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Last	time	

�  Linear	regression	
�  The	problem	
�  The	least	square	soluPon	
�  The	training	and	predicPon	
�  The	R-squared	for	the	evaluaPon	of	
the	fit.	
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Objectives	

�  Linear	regression	(cont.)	
� Modeling	non-linear	relaPonship	with	
linear	regression	

� Outliers	and	over-fiXng	issues	
�  Regularized	linear	regression/Ridge	
regression	

� Nearest	neighbor	regression	
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What	if	the	relationship	between	variables	
is	non-linear?	
�  A	linear	model	will	

not	produce	a	good	
fit	if	the	dependent	
variable	is	not	linear	
combinaPon	of	the	
explanatory	variables			
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Transforming	variables	could	allow	linear	
model	to	model	non-linear	relationship	
�  In	the	word-	frequency	

example,	log-transforming	
both	variables	would	
allow	a	linear	model	to	fit	
the	data	well.		
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More	example:	Data	of	fish	in	a	Finland	
lake	

Yellow	Perch	

�  Perch	(a	kind	of	fish)	in	a	
lake	in	Finland,	56	data	
observaPons		

�  Variables	include:	Weight,	
Length,	Height,	Width	

�  In	order	to	illustrate	the	
point,	let’s	model	Weight	
as	the	dependent	variable	
and	the	Length	as	the	
explanatory	variable.	

	

		



Is	the	linear	model	fine	for	this	data?	

A. YES	
B. NO	☐



Is	the	linear	model	fine	for	this	data?	
�  R-squared	is	0.87	may	

suggest	the	model	is	
OK	

�  But	the	trend	of	the	
data	suggests	non-
linear	relaPonship	

�  IntuiPon	tells	us	length	
is	not	linear	to	weight	
given	fish	is	3-
dimensional	

�  We	can	do	beger!	
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Transforming	the	explanatory	variables	
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Q.	What	are	the	matrix	X	and		y?	
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Transforming	the	dependent	variables	



What	is	the	model	now?	
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What	are	the	matrix	X	and		y?	

Length	1	 3
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General form of

transformation
in linear Regression
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Effect	of	outliers	on	linear	regression	

�  Linear	regression	is	sensiPve	to	outliers	



Effect	of	outliers:	body	fat	example	

�  Linear	regression	is	sensiPve	to	outliers	



Over-fitting	issue:	example	of	using	too	
many	power	transformations	
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Avoiding	over-fitting	
�  Method	1:	valida2on	
�  Use	a	validaPon	set	to	choose	the	transformed	explanatory	

variables	
�  The	difficulty	is	the	number	of	combinaPon	is	exponenPal	in	

the	number	of	variables.	

�  Method	2:	regulariza2on	
�  Impose	a	penalty	on	complexity	of	the	model	during	the	

training	
�  Encourage	smaller	model	coefficients	

�  We	can	use	validaPon	to	select	regularizaPon	parameter	λ	
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Regularized	linear	regression	
�  In	ordinary	least	squares,	the	cost	funcPon	is									:	

�  In	regularized	least	squares,	we	add	a	penalty	with	a	
weight	parameter	λ	(λ>0):	
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Training	using	regularized	least	squares	

�  DifferenPaPng	the	cost	funcPon	and	seXng	it	to	zero,	
one	gets:	

�  																								is	always	inverPble,	so	the	regularized	
least	squares	esPmaPon	of	the	coefficients	is:	
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Why	is	the	regularized	version	always	
invertible?	

(XT
X + λI) is	inverPble	(λ>0,	λ	is	not	the	eigenvalue).	Prove:		
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Why	is	the	regularized	version	always	
invertible?	

(XT
X + λI) is	inverPble	(λ>0,	λ	is	not	the	eigenvalue).	Prove:		

Energy	based	definiPon	of	semi-posi2ve	
definite:	
Given	a	matrix	A	and	any	nonzero	vector	
f	,	we	have	
	
	
and	posi2ve	definite	means	
	
	 fTAf > 0

fTAf ≥ 0

If	A	is	posiPve	definite,	then	
all	eigenvalues	of	A	are	
posiPve,	then	it’s	inverPble	

for any nonzero vector f
consider fT (XTX + λI)f
suppose A = XTX + λI
fTAf = fTXTXf + λfTf
= fTXTXf + λ||f ||2

given XTX is semi positive definite
fTXTXf ≥ 0
given λ > 0
we know λ||f ||2 > 0
⇒ fTAf > 0



Over-fitting	issue:	example	from	using	too	
many	power	transformations	



Choosing	lambda	using	cross-validation	
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Mean Square Error in this model
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Q.	Can	we	use	the	R-squared	to	evaluate	
the	regularized	model	correctly?	

A. 	YES	
B. 	NO	
C. 	YES	and	NO	
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Q.	Can	we	use	the	R-squared	to	evaluate	
the	regularized	model	correctly?	

A. 	YES	
B. 	NO	
C. 	YES	and	NO	
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Nearest	neighbor	regression	

�  In	addiPon	to	linear	regression	and	generalize	
linear	regression	models,	there	are	methods	
such	as	Nearest	neighbor	regression	that	do	not	
need	much	training	for	the	model	parameters.	

�  When	there	is	plenty	of	data,	nearest	neighbors	
regression	can	be	used	effecPvely	
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K	nearest	neighbor	regression	with	k=1	

The	idea	is	very	
similar	to	k-nearest	
neighbor	classifier,	
but	the	regression	
model	predicts	
numbers	
	
K=1	gives	piecewise	
constant	predicPons	
:



K	nearest	neighbor	regression	with	
weights	
The	goal	is	to	predict						from						using	a	training	set			
�  Let																		be	the	set	of	k	items	in	the	training	

data	set	that	are	closest	to						.	
�  PredicPon	is	the	following:	
	
	
Where							are	weights	that	drop	off	as							gets	further	
away	from						.		
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Choose	different	weights	functions	for	
KNN	regression	
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�  Inverse	distance	

�  ExponenPal	funcPon	
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Evaluation	of	KNN	models	

�  Which	methods	do	
you	use	to	choose	K	
and	weight	funcPons?	

	A.	Cross	validaPon	

	B.	EvaluaPon	of	MSE	

	C.	Both	A	and	B	☐



The	Pros	and	Cons	of	K	nearest	neighbor	
regression	
�  Pros:	
�  The	method	is	very	intuiPve	and	simple	
�  You	can	predict	more	than	numbers	as	long	

as	you	can	define	a	similarity	measure.	

�  Cons	
�  The	method	doesn’t	work	well	for	very	high	

dimensional	data	
�  The	model	depends	on	the	scale	of	the	data	
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Assignments	

� Finish	Chapter	13	of	the	textbook	

� Week	13	module	including	the	quiz	

� Next	Pme:	Curse	of	Dimension,	
clustering	

	



Additional	References	

✺  Robert	V.	Hogg,	Elliot	A.	Tanis	and	Dale	L.	
Zimmerman.	“Probability	and	StaPsPcal	
Inference”		

�  Kelvin	Murphy,	“Machine	learning,	A	
ProbabilisPc	perspecPve”	



See	you	next	time	

See 
You! 


