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“All models are wrong, but some
models are useful”--- George Box
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Linear regression

% The problem

% The least square solution
% The training and prediction

% The R-squared for the evaluation of
the fit.



Linear regression (cont.)

* Modeling non-linear relationship with
linear regression

% Outliers and over-fitting issues

% Regularized linear regression/Ridge
regression

Nearest neighbor regression



What if the relationship between variables

Is non-linear?

A linear model will Frequency of word usage in Shakespeare
not produce a good ’
fit if the dependent
variable is not linear
combination of the
explanatory variables
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Transforming variables could allow linear

model to model non-linear relationship

*

In the word- frequency
example, log-transforming
both variables would
allow a linear model to fit
the data well.

Frequency of word usage in Shakespeare, log-log

Log number of appearances

Log rank



More example: Data of fish in a Finland

lake

% Perch (a kind of fish) in a
lake in Finland, 56 data
observations

% Variables include: Weight,
Length, Height, Width

% In order toillustrate the
point, let’s model Weight
as the dependent variable [, -
and the Length as the '
explanatory variable.

Yellow Perch



Is the linear model fine for this data?

Weight vs length in perch from Lake Laengelmavesi
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Is the linear model fine for this data?

R'Squared is 0.87 may Weight vs length in perch from Lake Laengelmavesi
suggest the model is —
OK 8

But the trend of the 3| Reooos
data suggests non- 7
linear relationship i? 8 -

ko)

Intuition tells us length 2 S -
is not linear to weight
given fish is 3- S -
dimensional
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Transforming the explanatory variables

Weight vs length”3 in

perch from Lake Laengelmavesi
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Q. What are the matrix X and y?

1 |Length?® | Weight




Transforming the dependent variables

[ Weight~(1/3) (gri(1/3))

Weight*(1/3) vs length in Weight”*(1/3) predicted from length in
perch from Lake Laengelmavesi perch from Lake Laengelmavesi
o _
~- 8 |
<
© - S
@
=]
£ 8-
© k=)
(]
=3
S -
<+ -
8
(oY}
N - o
T T T T T T T T
10 20 30 40 10 20 30 40

Length (cm) Length (cm)



What is the model now?



What are the matrix X and y?

1 | Length \3/ w
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Effect of outliers on linear regression

¢ Linear regression is sensitive to outliers
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Effect of outliers: body fat example

Weight

Linear regression is sensitive to outliers

Weight against height, all points Weight against height, 4 outliers removed
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Over-fitting issue: example of using too

many power transformations

Weight vs length in perch from Lake Weight vs length in perch from Lake
Laengelmavesi, three models. Laengelmavesi, all powers up to 10.
....... linear oo'.'
© | ---- quadratic y
8 - — cubic o oo =
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Avoiding over-fitting

Method 1: validation

% Use a validation set to choose the transformed explanatory
variables

% The difficulty is the number of combination is exponential in
the number of variables.

Method 2: regularization

% Impose a penalty on complexity of the model during the
training

% Encourage smaller model coefficients

We can use validation to select regularization parameter A



Reqgularized linear regression

. o 2
In ordinary least squares, the cost function is ||e||”

lel® = lly — XB|I° = (y — XB)"(y — XB)

In regularized least squares, we add a penalty with a
weight parameter A (A>0):

: T
[y = XBII° + A ”i” =y - XB)'(y - XB) + A#




Training using reqularized least squares

Differentiating the cost function and setting it to zero,
one gets:

(X'X +A)B - X"y =0

(X1 X 4+ M) is always invertible, so the regularized
least squares estimation of the coefficients is:

B=(X"X+A)"'X"y



Why is the reqularized version always

invertible?

Prove: (XTX -+ )\]) is invertible (A>0, A is not the eigenvalue).

frAf >0

frAf >0



Over-fitting issue: example from using too

many power transformations

Weight vs length in perch from Lake Weight vs length in perch from Lake
Laengelmavesi, three models. Laengelmavesi, all powers up to 10.
....... linear oo'.'
© | ---- quadratic y
8 - — cubic o oo =
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Mean-Squared Error

Choosing lambda using cross-validation
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Q. Can we use the R-squared to evaluate

the reqularized model correctly?

A. YES
B.NO
C. YES and NO



Nearest neighbor regression

In addition to linear regression and generalize
linear regression models, there are methods
such as Nearest neighbor regression that do not
need much training for the model parameters.

When there is plenty of data, nearest neighbors
regression can be used effectively



K nearest neighbor regression with k=1

Nearest Neighbor Regression
The idea is very 1
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neighbor classifier, 06F
but the regression =
model predicts 50
s 0f
numbers 3
3 —02f
2
: : : -0.4
K=1 gives piecewise o
constant predictions |
-1
-6 —-:1 —-é (l) 2l ; 6

Explanatory variable



K nearest neighbor regression with

weights

The goal is to predict ¥§ from Xo using a training set{(x,y)}

% Let {(x;,¥,)} be the set of kitems in the training
data set that are closest to Xo.

% Prediction is the following:
yP — Zj W,Yj
Zj W
Where w;are weights that drop off as X; gets further
away from Xg.




Choose different weights functions for

IKNN reqgression
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Evaluation of KNN models

*  Which methods do
you use to choose K
and weight functions?

A. Cross validation
B. Evaluation of MSE

C. Both AandB

Dependent variable
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The Pros and Cons of K nearest neighbor

regression

Pros:
% The method is very intuitive and simple

% You can predict more than numbers as long
as you can define a similarity measure.

Cons

% The method doesn’t work well for very high
dimensional data

% The model depends on the scale of the data



Additional References

Robert V. Hogg, Elliot A. Tanis and Dale L.
Zimmerman. “Probability and Statistical
Inference”

Kelvin Murphy, “Machine learning, A
Probabilistic perspective”



See you next time




