T \widehat{\boldsymbol{eta}}$
1	1	3	0	0
1	2	3	2	2
1	3	6	5	5

 $\widehat{\boldsymbol{\beta}} = \begin{bmatrix} -3\\2\\\frac{1}{3} \end{bmatrix}$

Linear regression model for the Chicago census data

Call: lm(formula = HardshipIndex ~ ., data = dat)

Residuals:

Min	1Q	Median	3Q	Max
-15.7157	-1.9230	0.1301	1.9810	8.6719

Coefficients:

	Estimate	Std. Error	t value	Pr(>ltl)	
(Intercept)	105.1394	37.3622	2.814	0.006346	**
PERCENT_OF_HOUSING_CROWDED	0.7189	0.2753	2.612	0.011014	*
PERCENT_HOUSEHOLDS_BELOW_POVERTY	0.6665	0.0781	8.534	1.90e-12	***
PERCENT_AGED_16p_UNEMPLOYED	0.8023	0.1350	5.941	9.93e-08	***
PERCENT_AGED_25p_WITHOUT_HIGH_SCHOOL_DIPLOMA	0.7751	0.1063	7.293	3.64e-10	***
PERCENT_AGED_UNDER_18_OR_OVER_64	0.4807	0.1202	3.998	0.000156	***
PER_CAPITA_INCOME	-11.8819	3.1888	-3.726	0.000391	***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 3.9 on 70 degrees of freedom Multiple R-squared: 0.983, Adjusted R-squared: 0.9815 F-statistic: 673.9 on 6 and 70 DF, p-value: < 2.2e-16

Residual is normally distributed?

The Q-Q plot of the residuals is roughly normal

Prediction for another community

[1] "PERCENT_OF_HOUSING_CROWDED" [2]"PERCENT_HOUSEHOLDS_BELOW_POVERTY "	4.7
	19.7
[3] "PERCENT_AGED_16p_UNEMPLOYED" [4]"PERCENT AGED 25p WITHOUT HIGH SC	12.9
HOOL_DIPLOMA"	19.5
[5] "PERCENT_AGED_UNDER_18_OR_OVER_64" [6]"PER_CAPITA_INCOME"	33.5
	Log(28202)

Predicted hardship index: 41.46038

Note: maximum of hardship index in the training data is 98, minimum is 1

The clusters of the Chicago communities: clusters and hardship

Clusters of community

-15

-40

-20

0 tSNE1 Hardship index

50

25

20

The clusters of the Chicago communities: per capital income and hardship

11.0

10.5 10.0 9.5

PER CAPITAL INCOME

Hardship index of communities

The clusters of the Chicago communities: without diploma and hardship

PERCENT_AGED_25p_WITHOUT _HIGH_SCHOOL_DIPLOMA

Assignments

Read Chapter 13 of the textbook

Week 13 module

* Next time: More on linear regression

Additional References

- Robert V. Hogg, Elliot A. Tanis and Dale L. Zimmerman. "Probability and Statistical Inference"
- * Kelvin Murphy, "Machine learning, A Probabilistic perspective"

See you next time

See You!

