Probability and Statistics 7 for Computer Science

"Unsupervised learning is arguably more typical of human and animal learning..."--- Kelvin Murphy, former professor at UBC

Credit: wikipedia

Hongye Liu, Teaching Assistant Prof, CS361, UIUC, 4.26.2021

Last time

KETTEER Expression (II)

Kontarest Neighbor Regression

Objectives

Koge The curse of dimensionality

$*$ Multivariate normal distribution

Unsupervised learning

. Clustering (I) K - means

First let's take a look at a 3D object

Is there more fruit than peel?

Credit: Prof. David Varodayan

First take a look at a 3D object

Is there more fruit or more peel?

Total Volume: 2^3 Vol. of fruit: $(2-2\varepsilon)^3$ Vol. of peel: 2^3 - $(2-2\varepsilon)^3$ Fraction of peel: $1-(1-\epsilon)^3$ If ϵ = 0.05 fraction of peel \approx 0.143 3 d $(2-22)$ $d = 1$

Credit: Prof. David Varodayan

What if we have a d-dimensional orange?

Is there always more fruit?

In arbitrary d-dimension

KET Total amount of orange zd

The curse of dimensions

 $*$ If a dataset is uniformly distributed in a highdimensional cube (or other shape), majority of data is far from the origin.

The above can be roughly proved by calculating the expected distance from the origin

The Expected distance from the origin in d-dimensional cube

$$
E[\mathbf{x}^T \mathbf{x}] = E[\sum_{i=1}^d x_i^2] = \sum_{i=1}^d E[x_i^2]
$$

=
$$
\sum_{i=1}^d \int_{cube} x_i^2 P(\mathbf{x}) d\mathbf{x}
$$
 Assuming the independent

 $i=1$

$$
\begin{array}{c}\nP(z) \\
\hline\n1\n\end{array}
$$

suming the independence of each x_i

$$
P(\boldsymbol{x}) = P(x_1)P(x_2)...P(x_d)
$$

 $\int^{+\infty}$ $-\infty$ The general law of continuous probability density $E[\boldsymbol{x}^T\boldsymbol{x}] = \sum \limits_{i=1}^T \boldsymbol{x}_i^T \boldsymbol$ \overline{d} \int_0^1 −1 $\Rightarrow E[\boldsymbol{x}^T\boldsymbol{x}] = \sum \int x_i^2 P(x_i) dx_i$

 $E[x_i^2]$

A lot of data is far from the origin.

 $*$ On average, data points are d/3 away from the origin (using square of distance)

$$
E[\mathbf{x}^T \mathbf{x}] = \sum_{i=1}^d \int_{-1}^1 x_i^2 P(x_i) dx_i
$$

=
$$
\sum_{i=1}^d \frac{1}{2} \int_{-1}^1 x_i^2 dx_i
$$

=
$$
\frac{1}{3} \sum_{i=1}^d \frac{1}{2} \int_{-1}^1 x_i^2 dx_i
$$

=
$$
\frac{1}{3} \sum_{i=1}^d \frac{1}{2} \int_{-1}^1 x_i^2 dx_i
$$

=
$$
\frac{1}{3} \sum_{i=1}^d \frac{1}{2} \int_{-1}^1 x_i^2 dx_i
$$

What do high-dimensional cubes look like?

What do high-dimensional cubes look like?

Credit: Wiki

What does a convex object K in high dimensions look like?

The spikes are outliers in high dimension

Credit: G. Pfander editor, "Sampling theory, a Renaissance"

A general convex set

With this scaling, most of the volume of K is located around the Euclidean sphere of radius \sqrt{n} . Indeed, taking traces on both sides of the second equation in (1.2), we obtain

$$
\mathbb{E} \left\| X \right\|_2^2 = n
$$

Therefore, by Markov's inequality, at least 90% of the volume of K is contained in a Euclidean ball of size $O(\sqrt{n})$. Much more powerful concentration results are known—the bulk of K lies very near the sphere of radius \sqrt{n} and the outliers have exponentially small volume. This is the content of the two major results in highdimensional convex geometry, which we summarize in the following theorem.

Distance between points grows with increasing dimensions

 $E[d(\boldsymbol{u},\boldsymbol{v})^2]=E[(\boldsymbol{u}-\boldsymbol{v})^T(\boldsymbol{u}-\boldsymbol{v})]$ $= E[\boldsymbol{u}^T \boldsymbol{u}] + E[\boldsymbol{v}^T \boldsymbol{v}] - 2E[\boldsymbol{u}^T]$ $d(u, v)^2$] = $E[(u - v)^T(u - v)]$
 $E[u^T u] + E[v^T v] - 2E[u^T v]^2$ U , ^U are $=\frac{d}{3}+\frac{d}{3}$ -0 orthogonal

 $=$ $\frac{6}{3}d$

High dimensional histogram of a data set is unhelpful

- $*$ Most bins will be empty
- $*$ Some bins will have single data
- **EXEL Very few will have more than one data point**

Dealing with high dimensional data

- **EXECOLLECT AS much data as possible**
- * Cluster data into blobs/cluster
- $*$ Fit each blob with simple probability model

Multivariate normal distribution

- Extension of the normal distribution to-☀ $rac{e}{\sqrt{2\pi}}$ $P(x) =$ multiple dimensions
- Bivariate normal distribution looks like this: 洣 $f(x, y) = \frac{1}{2\pi\sigma_X\sigma_{Y\sqrt{1-\alpha^2}}} e^{-\frac{1}{2(1-\rho^2)}\left[\left(\frac{x-\mu_X}{\sigma_X}\right)^2 - 2\rho\left(\frac{x-\mu_X}{\sigma_X}\right)\left(\frac{y-\mu_Y}{\sigma_Y}\right) + \left(\frac{y-\mu_Y}{\sigma_Y}\right)^2\right]}$ $p_{\pm\pm1}$ $-1 < \rho < 1$ $\rho \rightarrow Grr(X, Y)$

Multivariate normal probability densitiy

A multivariate normal random vector X of ☀ Mahalanobis dimension d has this pdf:

$$
P(\boldsymbol{x}) = \frac{1}{\sqrt{(2\pi)^d |\Sigma|}} exp(-\frac{1}{2}(\boldsymbol{x} - \boldsymbol{\mu})^T \Sigma^{-1}(\boldsymbol{x} - \boldsymbol{\mu}))
$$

where

$$
\boldsymbol{\mu} = E[\boldsymbol{x}]
$$

$$
\Sigma = E[(\boldsymbol{x} - \boldsymbol{\mu})(\boldsymbol{x} - \boldsymbol{\mu})^T]
$$

Multivariate MLE

Given a d-dimensional data set $({x})$ we can fit a ☀ ズ Lid multivariate normal model using MLE

$$
P(x_i|\theta) = \frac{1}{\sqrt{(2\pi)^d |\Sigma|}} exp(-\frac{1}{2}(x_i - \mu)^T \Sigma^{-1} (x_i - \mu))
$$

\n
$$
\mathbf{z}_i \sim d \times I
$$

\n
$$
\theta = \{\mu, \Sigma\}
$$

\n
$$
\mathbf{\hat{\mu}} = \frac{\sum_{i} x_i}{\mu} \sim d \times I
$$

\n
$$
\mathbf{\hat{\mu}} = \frac{\sum_{i} x_i}{\mu} \sim d \times I
$$

\n
$$
\mathbf{\hat{\mu}} = \mathbf{\hat{\mu}}, \mathbf{\hat{\Sigma}} \mathbf{\hat{\mu}}
$$

\n
$$
\mathbf{\hat{\Sigma}} \text{ is the equar-iance matrix of } \{\mathbf{x}\} \sim d \times d
$$

Unsupervised learning

- Unsupervised learning means knowledge discovery ☀ from the feature vectors without labels.
- Unsupervised learning may include: ☀
	- **Discovering latent factors** ☀
	- ☀ Discovering clusters
	- Discovering graph structure ☀
	- ☀ **Matrix completion**

 $\bm{\times}$

eigenvectors of courat

Q. Is this true?

Principal Component Analysis is an unsupervised ☀ learning method.

B. FALSE

Dimension Reduction is unsupervised learning

- **EXECT:** For example in **Principal Component Analysis**, no labels are assumed about the data.
- **EXECOMERGE:** The latent factors--- the important eigenvectors of the covariance matrix

The family of unsupervised learning

Dimension reduction

Graph structure

Gaussian Graph model

t-SNE

K-means

Clustering as an unsupervised learning method

- **EXECUTE:** Elustering identifies specific structure called **clusters**.
- **In clustering data is not labeled.** By identifying clusters, the method assigns cluster membership labels to data.
- $*$ A cluster is formed so that
	- $*$ Items within a cluster are "close" to each other
	- $*$ Items in different clusters are "far" from each other
	- **EXECUTE:** Distance metric is important in clustering

Types of clustering method

By input type:

o - r - - - N - ^⑥ 0.5

A

 $\sqrt{2}$

- **Similarity based clustering:** input is N x N similarity/ distance matrix N I
- **Feature based clustering:** input is N x D feature matrix Septal L Sept al W
.
1 r. 's dataif
- By output type:
	- **KEUTHERIGAL EXAMPLE E**
		- Top-down (divisive)
		- [₩] Bottom-up (agglomerative)
	- **Flat clustering**:
		- $*$ Mixture models, K-means clustering, Spectral clustering...

Hierarchical Clustering (I)

EXECUSTER Surve clustering

- Treat the whole dataset as a single cluster
- $*$ Then split the data set recursively until you get a satisfactory clustering

Hierarchical Clustering (II)

$*$ Agglomerative clustering

- Treat each data item as its own cluster
- $*$ Then merge clusters until you get a satisfactory clustering

Hierarchical Clustering example

- Agglomerative clustering of matrix of gene-tissue pairs of human samples.
- Columns are tissues; rows are genes
	- Clustering is done for both directions

K-means clustering

- Pick a value **k** as the number of clusters
- Select **k** random cluster centers
- $*$ Iterate until convergence:
	- **KETAS Assign each data to** the nearest center
	- $*$ Update the center within the cluster

8

 $K=3$

 (1) (2)

(3) Source:wikipedia (4)

Q. What are the values of c1 and c2?

Given a dataset $\{0, 2, 4, 6, 24, 26\}$, initialize the k means clustering algorithm with 2 cluster centers after one iteration of k-means?

c1= 3 and c2 = 4. What are the values of c1 and c2 ¥426 $\frac{1}{2}$ d c2 = 4.

e iteratio ⁰ 2 $c_1 = \frac{0+2}{2} = 1$ $c_2 = 6 + 24 + 26$

Q. What are the values of c1 and c2?

Given a dataset $\{0, 2, 4, 6, 24, 26\}$, initialize the k means clustering algorithm with 2 cluster centers $c1=$ 3 and $c2=$ 4. What are the values of $c1$ and $c2$ after **two** iterations of k-means?

What does k-means do mathematically?

 $*$ It's a minimization of a cost function

i j

$$
\boldsymbol{\phi}(\delta, \mathbf{c}) = \sum_{i,j} \delta_{i,j} [(\boldsymbol{x}_i - \boldsymbol{c}_j)^T (\boldsymbol{x}_i - \boldsymbol{c}_j)]
$$

=
$$
\sum_{i,j} \sum_{i} \delta_{i,j} ||\boldsymbol{x}_i - \boldsymbol{c}_j||^2 \quad \delta_{i,j} = \begin{cases} 1 & \text{if } \boldsymbol{x}_i \in cluster \ j \\ 0 & \text{otherwise} \end{cases}
$$

 $*$ Cost is defined by the sum of squared distances of each data point from its cluster center

K-means clustering example: Iris

True labels **2** clusters

 $k=2$

K-means clustering example: Iris

True labels 3 clusters

K-means clustering example: Iris

True labels 4 clusters

How to choose the value of k ?

- $*$ Sometimes we have the knowledge from the data set.
- $\mathcal K$ Sometimes we have some other natural way to choose k.
- $*$ Otherwise given the cost function, we may perform clustering for many k values and choose k from the knee of the cost function empirically.

Choose k from the cost function curve

Review

Some variants of k-means clustering

- $*$ Soft assignment allows some data items to belong to multiple clusters with weights associated with each cluster
- $*$ Hierarchical k-means speeds up clustering for very large datasets
- $*$ K-medioids allows clustering of data that cannot be averaged

Q. What is different between a hierarchical clustering (hc) and k-means?

- A. HC produces dendrogram while k-means results in only flat clusters.
- B. HC doesn't need to choose number of clusters while k-means needs that step.

C. HC has higher order time complexity than k-means All the above.

Some issues with k-means clustering

Example 3 Sensitive to outlier: example

Some issues with k-means clustering

[■] Sensitive to the seeds (example)

Some issues with k-means clustering

[■] Sensitive to the seeds (example)

Assignments

- **Kead Chapter 11 of the textbook**
- Week 14 Module
- Next Ume: Clustering (II) & intro. Of Markov Chain

Additional References

- ✺ Robert V. Hogg, Elliot A. Tanis and Dale L. Zimmerman. "Probability and Statistical Inference"
- **Kelvin Murphy, "Machine learning, A** Probabilistic perspective"

See you next time

See You!

