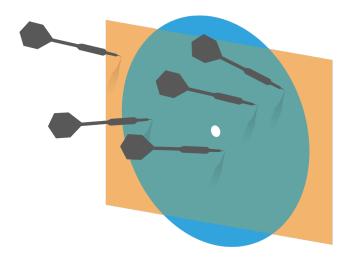
Probability and Statistics for Computer Science



"Unsupervised learning is arguably more typical of human and animal learning..."--- Kelvin Murphy, former professor at UBC

Credit: wikipedia

Hongye Liu, Teaching Assistant Prof, CS361, UIUC, 4.26.2021

Last time

Linear Regression (II)

* Nearest Neighbor Regression

Objectives

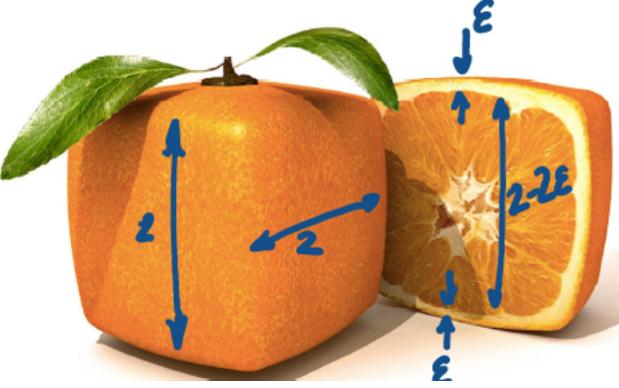
* The curse of dimensionality

Multivariate normal distribution

Unsupervised learning

First let's take a look at a 3D object

Is there more fruit than peel?



Credit: Prof. David Varodayan

First take a look at a 3D object

Is there more fruit or more peel?

Total Volume: 2³ Vol. of fruit: $(2-2\varepsilon)^3$ Vol. of peel: 2³- $(2-2\varepsilon)^3$ Fraction of peel: 1- $(1-\varepsilon)^3$ d If $\varepsilon = 0.05$ fraction of peel ≈ 0.143

Credit: Prof. David Varodayan

What if we have a d-dimensional orange?

Is there always more fruit?

In arbitrary d-dimension

* Total amount of orange

* Amount of fruity part $2^{d} - (2 - 2\epsilon)^{d}$ (in $1 - (1 - \epsilon)^{d} = 1$ * Fraction of orange that is peel $-3 1 - (1 - \epsilon)^{d}$ $\epsilon - 3 - \epsilon - \epsilon = 1$ $\delta = \epsilon - 2\epsilon$

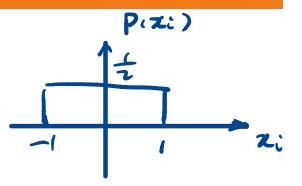
The curse of dimensions

If a dataset is uniformly distributed in a highdimensional cube (or other shape), majority of data is far from the origin.

The above can be roughly proved by calculating the expected distance from the origin

The Expected distance from the origin in d-dimensional cube

$$E[\boldsymbol{x}^{T}\boldsymbol{x}] = E[\sum_{i=1}^{d} x_{i}^{2}] = \sum_{i=1}^{d} E[x_{i}^{2}]$$
$$= \sum_{i=1}^{d} \int_{cube} x_{i}^{2} P(\boldsymbol{x}) d\boldsymbol{x}$$
Assuming t



Assuming the independence of each x_i

$$P(\boldsymbol{x}) = P(x_1)P(x_2)\dots P(x_d)$$

 $\int_{-\infty}^{+\infty} P(x_i) dx_i = 1$ The general law of continuous probability density $\Rightarrow E[\boldsymbol{x}^T \boldsymbol{x}] = \sum_{i=1}^d \int_{-1}^1 x_i^2 P(x_i) dx_i$

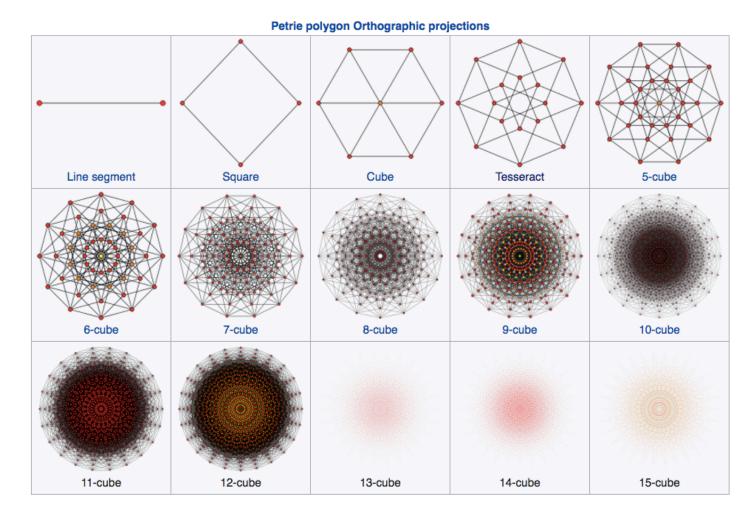
A lot of data is far from the origin.

On average, data points are d/3 away from the origin (using square of distance)

$$E[\mathbf{x}^{T}\mathbf{x}] = \sum_{i=1}^{d} \int_{-1}^{1} x_{i}^{2} P(x_{i}) dx_{i} \qquad = \begin{cases} \frac{1}{2} & \mathbf{x}_{i} \in (-1, j) \\ \mathbf{x}_{i} \in (-1, j) \\ \mathbf{x}_{i} = \frac{1}{2} & \mathbf{x}_{i} = \frac{1}{2} \\ \mathbf{x}_{i} = \frac{1}{2} & \mathbf{x}_{i} = \frac{1}{2} & \mathbf{x}_{i} = \frac{1}{2} \\ \mathbf{x}_{i}$$

What do high-dimensional cubes look like?

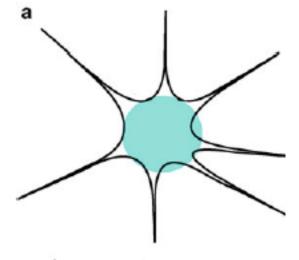
What do high-dimensional cubes look like?



Credit: Wiki

What does a convex object K in high dimensions look like?

The spikes are outliers in high dimension



Credit: G. Pfander editor, "Sampling theory, a Renaissance"

A general convex set

With this scaling, most of the volume of *K* is located around the Euclidean sphere of radius \sqrt{n} . Indeed, taking traces on both sides of the second equation in (1.2), we obtain

$$\mathbb{E} \|X\|_2^2 = n$$

Therefore, by Markov's inequality, at least 90% of the volume of K is contained in a Euclidean ball of size $O(\sqrt{n})$. Much more powerful concentration results are known—the bulk of K lies very near the sphere of radius \sqrt{n} and the outliers have exponentially small volume. This is the content of the two major results in highdimensional convex geometry, which we summarize in the following theorem.

Distance between points grows with increasing dimensions

= -zd

$$E[d(\boldsymbol{u}, \boldsymbol{v})^{2}] = E[(\boldsymbol{u} - \boldsymbol{v})^{T}(\boldsymbol{u} - \boldsymbol{v})]$$

= $E[\boldsymbol{u}^{T}\boldsymbol{u}] + E[\boldsymbol{v}^{T}\boldsymbol{v}] - 2E[\boldsymbol{u}^{T}\boldsymbol{v}]^{2}$
= $\frac{d}{3} + \frac{d}{3} - 0$ u, v are orthogonal

High dimensional histogram of a data set is unhelpful

- Most bins will be empty
- Some bins will have single data
- Wery few will have more than one data point

Dealing with high dimensional data

- Collect as much data as possible
- # Cluster data into blobs/cluster
- * Fit each blob with simple probability model

Multivariate normal distribution

- * Extension of the normal distribution to (x x y)multiple dimensions $P(x) = \frac{2}{\sqrt{2\pi}}$
- We Bivariate normal distribution looks like this: $f(x,y) = \frac{1}{2\pi\sigma_X\sigma_Y\sqrt{1-\rho^2}} e^{-\frac{1}{2(1-\rho^2)} \left[\left(\frac{x-\mu_X}{\sigma_X} \right)^2 2\rho \left(\frac{x-\mu_X}{\sigma_X} \right) \left(\frac{y-\mu_Y}{\sigma_Y} \right)^2 \right]}$ $-1 < \rho < 1 \qquad \rho \neq \pm 1$ $\rho \rightarrow Gorr(x,y)$

Multivariate normal probability densitiy

A multivariate normal random vector X of dimension d has this pdf:
A multivariate normal random vector X of
A multivariate normal random vector X of

$$P(\boldsymbol{x}) = \frac{1}{\sqrt{(2\pi)^d |\Sigma|}} exp(-\frac{1}{2}(\boldsymbol{x} - \boldsymbol{\mu})^T \Sigma^{-1}(\boldsymbol{x} - \boldsymbol{\mu}))$$

where

$$\boldsymbol{\mu} = E[\boldsymbol{x}]$$

$$\Sigma = E[(\boldsymbol{x} - \boldsymbol{\mu})(\boldsymbol{x} - \boldsymbol{\mu})^T]$$

Multivariate MLE

Given a d-dimensional data set ({x}) we can fit a multivariate normal model using MLE

$$P(\mathbf{x}_{i}|\boldsymbol{\theta}) = \frac{1}{\sqrt{(2\pi)^{d}|\boldsymbol{\Sigma}|}} exp(-\frac{1}{2}(\mathbf{x}_{i}-\boldsymbol{\mu})^{T}\boldsymbol{\Sigma}^{-1}(\mathbf{x}_{i}-\boldsymbol{\mu}))$$

$$\mathbf{x}_{i} \sim d \times \mathbf{i} \qquad \boldsymbol{\theta} = \{\boldsymbol{\mu}, \boldsymbol{\Sigma}\}$$

$$L(\boldsymbol{\theta}) = \prod_{i} P(\boldsymbol{x}_{i}|\boldsymbol{\theta}) \qquad \boldsymbol{\theta} = \{\boldsymbol{\mu}, \boldsymbol{\Sigma}\}$$

$$\hat{\boldsymbol{\omega}} = \sum_{i} \sum_{N} \sum_{i} \cdots d \times \mathbf{i} \qquad \boldsymbol{\theta} = \{\boldsymbol{\mu}, \boldsymbol{\Sigma}\}$$

$$\hat{\boldsymbol{\theta}} = \{\boldsymbol{\mu}, \boldsymbol{\Sigma}\}$$

Unsupervised learning

- **Unsupervised learning** means knowledge discovery ⋙ from the feature vectors without labels.
- Unsupervised learning may include: ▓ eigenvectors of coumat.
 - Discovering latent factors ₩
 - ₩ Discovering **cluster**s
 - Discovering graph structure ₩
 - ₩ Matrix completion

X

Q. Is this true?

Principal Component Analysis is an unsupervised learning method.

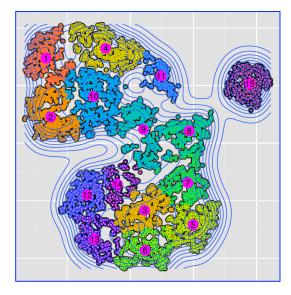
B. FALSE

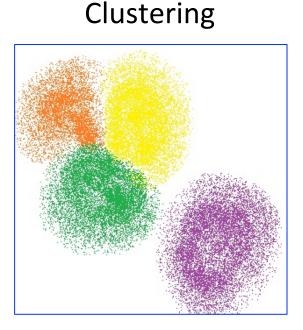
Dimension Reduction is unsupervised learning

- For example in Principal Component Analysis, no labels are assumed about the data.
- PCA discovers the latent factors--- the important eigenvectors of the covariance matrix

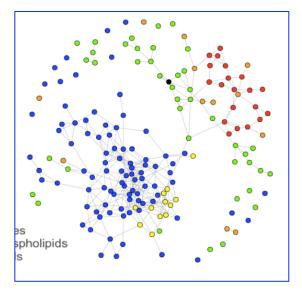
The family of unsupervised learning

Dimension reduction





Graph structure



t-SNE

K-means

Gaussian Graph model

Clustering as an unsupervised learning method

- * Clustering identifies specific structure called **clusters**.
- In clustering data is not labeled. By identifying clusters, the method assigns cluster membership labels to data.
- * A cluster is formed so that
 - Items within a cluster are "close" to each other
 - Items in different clusters are "far" from each other
 - * Distance metric is important in clustering

Types of clustering method

By input type:

- . 00.5 N
- Similarity based clustering: input is N x N similarity/ distance matrix
- Feature based clustering: input is N x D feature matrix
 Inis data
- By output type:
 - **Hierarchical clustering**
 - * Top-down (divisive)
 - Bottom-up (agglomerative)
 - **Flat clustering**:
 - Mixture models, K-means clustering, Spectral clustering...

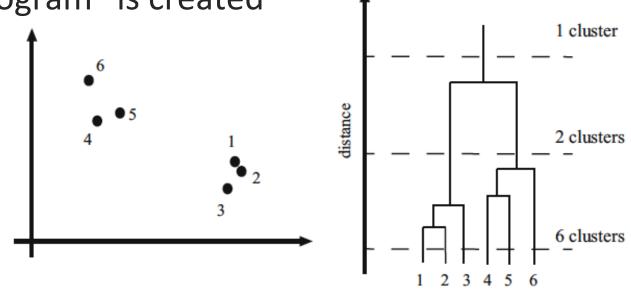
Hierarchical Clustering (I)

- # Divisive clustering
 - * Treat the whole dataset as a single cluster
 - * Then split the data set recursively until you get a satisfactory clustering

Hierarchical Clustering (II)

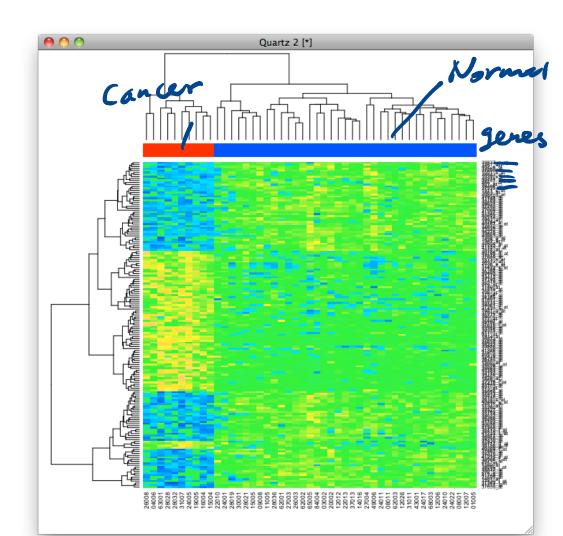
Agglomerative clustering

- * Treat each data item as its own cluster
- * Then merge clusters until you get a satisfactory clustering



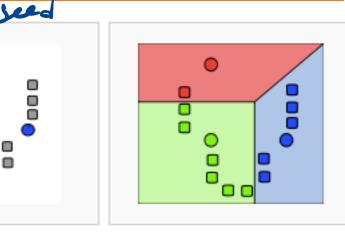
Hierarchical Clustering example

- Agglomerative clustering of matrix of gene-tissue pairs of human samples.
- Columns are tissues; rows are genes
 - Clustering is done for both directions



K-means clustering

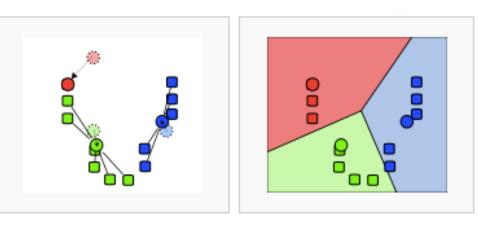
- Pick a value k as the number of clusters
- Select k randomcluster centers
- Iterate until convergence:
 - Assign each data to the nearest center
 - Update the center within the cluster



(1)

K=3

(2)



(3) Source:wikipedia (4)

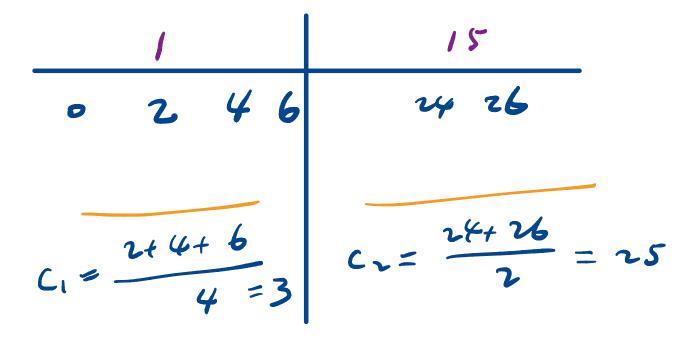
Q. What are the values of c1 and c2?

Given a dataset {0,2,4,6,24,26}, initialize the k means clustering algorithm with 2 cluster centers c1= 3 and c2 = 4. What are the values of c1 and c2 after one iteration of k-means?

> $\frac{3}{0 \ 2} \qquad \frac{4}{4 \ 6 \ 24 \ 26}$ $c_1 = \frac{0+2}{2} = 1 \qquad \frac{4 \ 6 \ 24 \ 26}{4} = 15$

Q. What are the values of c1 and c2?

Given a dataset {0,2,4,6,24,26}, initialize the k means clustering algorithm with 2 cluster centers c1= 3 and c2 = 4. What are the values of c1 and c2 after **two** iterations of k-means?



What does k-means do mathematically?

It's a minimization of a cost function

$$egin{aligned} egin{aligned} egin{aligned} eta(\delta,m{c}) &= \sum_{i,j} \delta_{i,j} [(m{x}_i - m{c}_j)^T (m{x}_i - m{c}_j)] \ &= \sum_{i,j}^N \sum_{k=1}^k \delta_{i,i} \|m{x}_i - m{c}_i\|^2 &= \delta_{i,i} = \int 1 \quad if \ m{x}_i \in clu. \end{aligned}$$

 $= \sum_{i} \sum_{j} \delta_{i,j} \| \boldsymbol{x}_{i} - \boldsymbol{c}_{j} \|^{2} \quad \delta_{i,j} = \begin{cases} 1 & if \ \boldsymbol{x}_{i} \in cluster \ j \\ 0 & otherwise \end{cases}$

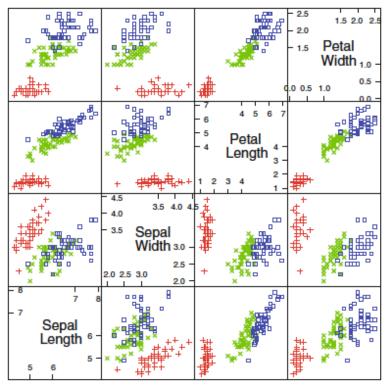
Cost is defined by the sum of squared distances of each data point from its cluster center

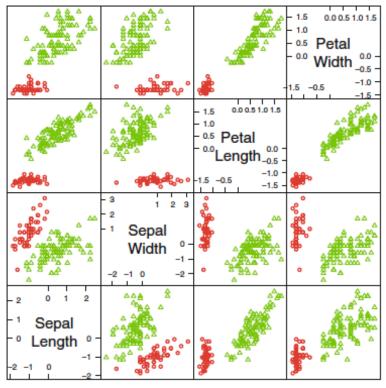
K-means clustering example: Iris

True labels

2 clusters

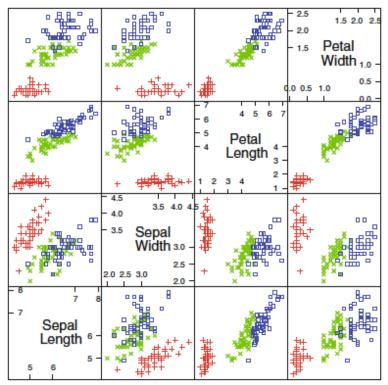
K=2

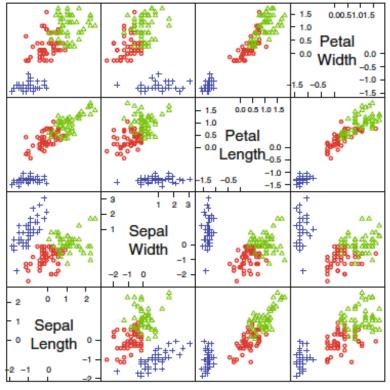




K-means clustering example: Iris

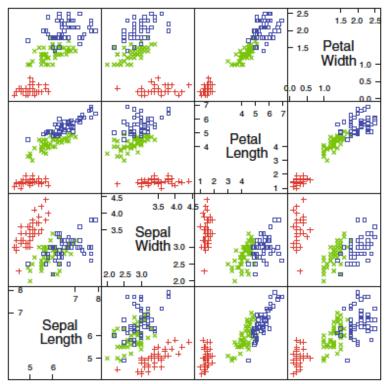
True labels

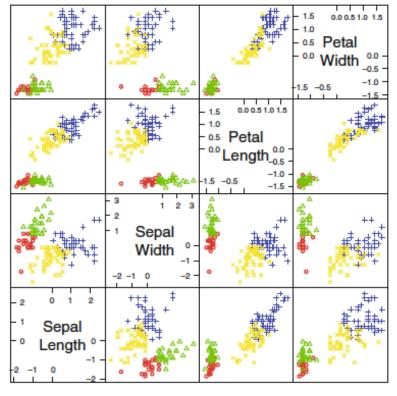




K-means clustering example: Iris

True labels

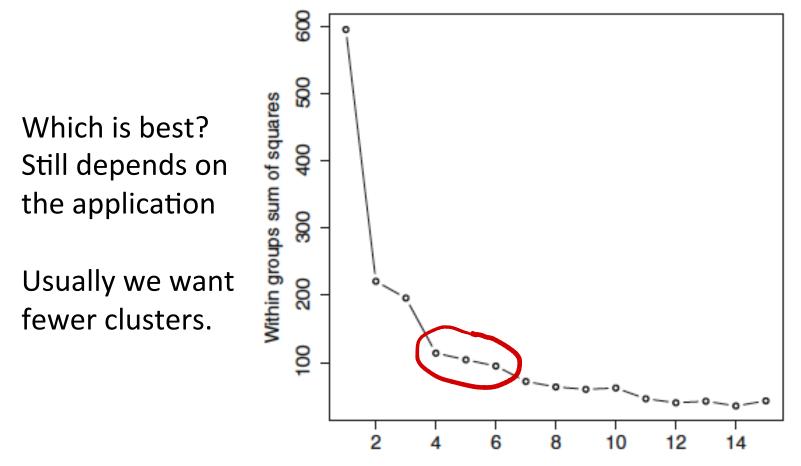




How to choose the value of k?

- Sometimes we have the knowledge from the data set.
- Sometimes we have some other natural way to choose k.
- Otherwise given the cost function, we may perform clustering for many k values and choose k from the knee of the cost function empirically.

Choose k from the cost function curve



Number of Clusters

Some variants of k-means clustering

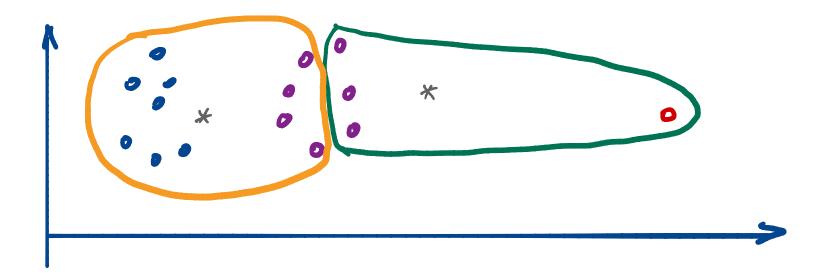
- Soft assignment allows some data items to belong to multiple clusters with weights associated with each cluster
- # Hierarchical k-means speeds up clustering for very large datasets
- K-medioids allows clustering of data that cannot be averaged

Q. What is different between a hierarchical clustering (hc) and k-means?

- A. HC produces dendrogram while k-means results in only flat clusters.
- B. HC doesn't need to choose number of clusters while k-means needs that step.
- C. HC has higher order time complexity than k-means D. All the above.

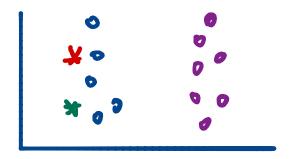
Some issues with k-means clustering

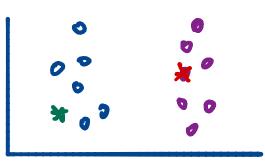
Sensitive to outlier: example



Some issues with k-means clustering

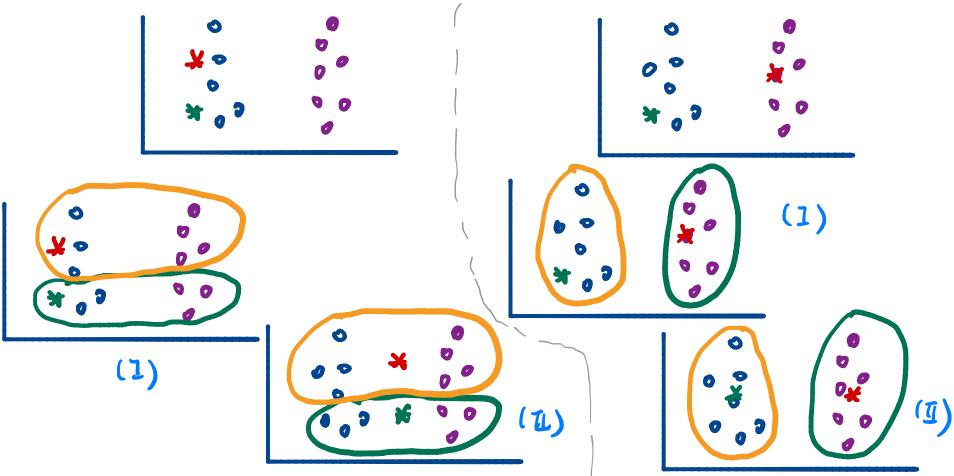
Sensitive to the seeds (example)





Some issues with k-means clustering

Sensitive to the seeds (example)



Assignments

- Read Chapter 11 of the textbook
- Week 14 Module
- ** Next time: Clustering (II) & intro. Of Markov Chain

Additional References

- Robert V. Hogg, Elliot A. Tanis and Dale L. Zimmerman. "Probability and Statistical Inference"
- * Kelvin Murphy, "Machine learning, A Probabilistic perspective"

See you next time

See You!

